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Variation of sea surface temperature (SST) on seasonal-to-interannual time-

scales leads to changes in seasonal weather statistics and seasonal climate anoma-

lies. Here we use relative entropy, an information theory measure of utility, to

quantify the impact of SST variations on seasonal precipitation compared to nat-

ural variability. An ensemble of general circulation model (GCM) simulations

is used to estimate this quantity in three regions where tropical SST has a large

impact on precipitation: South Florida, the Nordeste of Brazil and Kenya. We

compute the yearly variation of relative entropy and find that it is strongly cor-

related with shifts in ensemble mean precipitation and weakly correlated with

ensemble variance. Relative entropy is also found to be related to measures of

the ability of the GCM to reproduce observations.



TIPPETT ET AL.: POTENTIAL UTILITY OF CLIMATE PREDICTIONS X - 3

1. Introduction

Seasonal variability of precipitation and associated extremes such as drought or flooding are

of particular interest to society. Some seasonal climate anomalies are associated with variation

of tropical sea surface temperature (SST) on seasonal-to-interannual time-scales. A notable ex-

ample of such a connection between seasonal precipitation and SST are precipitation anomalies

associated with ENSO [Ropelewski and Halpert, 1987;Mason and Goddard, 2001]. Informa-

tion theory provides a useful framework for measuring the impact of SST on climate variability

[Schneider and Griffies, 1999;Kleeman, 2002;DelSole, 2004]. In this setting, the seasonal pre-

cipitation amountx is viewed as a random variable with a climatological distributionq. This

climatological distribution is then compared with the distributionp of precipitation amounts

given a particular SST. The impact of the SST on seasonal precipitation is measured by the

extent to which the two distributions differ. If the SST has no impact on precipitation, then the

two distributions will be identical. On the other hand, if SST has an impact on precipitation

amounts, then the two distributions will be significantly different. Therelative entropymea-

sures the informational inefficiency of using the climatological distribution instead of the SST

forced distribution [Kleeman, 2002].

Some important properties of relative entropy are that it is invariant with respect to invertible

transformations, it is sensitive to changes in distribution shape as well as changes in mean and

variance, and it vanishes only when the two distributions are identical [Kleeman, 2002;Majda

et al., 2002]. The relative entropyR is defined mathematically by

R =

∫
p ln

p

q
dx . (1)
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When the distributions are Gaussian, (1) has the simple form [Kleeman, 2002]

R =
1

2

[
ln

(
σ2

q

σ2
p

)
+

σ2
p

σ2
q

+
µ2

p

σ2
q

− 1

]
, (2)

whereµ2
p andσ2

p are the mean and variance ofp, andσ2
q is the climatological variance; the

climatological mean is assumed without loss of generality to be zero. The form of (2) shows

that relative entropy is increased when the SST forcing reduces the variance (σp < σq) or

shifts the mean (µ2
p > 0). In general, the relative importance of the contributions to relative

entropy from changes in the mean and variance depends on dynamical properties of the system

[Kleeman, 2002].

The calculation of relative entropy requires specifying the distributionp of precipitation

amounts given a particular SST. However, since nature provides only a single realization of

precipitation for a given SST, general circulation models (GCMs) are forced with observed SST

conditions and used to estimate the distribution of precipitation amounts given a particular SST

[Kumar and Hoerling, 1995;Rowell, 1998;Sardeshmukh et al., 2000]. Relative entropy is a

perfect model measure of utility, and model deficiencies can limit its usefulness. However,

one may expect that for good models its variations may be an indication of real variations in

prediction utility.

Here we compute the relative entropy for three regions where SST has a large impact on pre-

cipitation: South Florida, the Nordeste of Brazil and Kenya. Goals of this work are: to quantify

the yearly variation of potential information as measured by relative entropy, to characterize the

relative importance of changes in mean and higher order moments and to relate relative entropy

with skill in reproducing observations.
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2. Data and Methods

2.1. Model and observational data

The three regions and seasons we examine are: southern Florida (Dec-Feb; DJF), the Nordeste

of Brazil (Mar-May; MAM) and Kenya (Oct-Dec; OND). Model data is taken from a 24 member

ensemble of T42 ECHAM 4.5 GCM simulations forced with observed SSTs for the period

January 1950 to March 2004 [Roeckner et al., 1996]. Precipitation observations are taken from

the extendedNew et al.[2000] gridded dataset of monthly precipitation for the period of 1950

to 1998. Model and gridded observed precipitation are averaged over the spatial domains and

seasons indicated in Table 1.

The precipitation response of the GCM to tropical SST anomalies is apparent either when the

ensemble mean is compared to individual ensemble members or when the ensemble mean is

compared to observations. The size of the SST forced response relative to the model’s own in-

ternal variability is measured by the signal-to-noise ratio which determines the “perfect model”

correlationrperfect of the ensemble mean with any ensemble member [Kleeman and Moore,

1999;Sardeshmukh et al., 2000]. The correlationrobsbetween ensemble mean and observations

is typically less thanrperfectdue to model deficiencies, though in practice both quantities are af-

fected by sampling error. Both the perfect model correlationrperfectand the observed correlation

robs are high (Table 1) for these regions, indicating that the model is able to reproduce itself and

observations.

2.2. Computing relative entropy

The climatological distributionq is estimated from all ensemble members and years, and the

sample size is 1296 (54 × 24). The distributionp of precipitation amounts in response to SST
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forcing is estimated for each year from a sample of size 24. Both distributions are approximated

with a kernel density estimate using a normal kernel function [Bowman and Azzalini, 1997]. The

integral in (1) is computed using the estimated distributions evaluated at 100 equally-spaced

points covering the range of the model climatology. We note that this kernel density estimate

would be inappropriate for a quantity like daily rainfall whose distribution is far from Gaussian.

However, distributions of seasonal totals are much closer to being Gaussian. We also computed

relative entropy using the Box-Cox transformed data (the estimated Box-Cox parameterλ was

1/3, 1 and 0 for the Florida, Nordeste and Kenya data respectively) and found negligible (<

0.03) differences.

Although the relative entropy should be zero when the simulation and climatology distribu-

tions are identical, finite ensemble size introduces sampling error.Kleeman and Majda[2004]

discuss this issue in detail. In particular, a 24 member ensemble drawn from the model clima-

tological distribution will generally not have zero relative entropy. We quantify the effect of

sampling with a Monte Carlo method. 24 samples are drawn from the entire model climatology,

and their relative entropy is computed with respect to the climatological distribution. This pro-

cess is repeated 50,000 times, and the sorted results indicate the likelihood that relative entropy

exceeds a given value by chance. We consider values above the 95th percentile as significant.

3. Results

The time-series of relative entropy in Fig. 1 shows that the relative entropy of the simulation

with respect to climatology is significant in 59% (32/54) of the years for Florida, 78% (41/54)

of the years for the Nordeste and 54% (29/54) of the years for Kenya. Relative entropy is very

large for Florida and Kenya in only a handful of years. In the case of Florida, the three largest
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years, 1983, 1998 and 1973 are all warm ENSO events. In the case of Kenya, the three years

with highest relative entropy, 1997, 1996, 1961 are warm, neutral and cold events respectively;

in OND 1996 the model predicted a shift toward below-normal precipitation while the observed

precipitation was close to normal. ENSO is an important factor, and the correlation of relative

entropy with the Nĩno 3.4 index is 0.76, 0.67 and 0.39, for Florida, the Nordeste and Kenya,

respectively; the low correlation in the case of Kenya may be due to the role of the Indian

Ocean [Goddard and Graham, 1999]. We comment later about the relation of relative entropy

with skill in reproducing observations.

Scatter plots of relative entropy with ensemble mean and variance in Fig. 2 show that relative

entropy is highly correlated with the simulation ensemble mean in all three regions. Florida

and the Nordeste show a negative correlation (∼ 0.3) between ensemble variance and relative

entropy. Large ensemble variance is associated with low relative entropy but low ensemble

variance is not a good indicator of high relative entropy. In the case of Kenya, the correlation

between ensemble variance and relative entropy is approximately zero, though the scatter plot

of ensemble variance and relative entropy shows some of the same qualitative features.

The weak relation between ensemble variance and relative entropy suggests that the dominant

contribution to relative entropy is from shifts of the ensemble mean. The relatively small in-

terannual variability of ensemble variance and the modest ensemble size may be factors in this

result. Whitaker and Loughe[1998] found in several settings that the relation between spread

and skill is strong when the variability of ensemble variance is large. To explore the value of

higher order moments of the simulation ensemble, we define aconstructed ensemblewhose

mean is the same as that of the simulation ensemble but whose distribution about that mean
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is fixed and is estimated from the climatological distribution of ensemble members about their

mean. A parametric description would be an alternative construction when the distributions are

normal [Kharin and Zwiers, 2003]. We now use relative entropy to compare the simulation and

and constructed ensembles. That is, the reference distributionq in (1) is now the constructed

ensemble distribution rather the climatological one, and the relative entropy tells how much the

simulation and constructed ensemble distributions differ. Significance levels for the difference

are constructed in a similar manner as before with a Monte Carlo computation. Figure 3 shows

that the relative entropy between the simulation ensemble and constructed ensemble is small

with few years being significant. We expect 2-3 years would appear significant at the 95% level

by chance in a time-series of this length. These results suggest that with this ensemble size

utility of higher order moments is seldom significant.

We now briefly examine the relation between relative entropy and the ability of the model to

reproduce observations. Figure 4 shows the ensemble mean, standard deviation and observed

anomaly for the five years with highest relative entropy and the five years with lowest relative

entropy. Years with high relative entropy show large shifts in the ensemble mean, while years

with small relative entropy show small shifts in the ensemble mean and some expansion of the

ensemble spread relative to the model climatology. Model performance in many of the years

with small relative entropy was “good” in the sense that the observations were within a standard

deviation of the ensemble mean. However, in those years the utility was small because the

ensemble distribution was little different from climatology. Those years also contribute little

to the observed correlationrobs. Consider the terms that appear in the expression for observed
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correlationrobs [Tang et al., 2004]

robs =
1

σoσmean

∑
i

Oiµi , (3)

whereOi andµi are the observations and ensemble mean respectively at time-stepi, andσo and

σmeanare their standard deviations. The time-correlation of the terms in (3) withR is high (0.94,

0.87 and 0.89 for for Florida, the Nordeste and Kenya, respectively) indicating that relative

entropy is large (small) in those years that contribute most (least) to the observed correlation.

4. Summary and Discussion

We have used relative entropy to measure the impact of SST on precipitation simulated by a

24-member GCM ensemble. The impact is statistically significant in more than half of the years.

However, the time-series of relative entropy is dominated by a handful of years associated with

substantial shifts in the precipitation amount distribution. This behavior is likely due to relative

entropy depending on the square of the normalized ensemble mean anomaly. Relative entropy is

highly correlated with shifts in the ensemble mean precipitation. The relation between relative

entropy and ensemble variance is weak, although large ensemble variance generally indicates

low utility.

We compared the simulation ensemble with a constructed ensemble having the same mean

but with a fixed distribution and found little difference as measured by relative entropy. This

result indicates that the utility of higher order moments (e.g. spread, shape) of the distribution

is small with an ensemble of this size. The weakness of the SST impact on higher order mo-

ments of the precipitation distribution is similar to the conclusion ofKumar et al.[2000] who

found little correlation between SST anomalies and height distribution variance in the Pacific-
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North America region. Though compositing did show warm events reduced height distribution

variance, the impact on categorical probabilities was relatively small.

The modest ensemble size in this study means that higher order moments are poorly esti-

mated. Larger ensembles may allow detection of changes in relative entropy related to ensem-

ble spread and shape. This issue may be particularly important when the ensemble mean shift

is small but changes in ensemble spread or shape significantly change the probabilities of ex-

treme events.Sardeshmukh et al.[2000] using the NCEP MRF9 GCM found regions where the

ENSO-induced change of variability makes as large a contribution to the change in the prob-

ability of extreme events as does the ENSO-induced shift of the mean. However, requiring

dynamical models to simulate higher order moments of distributions accurately is a significant

challenge, and the utility of large ensembles to reproduce observed distributions remains to be

established.
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Table 1. Domains and seasons.

Region Domain Seasonrperfect robs

Florida 85W-75W, 22N-28N DJF 0.78 0.75

Nordeste 45W-35W, 10S-EQ MAM 0.77 0.63

Kenya 33E-43E, 5S-5N OND 0.67 0.84
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(a)

(b)

(c)

Figure 1. Time-series of relative entropy for (a) Florida, (b) the Nordeste and (c) Kenya.

Dashed line shows the 95% confidence level.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Scatter plots of relative entropy with (a)-(c) the square of the normalized ensemble

mean shift for Florida, the Nordeste and Kenya repectively, and with (d)-(f) the normalized

ensemble variance.
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(a)

(b)

(c)

Figure 3. Time-series of the simulation ensemble relative entropy with respect to the con-

structed ensemble for (a) Florida, (b) the Nordeste and (c) Kenya. Dashed and dotted lines

show respectively the 95% and 99% confidence levels.
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(a)

(b)

(c)

Figure 4. The years with the highest (left to right) and lowest (right to left) potential relative

entropy for (a) Florida, (b) the Nordeste and (c) Kenya. Error bars mark the ensemble mean

precipitation anomaly plus and minus the standard deviation of the ensemble; the climatological

standard deviation is in gray. The observed precipitation anomaly is marked with a circle. Units

are mm/day.


