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Abstract

Ensemble data assimilation methods can formulated assquare-root filters. A key step of

ensemble data assimilation methods is the transformation of the forecast ensemble into an

analysis ensemble with appropriate statistics. This transformation may be done stochastically

by treating observations as random variables, or deterministically by requiring that the up-

dated analysis perturbations satisfy the Kalman filter analysis error covariance equation. The

nonuniqueness of the deterministic transformation used in square-root Kalman filters provides

a framework to compare three recently proposed ensemble data assimilation methods.
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1. Introduction

Data assimilation addresses the problem of producing useful analyses and forecasts given imper-

fect dynamical models and observations. The Kalman filter is the optimal data assimilation method

for linear dynamics with additive, state-independent Gaussian model and observation error (Cohn,

1997). An attractive feature of the Kalman filter is its calculation of forecast and analysis error

covariances, in addition to the forecast and analyses themselves. In this way, the Kalman filter pro-

duces estimates of forecast and analysis uncertainty, consistent with the dynamics and prescribed

model and observation error statistics. However, the error covariance calculation component of

the Kalman filter is difficult to implement in realistic systems because of (i) computational cost

of error covariance calculations in systems with many degrees of freedom, (ii ) nonlinearity of the

dynamics and (iii ) poorly characterized error sources.

Evensen (1994) proposed the ensemble Kalman filter (EnKF) to address the first two of these

problems. In the EnKF, the forecast and analysis error covariances have ensemble representations.

Ensemble size limits the number of degrees of freedom used to represent forecast and analysis

errors, making Kalman filter error covariance calculations practical for modest ensemble sizes.

The EnKF algorithm begins with an analysis ensemble whose mean is the current state-estimate or

analysis and whose sample statistics reflect the analysis error. Then, the full nonlinear dynamics

are applied to each analysis ensemble member to obtain a forecast ensemble. Sample statistics

of the forecast ensemble represent forecast errors; in its simplest form, the EnKF only accounts

for forecast error due to uncertain initial conditions and neglects forecast error due to model defi-

ciencies. The forecast ensemble mean and covariance are then used to assimilate observations and

compute an analysis and its error covariance. Finally, a new analysis ensemble with appropriate

statistics is formed, and the cycle is repeated. The new analysis ensemble can be formed stochas-
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tically (Houtekamer and Mitchell, 1998; Burgers et al., 1998) or deterministically (Bishop et al.,

2001; Anderson, 2001; Whitaker and Hamill, 2001).

The purpose of this paper is to demonstrate that the EnKF and other ensemble data assimilation

methods belong to the family ofsquare-root filters(SRFs) and that deterministic analysis ensem-

ble updates are implementations of Kalman square-root filters (Bierman, 1977; Maybeck, 1982).

An immediate benefit of this identification is a unified context for understanding and comparing

deterministic analysis ensemble update schemes (Bishop et al., 2001; Anderson, 2001; Whitaker

and Hamill, 2001). SRFs, like ensemble representations of covariances, are not unique. We be-

gin our discussion in Section 2 with a presentation of the square-root Kalman filter; issues related

to implementation of ensemble SRFs are presented in Section 3; in Section 4 we summarize our

results.

2. Square-root Kalman filter

Square-root Kalman filters algorithms, originally developed for space-navigation systems with lim-

ited computational word length, demonstrate superior numerical precision and stability compared

to the standard Kalman filter algorithm (Bierman, 1977; Maybeck, 1982). SRFs by construction

avoid loss of positive definiteness of the error covariance matrices. SRFs have been used in Earth

Science data assimilation methods where error covariances are approximated by truncated eigen-

vector expansions (Verlaan and Heemink, 1997).

The usual Kalman filter covariance evolution equations are

Pf
k = MkP

a
k−1M

T
k + Qk , (1)

Pa
k = (I−KkHk)P

f
k , (2)

wherePf
k andPa

k are respectively then × n forecast and analysis error covariance matrices at
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time tk, Mk is the linear tangent dynamics,Hk is the p × n observation operator,Rk is the

p × p observation error covariance,Qk is then × n model error covariance matrix andKk ≡

Pf
kH

T
k

(
HkP

f
kH

T
k + Rk

)−1

is the Kalman gain;n is the dimension of the system state;p is the

number of observations. The error covariance evolution depends on the state estimates and obser-

vations through the linear tangent dynamicsMk. Equation (1) describes the propagation of analysis

errors by the dynamics with model error acting as a forcing. Equation (2) shows how an optimal

data assimilation scheme uses observations to produce an analysis whose error is less than that of

the forecast.

The forecast and analysis error covariance matrices are positive-definite and can be represented

Pf
k = Zf

kZ
fT
k andPa

k = Za
kZ

aT
k where the matricesZf

k andZa
k are matrix square-rootsof Pf

k

andPa
k respectively. Matrix square-roots are not unique; if ann × n covariance matrixP has

the representationP = ZZT whereZ is an n × m matrix, then it can also be represented as

P = (ZU)(ZU)T whereU is anym × m orthogonal transformationUUT = UTU = I. The

projection‖xTZ‖2 = xTPx of ann-vectorx onto the matrix square-rootZ is uniquely determined,

as is the subspace spanned by the columns ofZ. Covariance matrix square-roots are closely related

to ensemble representations. Suppose them-member analysis ensemble consists of then-vectors

{s + s1, s + s2, . . . , s + sm}; s is the ensemble mean andsi, 1 ≤ i ≤ m, are them mean-zero

analysis perturbations. Assuming that the analysis ensemble adequately represents analysis error,

the analysis error covariance is given by

Pa
k =

1

m− 1

m∑
i=1

sis
T
i =

1

m− 1
SST , (3)

where then ×m matrixS is given byS ≡ [s1, s2, . . . , sm]. Therefore a matrix square-root of the

analysis error covariance matrixPa
k is the matrix of scaled analysis perturbation ensemble members

Za
k = (m− 1)−1/2S.
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The square-root Kalman filter algorithm replaces error covariance evolution equations (1) and

(2) with equations for the evolution of forecast and analysis error covariance square-rootsZf
k and

Za
k in such a manner that the full error covariance matrices are not formed. Neglecting the model

errorQk, (1) can be replaced by

Zf
k = MkZ

a
k−1 . (4)

In the ensemble context, (4) means to apply the linear tangent dynamics to each column of the

Za
k−1, that is, to each scaled analysis perturbation ensemble member. Practically, (4) is imple-

mented by applying the full nonlinear dynamics to each analysis ensemble member.

Next, analysis error covariance equation (2) is replaced with an equation for the analysis er-

ror covariance square-rootZa
k. This equation determines how to form an analysis ensemble with

appropriate statistics. Initial implementations of the EnKF formed the new analysis ensemble by

updating each forecast ensemble member using the same analysis equations, equivalent to apply-

ing the linear operator(I−KkHk) to the forecast perturbation ensembleZf
k . This procedure gives

an analysis ensemble whose statistics do not include uncertainty due to observation error and so

underestimates analysis error. Astochasticsolution to this problem proposed independently by

Houtekamer and Mitchell (1998) and Burgers et al. (1998) was to compute analyses using each

forecast ensemble member and, instead of using a single realization of the observations, to use an

ensemble of simulated observations whose statistics reflect the observation error. This method is

equivalent to the analysis perturbation ensemble update

Za
k = (I−KkHk)Z

f
k + Kkwk , (5)

wherewk is a mean-zero, Gaussian random vector of lengthp with covariance〈wkw
T
k 〉 = Rk. The

perturbed observation analysis equation (5) gives an analysis perturbation ensemble with correct
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expected statistics:〈
Za

k (Za
k)

T
〉

= (I−KkHk)P
a
k(I−KkHk)

T + KkRkK
T
k

= Pa
k .

(6)

However, the perturbed observation approach introduces an additional source of sampling error

that (i) reduces analysis error covariance accuracy and (ii ) increases the probability of underesti-

mating analysis error covariance (Whitaker and Hamill, 2001). A Monte Carlo method that avoids

perturbed observations is described in Pham (2001).

Square-root Kalman filters provide adeterministicalgorithm for transforming the forecast en-

semble into an analysis ensemble with consistent statistics. The “Potter method” for the square-

root Kalman filter analysis update (Bierman, 1977) is obtained by first rewriting (2) as

Pa
k = Za

kZ
aT
k = (I− Pf

kH
T
k

(
HkP

f
kH

T
k + Rk

)−1

Hk)P
f
k

= Zf
kZ

fT
k − Zf

kZ
fT
k HT

k

(
HkZ

f
kZ

fT
k HT

k + Rk

)−1

HkZ
f
kZ

fT
k

= Zf
k(I− ZfT

k HT
k

(
HkZ

f
kZ

fT
k HT

k + Rk

)−1

HkZ
f
k)Z

fT
k .

(7)

Next, them×p matrixVk ≡ (HkZ
f
k)

T and thep×p innovation covariance matrixDk ≡ VT
k Vk+Rk

are defined. Then (2) can be written as

Pa
k = Za

kZ
aT
k = Zf

k(I− VkD
−1
k VT

k )ZfT
k , (8)

so that the analysis perturbation ensemble is

Za
k = Zf

kXkUk , (9)

whereXkXT
k = (I− VkD

−1
k VT

k ) andUk is an arbitrarym×m orthogonal matrix. As formulated,

the updated ensembleZa
k is a linear combination of the columns ofZf

k and is obtained by inverting

thep× p matrixDk and computing a matrix square-root of them×m matrix (I− VkD
−1
k VT

k ).
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3. Ensemble SRFs

a. Forecast ensemble

Ensemble size is limited by the computational cost of applying the forecast model to each en-

semble member. Small ensembles have few degrees of freedom available to represent errors and

suffer from sampling error that further degrades covariance representation. Sampling error leads

to loss of accuracy and underestimation of error covariances that can cause filter divergence. Tech-

niques to deal with this problem are distance-dependent covariance filtering and covariance infla-

tion (Whitaker and Hamill, 2001). Neglecting model error in (1) also causes the forecast error

covariance to be underestimated, a problem that can be lessened by covariance inflation.

When the model error covarianceQk has large-scale structure, a reasonable representation is

an ensemble or square-root decompositionQk = Zd
kZ

dT
k whereZd

k is ann × q matrix. Then, a

square-root ofPf
k is then× (m + q) matrix

Zf
k =

[
MZa

k Zd
k

]
. (10)

With this model error representation, ensemble size grows byq with each forecast/analysis cycle.

Ensemble size can be limited by computing the singular value decomposition of the ensemble and

discarding components with small variance. When the model error covarianceQk is approximated

as an operator, for instance a correlation model, Lanczos methods can be used to compute the lead-

ing eigenmodes ofMkPa
k−1(MkZa

k−1)
T + Qk and formZf

k (Cohn and Todling, 1996). Perturbing

model physics, as done insystem simulation, explicitly accounts for some aspects of model error

(Houtekamer et al., 1996).
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b. Analysis ensemble

Standard methods for computing the matrix square-root of(I−VkD
−1
k VT

k ) and the updated analysis

perturbation ensembleZa
k are not always well-suited to typical Earth Science data assimilation

applications where the state-dimensionn and the number of observationsp are large (Bierman,

1977; Maybeck, 1982). A direct approach is to solve first the linear systemDkYk = HkZ
f
k for the

p×m matrixYk, that is, to solve

(HkP
f
kH

T
k + Rk)Yk = HkZ

f
k , (11)

as is done in the first step of the PSAS algorithm (Cohn et al., 1998). Then, them × m matrix

I− VTD−1V = I− (HkZ
f
k)

TYk is formed, its matrix square-root computed and applied toZf
k .

When observation errors are uncorrelated, observations can be efficiently assimilated one at

a time orserially (Houtekamer and Mitchell, 2001). In the case of a single observation,p = 1,

Vk is a column-vector and the innovationDk is a scalar. In this case, a matrix square-root of

(I− VkD
−1
k VT

k ) can be computed in closed form by taking theansatz

I−D−1
k VkV

T
k = (I− βkVkV

T
k )(I− βkVkV

T
k )T , (12)

and solving for the scalarβk, which givesβk =
(
Dk ±

√
RkDk

)−1
. This result is a special case of

the general result that

I− VkD
−1
k VT

k = (I− VkBkV
T
k )(I− VkBkV

T
k )T , (13)

where thep × p matrix Bk is given byBk ≡ (Dk ± R1/2
k D1/2

k )−1 (Andrews, 1968). The analysis

ensemble update forp = 1 is

Za
k = Zf

k(I− βkVkV
T
k ) . (14)
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At observation locations, the analysis error ensemble is related to the forecast error ensemble by

HkZa
k = (1 − βkVT

k Vk)HkZ
f
k . The scalar factor(1 − βkVT

k Vk) has absolute value less than or

equal to one and is positive when the plus sign is chosen in the definition ofβk.

In Whitaker and Hamill (2001) the analysis perturbation ensemble is found from

Za
k = (I− K̃kHk)Z

f
k , (15)

where the matrix̃Kk is a solution of the nonlinear equation

(I− K̃kHk)P
f
k(I− K̃kHk)

T = Pa
k . (16)

In the case of a single observation, a solution of (16) is

K̃k =

(
1 +

√
Rk

Dk

)−1

Kk = βkZ
f
kVk , (17)

where the plus sign is chosen in the definition ofβk. The corresponding analysis perturbation

ensemble update

Za
k = (I− K̃kHk)Z

f
k = (I− βkZ

f
kVkHk)Z

f
k = Zf

k(I− βkVkV
T
k ) , (18)

is identical to (14). Observations with correlated errors, e.g., radiosonde height observations from

the same sounding, can be handled by applying the whitening transformationR−1/2
k to the obser-

vations to form a new observation set with uncorrelated errors.

Another approach to computing the updated analysis ensemble is to use the Sherman-Morrison-

Woodbury identity (Golub and Van Loan, 1996) to show that

I− VkD
−1
k VT

k =
(
I + ZfT

k HT
k R−1

k HkZ
f
k

)−1

. (19)

Them×m matrix on the right hand side of (19) is practical to compute when the operatorR−1/2
k is

available to apply toHkZ
f
k . This approach avoids inverting thep× p matrixDk and is used in the
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ensemble transform filter Kalman filter(ET KF) where the analysis update is (Bishop et al., 2001)

Za
k = Zf

kCk(Γk + I)−1/2 ; (20)

CkΓkCT
k is the eigenvalue decomposition ofZfT

k HT
k R−1

k HkZ
f
k . Note that the matrixCk of or-

thonormal eigenvectors is not uniquely determined.1 Comparison with (19) shows thatCk(Γk +

I)−1CT
k is the eigenvalue decomposition ofI−VkD

−1
k VT

k and thus thatCk(Γk + I)−1/2 is a square-

root of (I− VkD
−1
k VT

k ).

In theensemble adjustment Kalman filter(EAKF) the form of the analysis ensemble update is

(Anderson, 2001)

Za
k = AkZ

f
k ; (21)

the ensemble adjustment matrixAk is defined by

Ak ≡ FkGkC̃k(I + Γ̃k)
−1/2G−1

k FT
k , (22)

wherePf
k = FkG2

kF
T
k is the eigenvalue decomposition ofPf

k and the orthogonal matrix̃Ck is cho-

sen so that̃CT
k GkFT

k HT
k R−1

k HkFkGkC̃k = Γ̃k is diagonal.2 The cost of computing the eigenvalue

decomposition ofPf
k depends on both the state-dimensionn and the ensemble sizem. Choosing

the orthogonal matrix̃Ck to be C̃k = G−1
k FT

k Zf
kCk gives thatΓ̃k = Γk and that the ensemble

adjustment matrix is

Ak = ZfCk(I + Γk)
−1/2G−1

k FT
k . (23)

The EAKF analysis update (21) becomes

Za
k = Zf

kCk(I + Γk)
−1/2G−1

k FT
k Zf

k , (24)

1For instance, the columns ofCk that span the(m−p)-dimensional null-space ofZfT
k HT

k R−1
k HkZ

f
k are determined

only up to orthogonal transformations if the number of observationsp is less than the ensemble sizem.
2The appearance ofG−1

k in the definition of the ensemble adjustment matrixA seems to require the forecast error
covariancePf

k to be invertible. However, the formulation is still correct whenGk is m′ ×m′ andFk is n×m′ where
m′ is the number of nonzero eigenvalues ofPf

k .
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The EAKF analysis ensemble given by (24) is the same as applying the transformationG−1
k FT

k Zf
k

to the ET KF analysis ensemble. The matrixG−1
k FT

k Zf
k is orthogonal and is, in fact, the matrix

of right singular vectors ofZf
k . Therefore,Ck(1 + Γk)

−1/2G−1
k FT

k Zf
k is a matrix square-root of

(I− VkD
−1
k VT

k ).

4. Summary and Discussion

Ensemble forecast/assimilation methods use low-rank ensemble representations of forecast and

analysis error covariance matrices. Since these ensemble are scaled square-roots of the error co-

variance matrices, ensemble data assimilation methods can be viewed as square-root filters (SRFs)

(Bierman, 1977). Analysis ensembles can be constructed stochastically or deterministically. Deter-

ministic construction of analysis ensembles eliminates one source of sampling error and in some

examples leads to deterministic SRFs being more accurate than stochastic SRFs (Whitaker and

Hamill, 2001). SRFs are not unique. This lack of uniqueness is illustrated in three different re-

cently proposed ensemble data assimilation methods that use the Kalman square-root filter method

to update the analysis ensemble (Bishop et al., 2001; Anderson, 2001; Whitaker and Hamill, 2001).

Identifying the methods as SRFs allows a clearer discussion and comparison of their different anal-

ysis ensemble updates.

Small ensemble-size and model deficiencies lead to inaccurate ensemble representations of

error covariances. Distance-dependent covariance filtering and covariance inflation have been pro-

posed as solutions (Whitaker and Hamill, 2001). Hybrid methods using ensemble and correlation

models to represent forecast error are another way of treating the problem of inaccurate ensemble

representations (Hamill and Snyder, 2000). However, as currently implemented, hybrid methods

require perturbed observations. Here we have presented deterministic methods of including model
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error into a square-root or ensemble data assimilation system when the model error has large-scale

representation.

In Estimation Theory, nonuniqueness of SRFs has been exploited to design filters with desir-

able computational and numerical properties. An open question is whether there are ensemble

properties that would make a particular SRF implementation better than another, or if the only

issue is computational cost. For instance, it may be possible to choose an analysis update scheme

that preserves higher-order, non-Gaussian statistics of the forecast ensemble. This question can

only be answered by detailed comparisons of different methods in a realistic setting where other

details of the assimilation system such as modeling of systematic errors or data quality control may

prove to be as important.
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