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Abstract

Ensemble data assimilation methods can formulateshaare-root filters A key step of
ensemble data assimilation methods is the transformation of the forecast ensemble into an
analysis ensemble with appropriate statistics. This transformation may be done stochastically
by treating observations as random variables, or deterministically by requiring that the up-
dated analysis perturbations satisfy the Kalman filter analysis error covariance equation. The
nonuniqueness of the deterministic transformation used in square-root Kalman filters provides

a framework to compare three recently proposed ensemble data assimilation methods.



1. Introduction

Data assimilation addresses the problem of producing useful analyses and forecasts given imper-
fect dynamical models and observations. The Kalman filter is the optimal data assimilation method
for linear dynamics with additive, state-independent Gaussian model and observation error (Cohn,
1997). An attractive feature of the Kalman filter is its calculation of forecast and analysis error
covariances, in addition to the forecast and analyses themselves. In this way, the Kalman filter pro-
duces estimates of forecast and analysis uncertainty, consistent with the dynamics and prescribed
model and observation error statistics. However, the error covariance calculation component of
the Kalman filter is difficult to implement in realistic systems because)afgmputational cost

of error covariance calculations in systems with many degrees of freedpmorilinearity of the
dynamics andiii) poorly characterized error sources.

Evensen (1994) proposed the ensemble Kalman filter (EnKF) to address the first two of these
problems. In the EnKF, the forecast and analysis error covariances have ensemble representations.
Ensemble size limits the number of degrees of freedom used to represent forecast and analysis
errors, making Kalman filter error covariance calculations practical for modest ensemble sizes.
The EnKF algorithm begins with an analysis ensemble whose mean is the current state-estimate or
analysis and whose sample statistics reflect the analysis error. Then, the full nonlinear dynamics
are applied to each analysis ensemble member to obtain a forecast ensemble. Sample statistics
of the forecast ensemble represent forecast errors; in its simplest form, the EnKF only accounts
for forecast error due to uncertain initial conditions and neglects forecast error due to model defi-
ciencies. The forecast ensemble mean and covariance are then used to assimilate observations anc
compute an analysis and its error covariance. Finally, a new analysis ensemble with appropriate

statistics is formed, and the cycle is repeated. The new analysis ensemble can be formed stochas-



tically (Houtekamer and Mitchell, 1998; Burgers et al., 1998) or deterministically (Bishop et al.,
2001; Anderson, 2001; Whitaker and Hamill, 2001).

The purpose of this paper is to demonstrate that the EnKF and other ensemble data assimilation
methods belong to the family aquare-root filter{SRFs) and that deterministic analysis ensem-
ble updates are implementations of Kalman square-root filters (Bierman, 1977; Maybeck, 1982).
An immediate benefit of this identification is a unified context for understanding and comparing
deterministic analysis ensemble update schemes (Bishop et al., 2001; Anderson, 2001; Whitaker
and Hamill, 2001). SRFs, like ensemble representations of covariances, are not unique. We be-
gin our discussion in Section 2 with a presentation of the square-root Kalman filter; issues related
to implementation of ensemble SRFs are presented in Section 3; in Section 4 we summarize our

results.
2. Square-root Kalman filter

Square-root Kalman filters algorithms, originally developed for space-navigation systems with lim-
ited computational word length, demonstrate superior numerical precision and stability compared
to the standard Kalman filter algorithm (Bierman, 1977; Maybeck, 1982). SRFs by construction
avoid loss of positive definiteness of the error covariance matrices. SRFs have been used in Earth
Science data assimilation methods where error covariances are approximated by truncated eigen-
vector expansions (Verlaan and Heemink, 1997).

The usual Kalman filter covariance evolution equations are

Pl =MPi_M{ +Qy, (1)

P¢ = (I — KyH,)P! ()

where P{: and P¢ are respectively the x n forecast and analysis error covariance matrices at
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time t,, My is the linear tangent dynamic$i, is the p x n observation operatoR, is the
p X p observation error covarianc®, is then x n model error covariance matrix arifl, =
Pin (HkPin + Rk)_ is the Kalman gainp is the dimension of the system stajeis the
number of observations. The error covariance evolution depends on the state estimates and obser-
vations through the linear tangent dynanfids. Equation (1) describes the propagation of analysis
errors by the dynamics with model error acting as a forcing. Equation (2) shows how an optimal
data assimilation scheme uses observations to produce an analysis whose error is less than that of
the forecast.

The forecast and analysis error covariance matrices are positive-definite and can be represented
P/ = z/z]" andP; = Z:Z;" where the matriceZ] and Z§ are matrix square-rootsof PJ
and P§ respectively. Matrix square-roots are not unique; ifrax n covariance matri¥ has
the representatioR = ZZ” whereZ is ann x m matrix, then it can also be represented as
P = (ZU)(ZU)" whereU is anym x m orthogonal transformatiobU” = U”U = I. The
projection||x”Z||* = xT Px of ann-vectorx onto the matrix square-ro@tis uniquely determined,
as is the subspace spanned by the columiZs @fovariance matrix square-roots are closely related
to ensemble representations. Supposerthmember analysis ensemble consists ofithesctors
{s +s1,8+sy,...,8+ s, }; sis the ensemble mean ard 1 < i < m, are them mean-zero
analysis perturbations. Assuming that the analysis ensemble adequately represents analysis error,

the analysis error covariance is given by

1 = 1
Pi=—a ) sisj = ——
m—1 — m—1

SsT, 3)
where then x m matrix S is given byS = [sy, ss, .. .,s,,]. Therefore a matrix square-root of the
analysis error covariance matii is the matrix of scaled analysis perturbation ensemble members

Z¢ = (m—1)"1/28.



The square-root Kalman filter algorithm replaces error covariance evolution equations (1) and
(2) with equations for the evolution of forecast and analysis error covariance squarz-ﬁcmtd
Z? in such a manner that the full error covariance matrices are not formed. Neglecting the model
errorQy, (1) can be replaced by

z/ =Mz . (4)

In the ensemble context, (4) means to apply the linear tangent dynamics to each column of the
Z; |, that is, to each scaled analysis perturbation ensemble member. Practically, (4) is imple-
mented by applying the full nonlinear dynamics to each analysis ensemble member.

Next, analysis error covariance equation (2) is replaced with an equation for the analysis er-
ror covariance square-ro@t;. This equation determines how to form an analysis ensemble with
appropriate statistics. Initial implementations of the EnKF formed the new analysis ensemble by
updating each forecast ensemble member using the same analysis equations, equivalent to apply-
ing the linear operatoil — K;H;) to the forecast perturbation ensemZI[e This procedure gives
an analysis ensemble whose statistics do not include uncertainty due to observation error and so
underestimates analysis error. stochasticsolution to this problem proposed independently by
Houtekamer and Mitchell (1998) and Burgers et al. (1998) was to compute analyses using each
forecast ensemble member and, instead of using a single realization of the observations, to use an
ensemble of simulated observations whose statistics reflect the observation error. This method is

equivalent to the analysis perturbation ensemble update
Z; = (1 — Ky HW) ZL + Kowy (5)

wherew,, is a mean-zero, Gaussian random vector of lepgtfith covariance(wkw@ = R;. The

perturbed observation analysis equation (5) gives an analysis perturbation ensemble with correct



expected statistics:

<Zi (Zi)T> = (I = KyHy)PE(1 = K Hg)" + KRy K
(6)
= Py.

However, the perturbed observation approach introduces an additional source of sampling error
that () reduces analysis error covariance accuracy ahihreases the probability of underesti-
mating analysis error covariance (Whitaker and Hamill, 2001). A Monte Carlo method that avoids
perturbed observations is described in Pham (2001).

Square-root Kalman filters providedgterministicalgorithm for transforming the forecast en-

semble into an analysis ensemble with consistent statistics. The “Potter method” for the square-

root Kalman filter analysis update (Bierman, 1977) is obtained by first rewriting (2) as
P = Z;Z;" = (1 - P{H] (H\P[H] +Ry) T HP!
—z{z]" -~ Z/z]"HT (szgzgmg + Rk) T hziziT 7)
=z{(1 - Z["H] (Wz{Z{"H] +R,) T Hz)zI”
Next, them x p matrixV,, = (szi)T and thep x p innovation covariance matr®;, = VI'V,+R;

are defined. Then (2) can be written as
Pi=ZiZ;" = Z/(1 - ViD'V])Zi ®
so that the analysis perturbation ensemble is
Z; = Z/X, Uy, (9)

whereX; X? = (I — VkD,jlva) andUy is an arbitraryn x m orthogonal matrix. As formulated,
the updated ensemb is a linear combination of the cqumnsZS)f and is obtained by inverting

thep x p matrix D;, and computing a matrix square-root of thex m matrix (I — V;D; 'VY).



3. Ensemble SRFs

a. Forecast ensemble

Ensemble size is limited by the computational cost of applying the forecast model to each en-
semble member. Small ensembles have few degrees of freedom available to represent errors and
suffer from sampling error that further degrades covariance representation. Sampling error leads
to loss of accuracy and underestimation of error covariances that can cause filter divergence. Tech-
nigues to deal with this problem are distance-dependent covariance filtering and covariance infla-
tion (Whitaker and Hamill, 2001). Neglecting model error in (1) also causes the forecast error
covariance to be underestimated, a problem that can be lessened by covariance inflation.

When the model error covarian€®, has large-scale structure, a reasonable representation is
an ensemble or square-root decomposiiin= Z{Z¢" whereZ{ is ann x ¢ matrix. Then, a

square-root oP/ is then x (m + ¢) matrix
z] = [Mz; z]] . (10)

With this model error representation, ensemble size growgwigh each forecast/analysis cycle.
Ensemble size can be limited by computing the singular value decomposition of the ensemble and
discarding components with small variance. When the model error cova@niseapproximated

as an operator, for instance a correlation model, Lanczos methods can be used to compute the lead-
ing eigenmodes oM, P¢_, (M, Z¢ )T + Q; and formZ{ (Cohn and Todling, 1996). Perturbing

model physics, as done gystem simulatigrexplicitly accounts for some aspects of model error

(Houtekamer et al., 1996).



b. Analysis ensemble

Standard methods for computing the matrix square-rodte¥, D, ' V) and the updated analysis
perturbation ensembl&? are not always well-suited to typical Earth Science data assimilation
applications where the state-dimensiorand the number of observatiopsare large (Bierman,
1977; Maybeck, 1982). A direct approach is to solve first the linear syBtgh = HkZ£ for the

p x m matrix Yy, that is, to solve
(H:P/HI + R,)Y,, = H,Z] | (11)

as is done in the first step of the PSAS algorithm (Cohn et al., 1998). Them then matrix
| - VD'V = | — (H,Z))"Y, is formed, its matrix square-root computed and appliezto
When observation errors are uncorrelated, observations can be efficiently assimilated one at
a time orserially (Houtekamer and Mitchell, 2001). In the case of a single observatien,1,
V, is a column-vector and the innovatidd, is a scalar. In this case, a matrix square-root of

(1 - V,D;'VI) can be computed in closed form by taking tresatz
| — D, 'V, VY = (1 - BV V) (1 = BV V)T (12)

and solving for the scala#,, which givess, = (Dk + \/Rka)*l. This result is a special case of

the general result that
| — VD 'V] = (1 - VB, V{)(1 - V,;B, V)T, (13)

where thep x p matrix By, is given byB,, = (D, + R}/°D,/*)~! (Andrews, 1968). The analysis
ensemble update fgr=1is

Z; =ZI(1 - BV VD). (14)



At observation locations, the analysis error ensembile is related to the forecast error ensemble by
H.Z{ = (1 - ﬂkaTVk)szi. The scalar factofl — 5,V}'V;) has absolute value less than or
equal to one and is positive when the plus sign is chosen in the definitign of

In Whitaker and Hamill (2001) the analysis perturbation ensemble is found from
Z; = (1 - K.H,)Z] (15)
where the matri;, is a solution of the nonlinear equation
(1 = KyH)PL( = KHy)" = Py (16)
In the case of a single observation, a solution of (16) is
R -1
Ky = <1 + —k> Ky = 6kZ£Vka (17)

where the plus sign is chosen in the definition®f The corresponding analysis perturbation

ensemble update
Z; = (1- KeH)Z{ = (1 = BZIViH)Z] = Z[(1 - BV, V), (18)

is identical to (14). Observations with correlated errors, e.g., radiosonde height observations from
the same sounding, can be handled by applying the whitening transforrﬂ%ft]lé%to the obser-
vations to form a new observation set with uncorrelated errors.

Another approach to computing the updated analysis ensemble is to use the Sherman-Morrison-

Woodbury identity (Golub and Van Loan, 1996) to show that
T -1
1=V, 'V] = (14 Z["HIR,"H,Z]) (19)

Them x m matrix on the right hand side of (19) is practical to compute when the opdigf& is

available to apply td—lkzg. This approach avoids inverting thex p matrix D, and is used in the

10



ensemble transform filter Kalman filtdET KF) where the analysis update is (Bishop et al., 2001)
Zg = Z{Cy(T), + 1)7V/2; (20)

C.I'+C’ is the eigenvalue decomposition &{"H? R, 'H,Z/. Note that the matrixC; of or-
thonormal eigenvectors is not uniquely determihe@domparison with (19) shows th&, (T, +
1)~!C! is the eigenvalue decompositionlof VD, 'V} and thus tha€ (T, +1)~/? is a square-
root of (I — VD, 'VT).

In theensemble adjustment Kalman fili&AKF) the form of the analysis ensemble update is
(Anderson, 2001)

Z: = AZL; (21)
the ensemble adjustment matAy, is defined by
A, =F.G.C.(1 + T;)'°G'F} (22)

whereP/ = F,G3F! is the eigenvalue decompositionBf and the orthogonal matri€; is cho-
sen so thaﬁ{GkaH;{R;lHkaGka — T, is diagonaP The cost of computing the eigenvalue
decomposition 0P£ depends on both the state-dimensioand the ensemble size. Choosing
the orthogonal matrixC, to be C;, = G;lFfzick gives thatT', = T, and that the ensemble
adjustment matrix is

A, =Z'C(1 +T) 2G,.'F} . (23)

The EAKF analysis update (21) becomes

Z; = Z/C.(1 + 1) Y2G 'FEZ] (24)

IFor instance, the columns @, that span thém —p)-dimensional null-space @&/ HY R;, ' H, Z] are determined
only up to orthogonal transformations if the number of observatidedess than the ensemble size
2The appearance @&; ' in the definition of the ensemble adjustment mafsiseems to require the forecast error

covarianceP£ to be invertible. However, the formulation is still correct wHgpnis m’ x m’ andF; isn x m’ where
m’ is the number of nonzero eigenvaluesRyf.
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The EAKF analysis ensemble given by (24) is the same as applying the transfon@gﬁﬁﬁzi
to the ET KF analysis ensemble. The ma@x'F}Z] is orthogonal and is, in fact, the matrix
of right singular vectors oZ]. Therefore,C;(1 + I';)~"/>G; 'F{ Z] is a matrix square-root of

(1—-V,D;'VI).
4. Summary and Discussion

Ensemble forecast/assimilation methods use low-rank ensemble representations of forecast and
analysis error covariance matrices. Since these ensemble are scaled square-roots of the error co-
variance matrices, ensemble data assimilation methods can be viewed as square-root filters (SRFs)
(Bierman, 1977). Analysis ensembles can be constructed stochastically or deterministically. Deter-
ministic construction of analysis ensembles eliminates one source of sampling error and in some
examples leads to deterministic SRFs being more accurate than stochastic SRFs (Whitaker and
Hamill, 2001). SRFs are not unique. This lack of uniqueness is illustrated in three different re-
cently proposed ensemble data assimilation methods that use the Kalman square-root filter method
to update the analysis ensemble (Bishop et al., 2001; Anderson, 2001; Whitaker and Hamill, 2001).
Identifying the methods as SRFs allows a clearer discussion and comparison of their different anal-
ysis ensemble updates.

Small ensemble-size and model deficiencies lead to inaccurate ensemble representations of
error covariances. Distance-dependent covariance filtering and covariance inflation have been pro-
posed as solutions (Whitaker and Hamill, 2001). Hybrid methods using ensemble and correlation
models to represent forecast error are another way of treating the problem of inaccurate ensemble
representations (Hamill and Snyder, 2000). However, as currently implemented, hybrid methods

require perturbed observations. Here we have presented deterministic methods of including model
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error into a square-root or ensemble data assimilation system when the model error has large-scale
representation.

In Estimation Theory, nonuniqueness of SRFs has been exploited to design filters with desir-
able computational and numerical properties. An open guestion is whether there are ensemble
properties that would make a particular SRF implementation better than another, or if the only
issue is computational cost. For instance, it may be possible to choose an analysis update scheme
that preserves higher-order, non-Gaussian statistics of the forecast ensemble. This question can
only be answered by detailed comparisons of different methods in a realistic setting where other
details of the assimilation system such as modeling of systematic errors or data quality control may

prove to be as important.
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