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Abstract The predictable patterns of the Asian and Indo-

Pacific summer precipitation in the NCEP climate forecast

system (CFS) are depicted by applying a maximized sig-

nal-to-noise empirical orthogonal function analysis. The

CFS captures the two most dominant modes of observed

climate patterns. The first most dominant mode is charac-

terized by the climate features of the onset years of El

Niño-Southern Oscillation (ENSO), with strong precipita-

tion signals over the tropical eastern Indian and western

Pacific oceans, Southeast Asia, and tropical Asian monsoon

regions including the Bay of Bengal and the South China

Sea. The second most dominant mode is characterized by

the climate features of the decay years of ENSO, with

weakening signals over the western-central Pacific and

strengthening signals over the Indian Ocean. The CFS is

capable of predicting the most dominant modes several

months in advance. It is also highly skillful in capturing the

air–sea interaction processes associated with the precipi-

tation features, as demonstrated in sea surface temperature

and wind patterns.

Keywords Asian monsoon � Predictable patterns �
NCEP climate forecast system

1 Introduction

The NCEP climate forecast system (CFS) provides opera-

tional seasonal prediction of the world’s climate including

the monsoon climate of the Asian and Indo-Pacific regions

(Saha et al. 2006). In many Asian countries, CFS products

are now considered important source of information for

regional climate predictions (e.g. FOCRAII 2006). How-

ever, in spite of the limited information about the sub-

seasonal features (Yang et al. 2008a) and seasonal-inter-

annual variability and prediction (Wang et al. 2008; Yang

et al. 2008b) of the Asian summer monsoon in the model,

how competently the CFS performs in simulating and

predicting the Asian–Australian and Indo-Pacific monsoon

climate and its variability has not been fully documented.

The Asian–Australian monsoon is an important climate

system and its variability is closely linked to many weather

and climate signals both inside and outside the monsoon

regions. Because of its enormous scientific and societal

impacts, monsoons have a long history of academic

research and operational predictions. While early studies

mainly focused on the monsoon phenomenon over India

(Normand 1953; Krishnamurti 1985; Shukla 1987), interest

in monsoon study has been extended rapidly to a much

broader region covering the entire tropical Asia and the

surrounding oceans during the recent decades (Lau and Li

1984; Tao and Chen 1987; Webster and Yang 1992; and

J. Liang

CMA Institute of Tropical and Marine Meteorology,

Guangzhou, Guangdong, China

S. Yang (&) � A. Kumar

NOAA/NWS/NCEP Climate Prediction Center,

5200 Auth Road, Room 605, Camp Springs, MD 20746, USA

e-mail: song.yang@noaa.gov

Z.-Z. Hu

Center for Ocean-Land-Atmosphere Studies, Calverton,

MD, USA

B. Huang

Department of Climate Dynamics, George Mason University,

Fairfax, VA, USA

Z. Zhang

CMA National Climate Center, Beijing, China

123

Clim Dyn (2009) 32:989–1001

DOI 10.1007/s00382-008-0420-8



see Chang and Krishnamurti (1987) and Wang (2006) for

reviews).

In this paper, we address several issues about the

monsoon climate over Asia and the tropical Indo-Pacific

Oceans in the CFS. We depict the predictable patterns of

monsoon in CFS and assess the authenticity of the model

results against observations. We also analyze the model’s

dynamical processes to identify the factors impacting these

predictable patterns. Furthermore, we reveal the lead time

for the dominant features of monsoon predicted by the

model. The summer monsoon season (June–July–August;

JJA) and the monsoon phenomena over both the Asian

lands and the nearby waters of the Indian Ocean (IO) and

western Pacific are the focus of this study.

In Sect. 2, we describe the model and data and discuss

the analysis method briefly. In Sect. 3, we discuss the

seasonal means of observed and model precipitation, the

most predictable patterns of monsoon precipitation, and the

associated physical processes. A summary of the results

obtained is provided in Sect. 4.

2 Model, data, and analysis method

The NCEP CFS, whose results are analyzed in this study, is

a fully coupled operational dynamical seasonal prediction

system (Saha et al. 2006). The atmospheric component is

the NCEP Atmospheric Global Forecast System (Moorthi

et al. 2001), except for a coarser horizontal resolution with

a spectral triangular truncation of 62 waves in the hori-

zontal and 64 sigma layers in the vertical. The oceanic

component is the GFDL Modular Ocean Mode V3.0

(Pacanowski and Griffies 1998). The atmospheric and

oceanic components are coupled without flux adjustment,

and the two components exchange time-averaged quanti-

ties once a day.

We analyze the results from the CFS retrospective

predictions (or hindcasts) which cover all 12 calendar

months from 1981 to 2004. These experiments, each of

which is a 9-month integration, are an ensemble of 15

members starting from perturbed real-time oceanic–atmo-

spheric initial conditions. The observed data sets used for

model verification include the Climate Prediction Center

Merged Analysis of Precipitation (Xie and Arkin 1996),

850-mb winds from the NCEP/DOE global reanalysis II

(Kanamitsu et al. 2002), and the NOAA optimally-inter-

polated sea surface temperature (SST) analysis (Reynolds

et al. 2002).

The main analysis tool applied in this study is a maxi-

mum signal-to-noise empirical orthogonal function (MSN

EOF) method developed by Allen and Smith (1997). As in

Venzke et al. (1999), Sutton et al. (2000), Huang (2004),

and Hu and Huang (2007), this tool is applied to derive the

patterns that optimize the signal-to-noise ratio, i.e., the

leading modes are the ones that maximize the ratios of the

variances of ensemble mean (the signal) to the deviations

among ensemble members (the noise). Given that, in a

moderate ensemble size of 15 members, the ensemble

mean contains both a common evolution of all ensemble

means (presumed to be the signal) and a residual random

part related to the unpredictable differences among the

ensemble members (internal noise), the MSN technique

minimizes the effects of noise. Like a conventional EOF

mode, a MSN EOF mode provides a spatial-temporal dis-

tribution. By definition, the leading MSN EOF mode

represents the most predictable pattern in a hindcast sys-

tem. A larger variance of this mode in the ensemble mean

indicates relatively higher predictability. We apply this

analysis, whose details can be found in the appendix, to

document the predictable signals in precipitation over

30�S–50�N, 40�–180�E. However, additional analysis with

different spatial domains (e.g. 0�–35�N, 60�–100�E) retains

the major features of the patterns.

3 Results

3.1 Seasonal means of observed and model

precipitation

Figure 1 shows the JJA climatological (1981–2004) means

of observed and CFS ensemble-mean precipitation and

850-mb winds. For CFS, LM0 (0 month lead prediction;

Fig. 1b) presents the JJA precipitation simulated using the

initial conditions of 9–13, 19–23, and 30–31 May and 1–3

June. Correspondingly, LM3 (three lead months; Fig. 1c)

and LM6 (Fig. 1d) present the JJA precipitation predictions

using the initial conditions 3 months and 6 months,

respectively, before those used in LM0.

As discussed in many previous studies (e.g. Yang and

Lau 2006), the observed patterns include monsoon pre-

cipitation with large centers over western India, northern

Bay of Bengal (BOB), Indo-China peninsula, South China

Sea (SCS), and east of the Philippines. The patterns also

include the well-known features of the southwesterly

monsoon flow over tropical Asia, the Somali jet, and the

tropical western Pacific anticyclone. The CFS captures

most of the above features reasonably well at 0 month lead

(compare Figs. 1a, b). The model also captures the Meiyu

rain band over East Asia associated with the East Asia

monsoon and mid-latitude frontal systems, the double rain

bands over the tropical western Pacific, and the rainfall

over the equatorial southern IO. However, the CFS pro-

duces unrealistic precipitations along the southern slope of

the Tibetan plateau. It overestimates the precipitation over

the eastern Arabian Sea and western Indo-China peninsula,
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and underestimates the precipitation over SCS and east of

the Philippines. In addition, the mean monsoon flow and

the cross-equatorial flow are relatively too weak in the

model.

It can be seen from Figs. 1c–d that the patterns of LM3

and LM6 illustrate similar features to the pattern of LM0,

suggesting that the CFS can correctly predict these time-

mean features several months ahead. (LM6 is the longest

lead month prediction available for analysis of seasonal

means for this study.) The predictable features include the

convection over southwestern tropical IO, the South Pacific

Convergence Zone, and the East China Sea, besides the

Indian monsoon precipitation. Nevertheless, from LM0 to

LM6, some differences occur over the tropical IO and the

far western Pacific such as the convection near the

Philippines.

Figure 2 presents the standard deviations of precipita-

tion to measure the interannual variability of the observed

and CFS summer monsoon precipitation. In observations

(Fig. 2a), the monsoon precipitation varies most forcefully

over northern BOB, Bangladesh, and southern Indo-China

peninsula. It also varies strongly over tropical southeastern

IO, eastern SCS, tropical western Pacific, and the mari-

time continent. Relatively, small variability of monsoon

precipitation appears over eastern India, western BOB and

Arabian Sea, and central Indo-China peninsula along about

100�E. The CFS (Fig. 3b) captures these features reason-

ably well, especially those over the maritime continent,

tropical southeastern IO and western Pacific, and the

eastern BOB and Arabian Sea, in spite of a smaller mag-

nitude over Bangladesh. However, the model overestimates

the precipitation variability over tropical southwestern IO

and Indonesia but underestimates the variability over East

Asia and western North Pacific in the subtropics.

3.2 Most predictive patterns

We now depict the predictable patterns in CFS, which is

capable of simulating the major climatological features of

monsoon variability over Asia and the Indo-Pacific oceans,

as revealed by the MSN EOF analysis. We discuss the first

two most predictable modes, since only these two modes

exceed the significance at 95% confidence level (F test).

Figure 3 shows the most predictable patterns (the first

mode) of precipitation and the principal component (PC)

for different lead months. As in the convectional EOF

analysis, the multiplication of eigenvector and PC yields

values in the unit of precipitation (mm per day). The most

(a)

(c) (d)

(b)

Fig. 1 JJA climatological (1981–2004) means of observed precipitation in mm per day and 850-mb winds in ms-1 (a) and CFS ensemble-mean

precipitation and winds for zero lead month (b), three lead months (c) and six lead months (d)

J. Liang et al.: Predictable patterns of the Asian and Indo-Pacific summer precipitation 991

123



striking features of Fig. 3a are the negative values

(decrease in precipitation when PC is positive; and vice

versa) over the equatorial central-eastern IO and Indonesia

and the positive values over the equatorial western Pacific

and the regions from eastern BOB to the Philippines. The

figure also presents negative values over the tropical

southwestern Pacific and a latitudinal band around 22�N,

and positive values over the tropical western IO. Overall,

the values outside 15�S–30�N are relatively small.

Figure 3b indicates that the peaks of ensemble mean PC

(measured by the thick black curve) appear in the JJAs of

1982, 1987, 1991, 1993, and 1997 and the valleys in 1984–

1985, 1988–1989, and 1999. Thus, the positive (negative)

values in Fig. 3a measure increases (decreases) in precipi-

tation during the summers of El Niño onset or decreases

(increases) in precipitation during La Niña development. In

particular, the simultaneous correlation between the PC of

ensemble mean and the Nino-3.4 SST of El Niño onset

years is 0.89 for LM0, 0.67 for LM3, and 0.41 for LM6, all

significant at the 95% confidence level (0.41) of t test.

(According to the classification of NOAA Climate Predic-

tion Center (http://www.cpc.noaa.gov), warm ENSO event

occurred in 1982–1983, 1986–1988, 1991–1992,1993,

1994–1995,1997–1998, and 2002–2003 and cold events in

1984–1985, 1988–1989, 1995–1996, and 1998–2001.)

These features are also similar to the first-mode pattern of

singular value decomposition analysis shown by Lau and

Wu (2001). The above-depicted features are robust, as

shown by the significant correlation (R1 = 0.92) between

the PCs of ensemble mean and various members (thin

dashed curves), implying that the predictions of the pre-

cipitation anomalies shown in Fig. 3a from different initial

conditions are largely convergent. (R1 is the average value

of 15 correlations between the PC of ensemble mean and the

15 PCs of ensemble members.)

Since the MSN EOF pattern is derived solely from

predictions, it only represents the model preference. If a

predictive model has physical deficiencies and consistently

provides wrong predictions, its most predictive pattern

should not be significantly correlated with observations. To

determine how skillfully this highly predictable model

pattern forecasts the observations, we also compute the

corresponding ‘‘PC’’ for observations (thick dashed curve

in Fig. 3b) by projecting the observed precipitation

anomalies upon the spatial pattern of the first MSN EOF

mode of CFS precipitation and calculate the correlation (R)

between this observed ‘‘PC’’ and the PC of the MSN EOF

(thick black curve). The correlation coefficient of 0.82

significantly exceeds the 99% confidence level, indicating

that the hindcast interannual precipitation variation asso-

ciated with this most predictable pattern shown in Fig. 3a is

highly coherent with a portion of the observed anomalous

rainfall variations. Since the PC of the MSN EOF also has

comparable amplitude to its observed counterpart, it pre-

dicts the variance of the observed variations reasonably

well. In other words, the model signals depicted by this

MSN EOF mode largely predict the observed anomalies

and R is a quantitative measure of the skill.

Figure 3 also shows that the difference between the

modeled and observed patterns and the spread among

various ensemble members become larger with longer

leads. However, the most predictable precipitation pattern

can still be detected with confidence at least 6 months in

advance. This can be seen from the similarity of spatial

pattern between LM3 (Fig. 3c) and LM0 (Fig. 3a), with a

pattern correlation coefficient of 0.89, and between LM6

(Fig. 3e) and LM0, with a pattern correlation coefficient of

0.87. The LM3 and LM6 patterns also have a significant

correlation with the observed, with R = 0.66 for LM3 and

R = 0.58 for LM6. The robustness of the feature can also

be seen from consistent performance among the ensemble

members (on average, R1 = 0.87 for LM3 and R1 = 0.86

for LM6). Furthermore, the variances for different leads

(5.23, 3.21, and 2.79) are larger than the threshold value of

1.72 of the 95% significance level (F test), suggesting that

the patterns shown in Fig. 3 are statistically significant (see

(b)

(a)

Fig. 2 Standard deviations of JJA precipitation for CMAP observa-

tion (a) and CFS zero lead month (b). Units: mm per day
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Venzke et al. 1999). (The values of Var_em shown in the

figure are the variances of ensemble means associated with

the specified MSN EOF mode. They are calculated from

the ensemble mean data projected onto the normalized first

optimal filter patterns, following Vanzke et al.) The high

skill for extended long-range predictions demonstrates the

advantage of the MSN EOF method, which optimizes the

signal-to-noise ratio by suppressing the effect of noise

among the ensemble members.

The MSN EOF analysis is different from the conven-

tional EOF analysis of the ensemble means partially

because it (the former) optimizes the modes of large ratio of

signal to noise and thus uses more information from

ensemble members, although the two tend to yield the same

Fig. 3 First MSN EOF mode of CFS precipitation (mm per day) for

lead months of 0, 3, and 6. In the right panels, the thick solid and thin
dashed lines are the PCs of ensemble means and individual members,

respectively. The thick dashed lines represent the PCs that are

computed by projecting the observed precipitation upon the pattern of

first mode of the CFS precipitation. R measures the correlation

between the observation and the ensemble mean, and R1 measures the

mean correlation among the ensemble members
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patterns when the number of ensembles is infinite. It is thus

interesting to compare the two analyses to better understand

the noise-suppressed MSN EOF patterns and to assess the

adequateness of the ensemble size. Figure 4 shows the first

mode of conventional EOF for both observed precipitation

and CFS precipitation (LM0, LM3, and LM6), as well as

their associated PCs (right column). In general, the CFS

patterns of various leads are similar to the observed pattern

despite that stronger-than-observed signals appear over

southern India and over southern Philippines and nearby

waters in the model. Comparison between Figs. 3 and 4 also

indicates a large similarity between the two analyses in

corresponding leads. This implies that the number of

ensemble members of CFS is adequate for predicting the

major features of the most predictable mode of precipita-

tion, at least over the western Pacific. However, differences

also exist between Figs. 3 and 4, especially over tropical

western IO and the subtropics (e.g. in LM0). These differ-

ences may diminish when the number of ensemble members

increases. Larger difference between the two techniques

occurs in the PCs. While the correlation between the MSN

PC of LM0 ensemble mean and the Nino-3.4 SST of El

Niño onset years is 0.89, it decreases to 0.67 for the cor-

responding PC of conventional EOF analysis. This

difference indicates the advantage of MSN EOF analysis,

which suppresses noises of ensemble simulations, in

depicting the signals associated with external forcing.

Interestingly, the differences between the MSN and

conventional EOFs shown in Figs. 3 and 4 diminish from

short lead to longer leads. One potential explanation is that

the signal-to-noise ratio may not always decay at the short

leads of the hindcasts, although it will decay as the lead

time increases due to the diminution of signals. As seen in

Figs. 3 and 4, the percentages of total variance explained

by both the MSN EOF mode and the conventional EOF

mode increase monotonically with lead time. Therefore,

the most dominant mode, which should mostly contain the

‘‘signals’’ even in the conventional EOF, counts more

weight as the forecasts progress, implying that, relatively to

signals, the noise level is also reducing during the hindcast.

As a result, the signal-to-noise ratio may be smaller at short

leads where the MSN EOF becomes more effective. The

factors that possibly contribute to the high noise in the first

lead month include the initial shock of the coupled system

due to the imbalance between the oceanic and atmospheric

initial states, which usually takes time to damp out (e.g.

Chen et al. 1997; Schneider et al. 1999, 2003). Another

potential explanation relates the noise levels at different

lead times to the predictions initiated in different calendar

months. It is conceivable that the level of both atmospheric

internal variability and model error growth is seasonally

dependent (e.g. Hu and Huang 2007). Its accumulative

effect in the target month (e.g. June) may also be different.

For the second most predictable mode revealed by MSN

EOF analysis (Fig. 5), the most noticeable features are the

negative values over tropical northwestern Pacific, centered

over the Philippines, and the positive values over the

equatorial and northern IO (Fig. 5a). The prominent peaks

(valleys) of the PC (Fig. 5b) associated with the spatial

pattern appear in 1983, 1992, 1995, and 1998 (1986, 1989,

and 2000–2001), the summers after El Niño (La Niña) peak

events. The simultaneous correlation between this PC (PC-

2) of ensemble mean and the Nino-3.4 SST of El Niño

decay years is 0.80 for LM0, 0.77 for LM3, and 0.59 for

LM6, all significantly exceeding the 99% confidence level

(0.53) of t test. Interestingly, the signals over IO are more

apparent than those seen in the first mode (Fig. 3a), sug-

gesting that the second mode captures the delayed effect of

ENSO. Overall, this second most predictable pattern is

significant (with a variance of 2.63) and robust (R1 = 0.86)

and resembles the observed features (R = 0.80). There

exist similarities between the various lead months, with a

pattern correlation coefficient of 0.83 between LM0 and

LM3, and 0.67 between LM0 and LM6. In lead months of

LM3 and LM6 (Figs. 5d, f), the correlations between the

ensemble means and observations (R), and between the

ensemble members (R1), are also significant, suggesting

that the skill of CFS predictions for the second mode is

high. However, the variances especially those for LM6 and

even LM3 (Figs. 5c, e) are small. This feature suggests a

relationship between signals and the ratio of signal to

noise. That is, the signals of the second mode of MSN EOF

optimizing the ratio of signal to noise are predictable.

However, the amplitudes of these signals are small, as

shown by the small variances.

Figure 6 shows the second mode of conventional EOF

for observed precipitation and CFS precipitation (LM0,

LM3, and LM6) and the associated PCs. As for the first

mode, there is a general similarity between the observed and

CFS patterns. In particular, comparison between Fig. 6a

(observed) and Fig. 6c (CFS LM0) reveals many similar

features over Asia and the Indo-Pacific oceans although the

model yields overly strong signal over the equatorial wes-

tern Pacific. Despite that there is a large similarity between

the MSN EOF and the conventional EOF for the second

mode, differences can also be clearly seen between Figs. 5

and 6, especially over Southeast Asia and the tropical

eastern IO and western Pacific sector. Over these regions,

numerical models often face difficulties in simulating the

climate realistically for various reasons. The noise-sup-

pressing MSN EOF seems superior to the conventional EOF

analysis in capturing the climate signals related to external

forcing. In fact, for the second mode of LM0, the correlation

between the PC and the Nino-3.4 SST of the decay years of

El Niño is 0.46 in the conventional EOF analysis but

increases to 0.80 in the MSN EOF analysis.
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To assess whether the PCs obtained by projecting the

observed precipitation upon the patterns of leading modes

of CFS precipitation are affected by any possible

systematic bias of the model, we further examine the

relationships between the leading CFS modes that are

mainly analyzed in this study and the observed

(a) (b)

(d)(c)

(e) (f)

(h)(g)

Fig. 4 First conventional EOF mode and PCs of JJA observed precipitation (a, b) and CFS precipitation for lead months of 0, 3, and 6 (c–h)
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precipitation pattern. Figure 7a–c show that the most pre-

dictable mode of CFS is associated with the signals of

observed precipitation mainly over Southeast Asia, the

western Pacific, and the tropical eastern IO (in LM0).

These signals, also appearing in Fig. 3, become weaker in

longer lead months. The major observed feature associated

with the second most predictable mode of CFS (Fig. 7d–f)

is the opposite-sign relationship in precipitation variability

between the tropical IO and subtropical North Pacific. This

feature has also been seen from Fig. 5. For this mode, the

correlation does not decrease with the increase in lead

months, indicating an overestimate of the delayed impact

of ENSO by the CFS as discussed previously.

3.3 Associated physical processes

We now analyze the patterns of SST and 850-mb winds

associated with the first two most predictable modes of

Fig. 5 Same as Fig. 3 but for the second mode
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precipitation. Figure 8 shows the patterns of correlation of

SST with precipitation PCs and regression of 850-mb

winds against these PCs for both CFS ensemble mean of

LM0 (the solid black curves in Figs. 3 and 5) and obser-

vations (the thick dashed curves). In the model (Fig. 8a),

the positive values of the first PC of precipitation are

(a) (b)

(d)(c)

(e) (f)

(h)(g)

Fig. 6 Same as Fig. 4 but for the second mode
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clearly linked to warming in the equatorial central Pacific

and western IO, and cooling in equatorial western Pacific,

subtropical central Pacific, and tropical southeastern IO.

These characteristics are similar to the features usually

observed during the El Niño years (Fig. 8b; also see above

discussion for Fig. 3b), except that the signals in CFS are

too strong especially over the subtropical northern Pacific.

In both model and observations, the SST features are

associated with the weakening of easterly trade winds over

the tropical Pacific and the weakening of westerly monsoon

flow over the tropical IO (especially in the model). How-

ever, over BOB and SCS, the monsoon flow intensifies

consistently with the increase in precipitation shown in

Fig. 3. Thus, in both CFS and observations, the changes in

precipitation, SST, and winds are dynamically consistent.

That is, the CFS is highly skillful in capturing the air–sea

interaction processes associated with the precipitation

anomaly patterns. Nevertheless, as in SST, apparent dif-

ference between the modeled and observed winds emerges

over the northwestern Pacific.

Two distinct features can be seen from the second mode

(Figs. 8c, d). From the IO through tropical Asia to the

western Pacific, both the observed and modeled westerly

monsoon flows weaken clearly after the peak of El Niño

(see Fig. 5b), consistent with the observational studies of

Webster and Yang (1992) and Lau and Yang (1997). The

(a) (b)

(d)(c)

(e) (f)

Fig. 7 JJA patterns of one-point correlation between grid-point

CMAP precipitation and CFS ensemble MSN PCs of first mode (a–c)

and second mode (d–f). Computations are made for lead months of 0,

3, and 6 for the CFS PCs. Significant values exceeding the 95%

confidence level (t test) are shaded
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weak monsoon flows are associated with warming in IO

and SCS and linked to less precipitation from the Indian

peninsula to the Indo-China peninsula and SCS. In both

observation and model, the features over IO and SCS are

more significant than those appear in the first mode

(Figs. 8a, b), although the model overestimates the

observed signals. The features shown in the second mode

reflect the delayed effect of ENSO on IO and are consistent

with the results of previous studies (Lanzante 1996; Klein

1999; Kawamura et al. 2001; Yoo et al. 2006; Yang et al.

2007).

The other important feature of the SST and atmospheric

circulation patterns associated with the second most pre-

dictable pattern of CFS is the anticyclonic pattern over the

tropical northwestern Pacific. As described in Wang et al.

(2000) and Wang and Zhang (2002), this anticyclonic

pattern, a product of air–sea interaction associated with the

evolution of ENSO, plays a critical role in conveying the

impact of ENSO on the climate of Southeast Asia. Clearly,

the atmospheric circulation pattern leads to less precipita-

tion over the western Pacific (see Fig. 5). In addition, the

western edge of the anticyclonic pattern brings more water

vapor to eastern China especially south of the Yangtze

River and increases the local precipitation, a feature

appearing in both observation and CFS. The features dis-

cussed above are consistent with the results of Lau et al.

(2004), who have discussed the maintenance and evolution

of the anticyclonic pattern and the important role of this

anticyclone in linking ENSO to Southeast-East Asian cli-

mate in the GFDL general circulation model. Moreover,

according to Wang et al. (2003), the anomalous anticyclone

originates near the northern Philippines in the fall season of

El Niño years, and then develops in winter and persists

through the subsequent spring and summer. The long per-

sistence of this anticyclonic pattern may partly account for

the relatively high ensemble mean predictability with long

leads.

The patterns of other lead months (figures not shown)

are similar to those shown in Fig. 8 in many ways. Increase

in precipitation shown in Figs. 3 and 5 is associated with

cyclonic pattern or convergence of 850-mb winds, and

decrease in precipitation is linked to anticyclonic pattern or

divergence of the winds. The persistence of the features

shown in Fig. 8 for LM0 can also be seen apparently from

LM0 to LM3 and LM6.

4 Summary

The NCEP CFS is highly skillful in simulating and pre-

dicting the summer precipitation over tropical Asia and the

Indo-Pacific Oceans and in capturing the air–sea

(a) (b)

(d)(c)

Fig. 8 a Correlation between grid-point SST and first principal

component of LM0 ensemble-mean precipitation (shadings) and

regression of 850-mb winds against the same principal component

(vectors; ms-1). All fields are from CFS. b Same as for a but for

observations. c, d Same as a and b but for the second principal

component
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interaction processes associated with the patterns of pre-

cipitation anomalies as demonstrated in the variability and

predictability of SST and winds. The predictable patterns

revealed by applying a MSN EOF analysis largely resem-

ble the observed climate patterns. In particular, the most

predictable patterns of model precipitation are the patterns

appeared in the onset years of ENSO. In these patterns, the

most predictable features include the decrease in precipi-

tation over the tropical eastern Indian Ocean and far

western Pacific including Indonesia and the increase in

precipitation over the tropical central Pacific and western

Indian Ocean and from Indochina to the Philippines during

El Niño years. The second most predictable patterns bear a

resemblance to the climate patterns of the decay years of

ENSO. Apparent in this mode are the decrease in precip-

itation over tropical northwestern Pacific, the Philippines,

South China Sea, and Bay of Bengal, and the increase in

precipitation over western Indonesia, southern India, and

the Indian Ocean including the Arabia Sea. The weakening

signals over the western Pacific and strengthening signals

over the Indian Ocean are also apparent in the second

mode.

Overall, the CFS is capable of predicting the most

dominant modes especially the features associated with

ENSO development several months in advance. However,

the signals of model SST and precipitation over the western

Pacific are too far westward compared to the observed,

causing a too strong impact of ENSO on the monsoon.
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Appendix

Empirical orthogonal function analysis with maximized

signal-to-noise ratio

The empirical orthogonal function analysis with maxi-

mized signal-to-noise ratio (MSN EOF) applied in this

study follows the exposition in Venzke et al. (1999). A

description of its application has also been given in Huang

(2004). The procedure is briefly outlined here simply for

the convenience of reference.

In general, an ensemble mean of a CFS hindcast for a

given lead month can be decomposed into the predictable

and unpredictable components (i.e., XM = XP + XR)1. XP

depends on the common ‘‘signals’’ contained in all initial

conditions of an ensemble and evolves consistently among

its members. On the other hand, although the random

internal ‘‘noises’’ within individual members tend to cancel

each other, its residual in the ensemble mean, XR, is not

negligible if the ensemble size is moderate, as in the case of

current climate hindcast. Given a time sequence of a var-

iable formed by multi-year hindcast with a certain lead

month, we desire to find the dominant EOF pattern of XP,

in spite of the presence of XR. This pattern can be defined

as the most predictable pattern of the forecast system.

Assuming that XP and XR are temporally uncorrelated

with each other, the covariance matrix (CM) of XM can be

written as the sum of the signal and residual noise

covariance matrices, i.e., CM = CP + CR. Based on the

discussion above, CR is inversely related to ensemble size.

In our case, CR is 1/15 of the average noise covariance

matrix (CN) from the 15 ensemble members. To find the

eigenvectors of CP, the key procedure is to eliminate the

spatial covariance of noise. Mathematically, this is equiv-

alent to a transformation F such that FTCRF = I, where I

is identity matrix. This transformation is referred to as the

‘‘prewhitening’’ in literature because the internal variation

becomes white noise in the transformed space, which

guarantees that FTCPF and FTCMF have identical eigen-

values. In practice, F is constructed from the first K

weighted EOF patterns of the within-ensemble deviations

X0i ¼ Xi � XM(i.e., estimated noise), where i denotes the ith

member within the ensemble. K should be large enough to

form an adequate basis of projection while small enough to

keep the transformed matrix FTCMF well conditioned. In

our case, K is chosen as 24 for a sequence of hindcast of a

given month in 24 years.

The matrix of eigenvectors (E) of FTCMF contains a set

of noise filters, which can be restored to physical space by

Ê = FE. The optimal filter (the 1st column vector ê of Ê)

maximizes the ratio of the variances of the ensemble mean

and within-ensemble deviations. The optimally filtered

time series of XM (i.e., its projection onto ê) gives the 1st

MSN principal component (PC). (In practice, one can

simply first project XM onto F to form the prewhitened data

in the noise EOF space and then conduct a singular value

decomposition to get both E and all MSN PCs simulta-

neously.) Projecting XM onto the 1st MSN PC derives the

1st MSN EOF pattern, i.e., the most predictable pattern.

The subsequent patterns can be determined accordingly.

The statistical significance of an estimated MSN EOF

mode (Venzke et al. 1999) can be tested as following:

Using the 1st mode as an example, if there is no true signal

and a derived mode is purely due to sampling, the ratio

of the variance (r2
M) of the time series (yM) by projecting

1 The bold letters represent matrix or vectors here and in following

text.
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XM onto ê and the averaged within-ensemble variance (r2
N)

of the time series (yk) by projecting X0k onto ê obeys an F-

distribution:

n
r2

M

r2
N

¼ n
1

m�1
yT

MyM
1

ðm�1Þðn�1Þ
P

k

yT
k yk

�Fm�1;ðm�1Þðn�1Þ ðA1Þ

Here m is the number of sampling times and n the total

members within the ensemble. We will only consider those

modes that pass the 95% significance level in this test.
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