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Abstract—New bounds for solutions of the discrete algebraic
Lyapunov equation P = APA" + Q are derived. The new
bounds are compared to existing ones and found to be of
particular interest when A is non-normal. & 1998 Elsevier
Science Ltd. All rights reserved.

1. Introduction
The discrete algebraic Lyapunov equation is

P=A"PA+Q 1)

where P, A and Q are n x n matrices and ¢ is symmetric positive
semi-definite. A unique, symmetric positive definite solution
P exists when 4 is stable, i.e., when all the eigenvalues of 4 lie
inside the unit circle. It is well known that solutions of equation
(1) may be large compared to @ when eigenvalues of 4 have
modulus near one (see e.g. Gaji¢ and Qureshi, 1995, Chapter 3;
Kwon, et al., 1996). This behavior is apparent in the lower bound
on the determinant of P from Komarrof {1992)

detP >detQ (1 — [ 4(4) [}~ "

(2

In this work we begin to extend this idea o the situation where
the eigenvalues of A are well inside the unit circle but 4 is close
to an unstable matrix; ie., 4 + E is unstable and ||E| is small.
The eigenvalues of A can exhibit such sensitivity only when A is
non-normal. A particular feature of non-normal stable matrices
is that they may have large singular values.

Our motivation for seeking such bounds comes from the
application of the Kalman filter to the problem of assimilating
atmospheric data (e.g. Cohn and Parrish, 1991). Using a number
of simplifying assumptions, the error covariance of the estimate
of the state of the atmosphere satisfies equation (1) for appropri-
ate choice of A4 and Q. Since the svstem comes from the discretiz-
ation of a continuum problem, the dimension n is large, typically
of the order 10°, making any direct treatment of equation (1)
impractical. Estimates of the solution of equation (1) can be used
to investigate indirectly the dependence of P on 4 and @ and to
develop approximate methods. In atmospheric dynamics, as in
fluid dynamics, a dominant mechanism for instability is believed
to be non-modal growth due to the underlying non-normal
operators {Farrell and loannou, 1993; Trefethen et al. 1993).
When such non-modal growth is present, 4 is non-normal and
has singular vatues greater than onc. We present here a lower
bound for the eigenvalues of P that is tighter than previous ones
and shows the dependence of P on the singular values of 4. We
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also present an upper bound for the eigenvalue of P that unlike
the majority of upper bounds is applicable when the largest
singular value of A4 is greater than one.

The notation o{A) denotes the ith singular value of A.
6,(A) = a5(A) > -+ = 6,(A) and i{A) the ith eigenvalue, |1,(A)
| =14x(4) | = -+ =|A,(A) |. The following inequalities are used
in the proofs (Ostrowski, 1959):

Theorem 1. If X and Y are symmetric matrices then

AXY+AY) s (X +Y) < A4(X) + A(Y). 3
Theorem 2. 1f X = X" and Y are square matrices then
GaNAX) < 4(YXYT) < o} (Y ) 4(X). (4

2. Main results

The main results are Theorem 3, a lower bound on the
eigenvalues of P, Corollaries (4) and (5), lower bounds on the
determinant and trace of P and Theorem (6), an upper bound ot
the eigenvalues of P.

Theorem 3. 1f P is the solution of equation (1) then

. ai(4)
i(P) 22 7y I+ 5
ii(P) /(Q)( o (5
Some simple corollaries are:
Corollary 4. If P is a solution of equation (1) then
Il 4117
trP > 4, + 1, ¢
r (Q)(n - (©)

where ||A|g = Y- ,0%(A) is the usual Frobenius matrix norm.

Corollary 5. If P is a solution of equation (1) then

" aHA
detP > i,,(Q)"iI:—Il(] + T#Z()A)) @]
Proof. From Theorem (1) applied to equation (1)
APy 2 740) + L(ATPA). (8)
Let the Cholesky decomposition of P be P = LLT. Then
4(ATPA) = A (ATLLTA) = J,(LTAATL). )
Applying Theorem (2) gives
2(AANGHL) < A{LTAATL) < i{AAT)s3(L). (1m
However, if A is square then
A(AAT) = of(A) (1)
and since P is positive definite symmetric
2{P) = aF(L). (12
Thus
6H{A)(P) < 1(ATPA) < aH(A)L((P). (13
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Using equation (13) gives,

L(P) = A(Q) + o7 (A)in(P). (14
In particular,
Ad0)
A P) = T—m (15)

if ,(A) < 1 as is the case since |4,(4)| < 1. Substituting equation
(15) into equation (14) gives equation (35).

Theorem 6. If P is a solution of equation (1) and A = V™ 'DV

with D = diag(4,, ..., 4,) then
AHA)k3(V)
A(P) < Q) + 4.(Q) T (16)
where x,(V) = a(V)/o (V).
Proof. The solution of equation (1) may be written
P= i(AT)"QA". a7
Then, "
A(P) < 4(Q) + il< > (AT)"QA">, (18)
n=1
AP < A0+ Y L (AT)'QA", (19)
n=1
WPy < 20) + (D) 3 aF(A"). (20)
n=1
However,
A" =V D"y, (21)
61(A") = 63(V "' D"V) < 01(V ™ oy (DM, (V)
= Ka(V}| 41 (4) ", (22)
where we use the fact that ¢,(V') = o,(V). This implies
MP) < Q) + M@KV X (A (A) > (23)
n=1
or )
A
b 2 —_i
HEP) S Q)+ @KV T (24)
3. Remarks and comparisons to existing bounds
Remark: If
— 2z A N
old) - oiA)_ i@ 5

t—oi(4) Q)
then Theorem 3 is a better lower bound than (Mori et al., 1982)

ai(A) A(Q)
1—-c2(4)

For Q = I, inequality (25) is true. For general ¢, Theorem 3 will
give a better bound if a,(A) is sufficiently large. Also, the nature
of the bounds in Theorem 3 and in equation (26) is quite
different; Theorem 3 emphasizes the dependence of P on A4 while
equation (26) emphasizes its dependence on Q.

Py = 4(Q) + (26)

Remark 8. In general it is not simple to compare the bounds in
equations (6) and (7) to known bounds (see e.g. Gaji¢ and Qureshi,
1995 and references therein). We consider a specific physical
example (Gajic and Qureshi, 1995, Example 3.8). Let 4 be

0.4916 0 0 0 0
0 0.1353 0 0 0
A= 0.2104 0.2283 0.2343 0.0319 —0.0013

—0.0086 —0.0148 0.0316
—0.3176 —0.6624 1.8003

—04563 --00164
22.4148 —04147

27)

and Q =1Is. Then, the solution of equation (1) has
tr P = 1067.3097 and det P = 11608.471. The lower bound from
Komarrof (1992)

" R 1/n

trP>n|detQ ] - [ii(A)Iz)“} (28)
- i=1

gives trP > 7409, while Corollary (4) gives the bound

tr P > 512.185. The bound in equation (2) gives det P > 7.144,

while Corollary (5) gives the bound detP > 737.122.

Remark 9. 1f A is normal the bound of Theorem 6 reduces to the
bound found in Mori et al. (1982)

[A(A)?

AP < MO + QT

(29
Remark 10. If A is non-normal the condition number of the
eigenvectors of 4, x,(}' ) may be large as shown by the inequality
(Loizou, 1969):

(30)

2
Ki(V) > (1 + atd) )

[V E

where A(A) i1s defined as A’s departure from normality (Golub
and Van Loan, 1983).

Remark 11. Let A be a rank one matrix, i.e.
A = ourt (3H

with A = gv"u the eigenvalue of 4 and 0 < |1] < |. Then the
solution P is

a*v'Qv

1—'7 MUT. (32)

P=Q+
If Qu = 4,(Q)}u and Qv = A,(Q)v then u is an eigenvector of
P and
0.2
M(P)y= l,(Q)(] + 1_—’12> (3%

The sensitivity s of the non-zero eigenvalue of A4 is (Golub and

Van Loan, 1983)
A
s=vTu=(—); 34)
ad

roughly speaking a perturbation of size é to A causes A to change
by d/s. Thus,

11+ (s2—1)A2
A(P) = il(Q)s_z'_l(s_—;tz)‘_' (35)

Thus, P is large compared to Q when either 4 ~ 1 or when A is
sensitive {s ~ 0).

4. Conclusions

The aim of this work is to understand better the behavior of
the solution of the discrete algebraic Lyapunov equation when
A is non-normal and has large singular values. Here we derived
a lower bound that shows the dependence of P on the singular
values of 4. We mention that a similar bound can be derived
from matrix bounds in (Lee, 1996). We note that even for large
matrices like the ones that arise in atmospheric data assimila-
tion, iterative methods permit the computation of the leading
singular values of A4 (Lacarra and Talagrand, 1988). Further
work is needed to develop lower bounds that are appropriate for
the case when A is non-normal and |4,(4) | is near one.

As the survey in Kwon et al. (1996) shows, there are few upper
bounds that can be used when the singular values of A arc
greater than one. The upper bound derived here depends on the
conditioning of the eigenvectors of A which is in turn a measure
of the sensitivity of of the eigenvalues of 4. For the example in
Remark 11, eigenvalue sensitivity plays an important role. How-
ever, eigenvector conditioning is often a crude indicator of
eigenvalue sensitivity (Wilkinson, 1965). For this reason, the
upper bound may fail to be tight and more investigation of the
role of eigenvalue sensitivity is needed.
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