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Abstract

Predictability is a measure of prediction error relative to observed physical system vari-
ability. Here predictability of climate phenomena described by linear stochastic dynamics is
considered. Prediction error obeys the same linear stochastic dynamics that govern the physi-
cal system when perfect initial conditions and perfect linear prediction dynamics are assumed.
Prediction error growth depends on the choice of norm and on the interaction of the linear
dynamics and stochastic forcing. Here predictability is measured using norm-independent
multivariate generalizations of relative error. The predictability of linear stochastic dynamics
is shown to be minimized when the stochastic forcing is uncorrelated in normal-mode space.
Minimum predictability depends only on the eigenvalues of the dynamics and is a lower bound
for the predictability of systems where the stochastic forcing has arbitrary spatial structure. Is-

sues related to upper bounds for predictability are explored in a simple theoretical example.



1. Introduction

The original work of Hasselmann (1976) on stochastic climate theory pioneered the use of lin-
ear stochastic dynamics for modeling and predicting various modes of climate variability. Since
then, evidence has been presented that many climate phenomena are described by linear stochas-
tic dynamics, at least as a first-order approximation (Penland and Matrosova, 1994; Whitaker and
Sardeshmukh, 1998). Consequently, linear stochastic models are routinely used in operational
climate forecasts (Penland and Matrosova, 1998; Winkler et al., 2001). Therefore, a general un-
derstanding of the predictability of phenomena described by linear stochastic dynamics is of theo-
retical interest and practical value.

A system is predictable on those time-scales where prediction errors do not exceed some pre-
determined fraction of climate variability (Lorenz, 1969). The ratio of prediction error variance to
observed climatological variance is a measure of predictability in univariate systems with Gaus-
sian distributions. This notion of predictability based on relative error can be extended to multi-
variate systems using thgredictive information matriXSchneider and Griffies, 1999; Kleeman,
2001). The eigenvalues of the predictive information matrix can be used to construct multivariate
generalizations of relative prediction error. Importantly, these predictability measures are norm-
independent, unlike the commonly used predictive error variance.

Prediction error evolution has the form of linear stochastic dynamics when the physical system
is described by linear stochastic dynamics and the prediction system has linear deterministic dy-
namics. Prediction error growth depends only on the response of the prediction system dynamics
to stochastic forcing when the stochastic forcing is state-independent and the initial conditions are
perfect. Previous studies of similar error dynamics have found the stochastic forcing structures that
maximize prediction error growth (stochastic optimals) and have considered the prediction error

response to homogeneous, spatially uncorrelated stochastic forcing (Farrell and loannou, 1996;



Kleeman and Moore, 1997). More recently, Chang et al. (2002) identified the forcing pattern that
maximizes the predictability of a linear stochastic system under an error variance based prediction
measure. A limitation of such results is that measures of prediction error are not invariant with
respect to linear transformations of the state-variable and are norm-dependent.

Here we examine predictability of linear stochastic dynamics general using norm-independent
predictability measures and consider systems where the stochastic forcing has general spatial struc-
ture. These two considerations are related since setting the stochastic forcing to be spatially uncor-
related and homogeneous requires fixing a norm. We determine a lower-bound for predictability
independent of the stochastic forcing and show that this minimum predictability is achieved when
the stochastic forcing is uncorrelated in normal-mode space. Stochastic forcing with arbitrary
spatial structure increases predictability.

We begin our discussion in Section 2 with an introduction to a linear stochastic system and
its associated prediction error; in Section 3 we analyze the predictability of the linear stochastic
system under a set of general predictability measures; in Section 4 we use a theoretical example
to explore open issues related to upper bounds for predictability; in Section 5 we summarize our

findings and discuss their implications.

2. Linear stochastic dynamics

We assume the observed phenomenon of interest is represented bynadmeednsional state-
vectorw®Ps whose evolution is governed by linear stochastic dynamics. That is to say, we assume
the observed state°"s satisfies

dwobs

dt

= AW FE, wO(t = 0) = wi™, (1)

where the dynamics matriR and the forcing matrixF are constant, real x n matrices;¢ is

n-dimensional, spatially uncorrelated Gaussian white-ndige, )¢ (t2)7) = 6(t; — t2)1 where the
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notation(-) denotes ensemble average @hddenotes matrix transpose. A general deterministic

prediction system has the form

dwpred

d
7 _ Apredwpred’ Wpred(t _ O) _ Wgre ' (2)

Differences between the observed stat®s and the predicted state”™? are due toij differ-

ences between the observed initial conditiogP® and the prediction initial condition?™, (ii)
deficiencies in the prediction dynamidg™d and, (ii) the presence of stochastic processes in the
observations. This dependence is explicit in the equation for the evolution of the prediction error
obs Wpred

W =W

d
d_vtv — APredy, 4 (A _ Apred)wobs+ Fe¢, W(t _ 0) _ ngs_ Wgred. (3)

The forcing in the prediction error dynamics consists of two components. The first component
(A — AP wobs represents the error due to imperfect deterministic dynamics of the prediction
model and depends on the observed state; the second compgnepresents the unpredictable
stochastic processes in the observations and is state-independent. We take the forcing to be state-
independent and assume that the prediction system has perfect dy@d&fffles A. Additionally
we assume perfect initial conditione)™ = wobs. Therefore, the source of the prediction error is
entirely due to the stochastic processes. Chang et al. (2002) refer to this situatiorpaegeioe
initial conditionscenario and give a more detailed discussion. In this scenario, the prediction error
w evolves according to

dw

—-=Aw+FL, w(t=0)=0. (4)

We take the dynamics matrik to be stable, i.e., all its eigenvalugs(A) have negative real part.
We use the convention that the eigenvalueA @fre ordered least damped to most damped so that
0> ReA(A) > ReAy(A)--- > Re A, (A).

The prediction error covariance at lead-timés defined a€C, = (w(r)w(r)?) and is well-

described by its eigenvectors and eigenvalues. The eigenvectors or EOFs of the prediction error
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covariance are orthogonal and order state-space according to the amount of variance they explain;
Ak (C,) is the variance explained by theth eigenvector ofC;; A\ (C,;) > X(C;) > -+ >

A (C) > 0. Since orthogonality depends on the choice of norm, or equivalently on the choice
of state-variable, the eigenvalue decomposition of the prediction error covariance is not invariant
under linear transformations of the state-variable. If we define a new state-vaviablew where

L is a linear transformation, the transformed prediction error covari@qce (w(r)w(r)7), is

given byCT = LC,L”. The prediction error covariance matridés andC, have the same eigen-
values only wherL is an orthogonal transformation, in which case the transformdtioglates
eigenvectors o€, to eigenvectors of.. Measures of prediction error growth that depend on the
eigenvalues o€, for instance, the total varian¢eC.., depend on the choice of state-variable.

For the prediction error dynamics in (4), the prediction error covariance is
C. = / eAFFT™ dt . (5)
0

Suppose the dynamics matri is diagonalizable with eigendecompositidn = ZAZ~!; the
matrix A of eigenvalues is an x n diagonal matrix whosé-th diagonal entry is\;(A); the k-th
column of then x n matrix Z is the eigenvectoz,, and satisfied\z, = \;(A)z,. The matrixY
of adjoint eigenvectors o is defined byY = (Z~!)" where the notatior)' denotes conjugate
transpose. We assume without loss of generality that the colymop$ Y are unit vectors with
ylyk = 1. Now the prediction error covarian€e can be expressed in the basis of the eigenvectors
of the dynamics a€, = ZC,Z!. Using the relatio’¥'Z = Z'Y = I, the matrixC. is determined
by
C.=YiCc,y= / " MYTRFTY A gy
0 (6)
=Y'FF'YoE,,

where the notation denotes Hadamard prodticand the entries of the positive semidefinite matrix

1The Hadamard product of two matricésandY with entriesX;,; andY ;, respectively, is the matrix whose entries
areXy; Y.



E. are

e(/\k(A)-FXz(A))T -1

E,], / T AR AN gy o 7)
0 Ae(A) + Ai(A)

The matrixE, depends only on the eigenvalues of the dynamics and the leadrtini@e pro-

jection P of the forcing matrixF onto the adjoint eigenvectod is defined byP = FTY. The
representatiol, = Z (PTP o ET) Z' shows the dependence of the prediction error covariance on
the eigendecomposition of the dynamics, as well as on the projdetadrihe forcing matrix onto

the adjoint eigenvectors.

The dependence of the prediction error covariance on the dynamics is particularly clear when
the stochastic forcing is uncorrelated in normal-mode space, that is, Ffifer- ZDZ' andD is
diagonal. This characterization of the forcing matrix is invariant with respect to linear transforma-
tions of the state-variable. When the stochastic forcing is uncorrelated in normal-model space, the
adjoint eigenvectors of the dynamics diagonalize the prediction error covariance at all lead times,
i.e., normal modes are uncorrelated, &hd= Z(DoE,)Z'. Note that thaD o E, is a diagonal ma-
trix whosek-th diagonal entry iD;[E, |- Although this representation separates temporal and
spatial structures of the prediction error covariance, it is not the eigenvalue decomposition since
the matrix of eigenvectorz is generally not orthogonal. Lower bounds for the largest eigenvalue
and the total prediction error variance in the case of normal-mode uncorrelated stochastic forcing

are
e2Re Ak (AT _ 1

> i = —_—
)\1<CT) - fgggxn kaT}’k 11%1’?’;(71 2 Re )\k(A) Dkk ) (8)
n 62 Re A (A)T _ 1
wC. =S "~ p,
T T L ToReN(A)
9)

n eQRe)\k(A)T -1

> ——————— Dy

=1

The second inequality follows from,tzk = sec? 0, > 1 whered, is the angle between the eigen-

vectorz; and the adjoint eigenvectgy,.> Consequently the prediction error variance is large when

2Recall thatec 0y, = ||z || [lyx|l/y}zs and|lyx| = yjzx = 1.
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Re A\x(A) is small and whem,; andy; are nearly orthogonal.

The inequalities in (8) and (9) are equalities when the dynamics matrsxnormal and the
stochastic forcing is uncorrelated in normal-mode space. Spatially uncorrelated stochastic forcing
is also uncorrelated or white in normal-mode space for normal dynamics. Moreover, in this case,
the eigenvalues of the prediction error covariance are given by

e2Re Ae(A)T _ 1

Me(Cr) = Ap(diagE;) = TR M(A)

recalling thatRe A\, (A) < 0; diag E is the diagonal matrix whose entries are given by the diagonal
elements oE,. Consequently, useful measures of the size of the prediction error cova@ance
such astr C, anddet C., are entirely determined by the eigenvalues of the dynamics matrix
and the forcing coefficient®,, when the dynamics is normal. Additionally, the eigenvectors of
the covariance matri€, are closely related to the eigenvectors of the dynamics. Whénreal

(or equivalently),(A) is real),z, is thek-th eigenvector oC,; when\;(A) is not real,C, has a
repeated eigenvalue and two corresponding, nonunique eigenvBetayandlm z,.

Since details of the stochastic forcing are seldom known, it is useful to know which forcing
structures most efficiently excite error growth. Generally, the most efficient stochastic forcing is
not uncorrelated in normal-mode space and stochastic forcing with arbitrary spatial structure must
be considered. For instance, the ratjoC..) /A (FFT) is largest whefF” = | (Tippett and Cohn,
2001). The ratio of prediction error variance to stochastic forcing varian€e/tr FF” is largest

whenF has one nonzero column that is the leading eigenvector of the nBatibefined by
B, = / AT A gt (11)
0

that is, whenF is the leading stochastic optimal. These two choices of forcing are uncorrelated
in normal-mode space only whehk is normal. Therefore, maximal prediction error growth in
nonnormal systems is due to forcing with general spatial structure. Unfortunately, prediction error

due to arbitrary forcing is less simply described and analyzed.
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The remarks here show that prediction error growth depends strongly on details of the forc-
ing structure, particularly the projection of the forcing onto adjoint eigenmodes of the dynamics.
Therefore prediction error growth due to normal-mode uncorrelated forcing is simply described.
However, normal-mode uncorrelated forcing does not in general include the most (or least) effi-

cient forcing. Additionally, prediction error growth measures depend on the choice of norm.
3. Predictability

A prediction is useful on time-scales where the prediction error is, in some sense, less than the
climatological variability. Therefore, the utility of a prediction at lead-timéepends on both the
prediction error covarianc€,. and the climatological error covarian€g,. This notion of pre-
dictability is the basis for predictability measures defined usingpthdictive information matrix
G. = C.C_! (Schneider and Griffies, 1999)The eigenvalues of the predictive information ma-
trix give a multivariate generalization of the univariate relative error variad¢e?. wheres? is
the prediction error variance at lead-timands?_ is the climatological variance. The eigenvalues
of the predictive information matrix can be used to construct multivariate analogs of the univariate
predictability measure, — s? /s> .

The eigenvalue decomposition of the predictive informatiardecomposes phase-space into
uncorrelated patterns ordered by their relative prediction error. \Whean eigenvalue db., its
adjoint eigenvectoy satisfiesq”’ G. = A\q’. The eigenvalues d&. are between zero and unity

since

~ q'C.q
- q"Ceq’

(12)

andq”’C.q > q’C.q > 0. The eigenvalues 0G. behave like relative error, initially zero

because of the perfect initial condition assumption, and increasing with lead-time until they reach

3The climatological covariance matrix is invertible, i.e., there are no perfectly predictable components, if the pair
(A, F) is controllable; a sufficient condition for controllability is that forcing covariaR€€é’ be invertible.



unity in the limit of large lead-time. The quantity;’ C.q)/(q” C..q) is the relative error of the
linear combination(q”w) of state-variable elements. The weight that minimizes the relative
error in (12) is then-th adjoint eigenvector of the predictive information matrix and defines the
first predictable componerfty’ w) and its relative error variance, (G, ) (Schneider and Griffies,
1999). The eigenvectgp, corresponding to the adjoint eigenvectgy is the firstpredictable
pattern(Schneider and Griffies, 1999). The second predictable component is determined by the
next smallest eigenvalue Gf. and is temporally uncorrelated with the first predictable component.
The eigenvalues of the predictive information matrix are invariant with respect to linear trans-
formations of the state-variable. If a new state-variable Lw and its prediction error covariance
C, is defined, the new predictive information mat6x is related toG, by a similarity transfor-
mation

A

G,=C,C'l=LC.C)L' = LG, L, (13)

so thatG, andG, have the same eigenvalues. Therefore, predictability measures defined by eigen-
values of the predictive information matrix are invariant with respect to linear transformations of
the state-variable and are norm-independent. The eigenvectors of the predictive information ma-
trix transform in the same manner as the state-variabjejsfan eigenvector oG, thenLp is an
eigenvector oG, .

The predictable patterns and their relative error variances are simply related to the dynamics
when the forcing is uncorrelated in normal-mode space, i.e., WRén= ZDZ' andD is diagonal.
We require thaD be invertible to insure that the climatological covariafte is also invertible.

In this case, the predictive information matfx has the simple form

G, =Z(DoE,)Z! (Z') ' (DoE,) "2
(14)
= Z diag(E,) diag(Ex) ‘27!,

and is remarkably independent of the forcing coefficiBntSince (14) is the eigendecomposition
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of G, the eigenvalues d&.. are
Me(Gr) =1 — 2ReAnrn(Ar (15)

and depend only on the real part of the eigenvalues of the dynamics. The eigenve@oraref

the eigenvectors of the dynamics. Therefore, the leading eigenvactdrthe dynamics is the

first predictable pattern at all lead-times of a system with normal-mode uncorrelated forcing; the
relative error of the associated first predictable componehtis:? (A The predictability of

the first predictable component decreases exponentially with decay-rate determined by the least
damped eigenmode of the dynamics.

For general forcing, it is useful to write the prediction error covarigbcas

C, = / T CARRTOAT g / TN ERTOAT gy
0 T

(16)
=C, — GTACOOGTAT :
so that
G, =1-eMCeh7C. (17)
The eigenvalues d&., are then
Me(Gr) = A\ (I — W, W)
(18)

=1- 0-721—k+1<WT) )
where we defindV, = ¢A” andA = C./?ACY’; the notations;,(X) denotes thé-th singular
value of a matrixX ordered so that(X) > o5(X) > ...0,(X) > 0. The matrixA is the

dynamics matrix of the whitened state-variatile= C5;"/

w. The climatological covariancé..

is the identity matrix in the whitened state-variabW;. is the state-propagator of the whitened
state-variable. The eigendecompositiorGyfis determined by the singular value decomposition
of W... Another way of arriving at (18) is to recall that the eigenvalue&ofire invariant under

linear transformations of the state-variable and note that in the whitened state-variable

A

G, =C. =1-w.w". (19)
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Predictability analysis is equivalent to principle component analysis of the whitened state-vector
w (Schneider and Griffies, 1999).

The whitened dynamicA is normal when the forcing is uncorrelated in normal-mode space.
In this case, the whitened-state propagafbris also normalg?(W,) = [\ (W,)|? = e2Re (AT
and (15) is a consequence. When the forcing is correlated in normal-modeWpaisajonnormal
and its singular values are not determined by its eigenvalues. However, the eigenvalues and singular
values of any matrix must satisfy certain inequalities. For instance, the largest singular value must
be larger than the modulus of the largest eigenvalue. That is te3a).) > |\ (W, )|, which

combined with (18) gives the upper bound
M(G,) < 1 — 2ReNAr (20)

for the smallest eigenvalue of the predictive information matrix. This upper bound means that
the relative error of the first predictable component is always less than the relative error of the
first predictable component when the stochastic forcing is uncorrelated in normal-mode space. In
other words, the relative error of the first predictable component is maximized when the forcing
is uncorrelated in normal-mode space. When the stochastic forcing is correlated in normal-mode
space, normal modes are correlated and linear combinations of normal modes can be constructed
whose relative error is less than the relative error of any single normal mode. Therefore, normal-
mode uncorrelated forcing minimizes predictability as measured by the relative error of the first
predictable component.

The same conclusion that normal-mode uncorrelated stochastic forcing minimizes predictabil-

ity holds for general predictability measures defined abstractly by

predictability= Z h(1 — (G Z h(o (W (21)

where the functior has the property thdi(e”) is a convex and increasing functionaafTheorem

12



1 of the Appendix and (18) give that

predictability="> " h(cp(W,)) = > " A(IAZ(W,)]) = > h(e2FeM®) (22)

k=1 k=1 k=1

The right-hand side of (22) is the predictability of the system with normal-mode uncorrelated forc-
ing and depends only the the real part of the eigenvalues of the dynamics. General predictability
measures are minimized when the stochastic forcing is uncorrelated in normal-mode space.

Examples of predictability measures that can be written in the form of (21) are the quantity

| —tr G, /n = %Zoﬁ (W,) | 23)
k=1

the predictive information? ., defined by (Schneider and Griffies, 1999)

. n

n n
=__] :——Ejl 1—c3(W 24
R‘r 9 Ogdet G‘r 9 e Og( Ok( ‘r)) ’ ( )
andrelative entropyr, defined by (Kleeman, 2001)

Ty =

[—log (det G;) + tr (G;) — n] = —% Zlog (1= 07 (W,)) + [Ae(W,)[*. (25)

Normal-mode uncorrelated forcing minimizes all these measures of predictability and gives lower
bounds for predictability that depend only on the eigenvalues of the dynamics (see Lemmas 1 and
2 of the Appendix). The same statement is true when the sums in (23) — (24) are truncated, and
predictability is measured using the leading eigenvalues of the predictive information matrix.
These results have an interpretation in the framework where the forcing is fixed as homo-
geneous and spatially uncorrelated, i.e., wk€d = 1. In this case, the stochastic forcing is
uncorrelated in normal-mode space WherY is diagonal. WherY'Y is diagonal,Y'Y = I and
the dynamics are normal since the columns¥oére unit vectors. Therefore, for homogeneous
and spatially uncorrelated forcing, predictability is minimized when the dynamics is normal. Non-
normal dynamics is more predictable than normal dynamics with the same eigenvalues when the

stochastic forcing is homogeneous and spatially uncorrelated.
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4. Upper bounds for predictability

Our analysis shows that the predictability of a system described by linear stochastic dynamics is
minimized when the stochastic forcing is uncorrelated in normal-mode space. However, some
guestions remain unanswered. For instance, what stochastic forcing produces maximum pre-
dictability and when is this maximum predictability strictly larger than that given by normal-mode
uncorrelated forcing? Such questions are difficult to answer generally because predictability is a
nonlinear function of the stochastic forcing. We explore these issues in a simple 2-D linear stochas-
tic system. The relevance of this type of simple model to real climate systems is discussed in Chang
et al. (2002) where a 2-D stochastically driven damped inertial oscillator was used as a prototype
coupled system to illustrate the importance of nonnormal growth in enhancing the predictability of
climate systems.

Consider the x 2 dynamics matrix given by

C[Mtie 0
A‘[lo A2—¢¢]’ (26)

where)\, and)\, are negative real constantsis a real constant and= \/—1. We assume that the

two eigenvalues oA are either both real or complex conjugates. There is no loss of generality in
taking the dynamics to be diagonal since our predictability measures are invariant linear transfor-
mation of the state variable. Normal-mode uncorrelated stochastic forcing for diagonal dynamics
corresponds t&F’ being diagonal. In this case, the predictive information ma&ixs diagonal

and given by

1 —e2Mr 0
0 1 —e2her|

and can be used to compute the minimum predictability of the system. When the eigenvalues of
the dynamics are identical,= \; = A\, and¢ = 0, the dynamics is essentially scalar and

1 — 2AT
C, = 2§ FFT (28)
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T
Figure 1 The predictability measure— tr G /2 for normal-mode uncorrelated forcing (gray line)

and rank-1 forcing (black line) with; = —1 andX, = —2.

for general stochastic forcing. In this case, the climatological covarifiace= FF?/(2)) is
invertible whenFF7 is, and the predictive information matrix is independent of the forcing and
given by (27) withA\; = X5. Therefore no forcing structure increases predictability when the
eigenvalues of the dynamics are identical, a result that is true in general.

Suppose that the forcing matrix is rank-1 so that the stochastic forcing covariance can be written
FFT = ff7 wheref is a vector with nonzero elements. A general result that follows directly from
(6) is that

C, = ff” o E, = Diag(f) E, Diag(f), (29)

when the forcing matri¥ is rank-1 and the dynamics are diagonal; the notailog(f) denotes
the diagonal matrix whose diagonal entries are the elements of the fetitazeneral, the inverta-
bility of the climatological covarianc€, is not guaranteed for rank-1 forcing. The climatological
covarianceC, is invertible for2 x 2 diagonal dynamics when the entriesfadre nonzero and the
eigenvalues of the dynamics are distinct. For rank-1 forcing, the eigenvald&sarke given by
Me(G,) = M\ (E-E_}) and remarkably, are independent of the fording direct calculation gives
that the predictability measure (23) of the system with rank-1 forcing is

221 Ao ((e)‘” — e’\27)2 + 26227 (1 — cos 2¢>))
497 + (M — Ao)?

1 Looxie | 2x0
1—§trGT:§(e "t+e 2)+

(30)
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The result in (30) is valid when the eigenvalues of the dynamics are distinct. The first term on the
right-hand side of (30) is the minimum predictability of the system, and the second term is strictly
positive. Therefore, rank-1 forcing gives predictability thasigctly larger than normal-mode
uncorrelated forcing. Figure 1 compares the quaritity tr G, /2 for normal-mode uncorrelated

and for rank-1 forcing as function of lead-timewith \; = —1 and X, = —2. In this example,
rank-1 stochastic forcing is seen to enhance predictability on time-scales comparable to the system
e-folding time. Rank-1 forcing also increases predictability as measured by the predictive informa-
tion R, and the relative entropy,. In fact, there is no rank-2 forcing that gives more predictability.
The optimization problems of maximizing— tr G, /2, R, andr, can be solved in closed form

for the2 x 2 system and show that rank-1 forcing maximizes predictability. Whether rank-1, or
perhaps approximately rank-1, forcing gives maximum predictability in general remains an open

guestion. However, limited numerical experiments do not contradict this conjecture.

5. Discussion

In this work we have considered error growth and predictability in linear stochastic systems with
perfect initial conditions and state-independent stochastic forcing. We have focused our study on
the impact of stochastic forcing spatial structure on error growth and predictability. Two classes
of forcing were considered: forcing that is uncorrelated in normal-mode space and forcing with
arbitrary spatial structure. Prediction error growth depends strongly on details of the forcing,
even for the special case of normal-mode uncorrelated forcing. Properly chosen forcing structures
can produce prediction error growth more efficiently or less efficiently than normal mode forc-
ing. Norm-dependence of prediction error growth measures further complicates the analysis of
prediction error growth.

Predictability can be defined in a norm-invariant manner usingtedictive information ma-

trix (Schneider and Griffies, 1999). Remarkably, predictability of a system with normal-mode
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uncorrelated forcing is independent of the forcing amplitudes. Moreover, the predictable patterns
are simply the eigenmodes of the dynamics. Predictability of systems where the stochastic forcing
has general spatial structure is more difficult to analyze. However, in contrast to the results of pre-
diction error growth analysis where general stochastic forcing can either increase or decrease error
growth, general stochastic forcing always increases predictability; normal-mode uncorrelated forc-
ing gives minimum predictability. Therefore, normal mode analysis of the predictability problem
gives lower bounds for the system with general forcing structure.

These results can also be interpreted in the framework where eigenvectors of the dynamics are
allowed to vary and the forcing is fixed as homogeneous and spatially uncorrelated. Homogeneous
and spatially uncorrelated forcing is uncorrelated in normal-mode space when the dynamics is
normal. Therefore, for homogeneous and spatially uncorrelated stochastic forcing, a system with
nonnormal dynamics is more predictable than a system with the same eigenvalues but normal
dynamics.

Our results are in the form of lower bounds for predictability. The fact that the lower bound
of the predictability depends only the real part of the eigenvalues implies that if the forcing is
uncorrelated in the normal mode space, then the predictability does not depend on the oscillatory
behavior of the system. An topic for future research is the formulatiarpperbounds for pre-
dictability. We expect such upper bounds to depend only on the eigenvalues of the dynamics, as in
the simple example. Another issue is the characterization of forcing structures that give maximum
predictability as in Chang et al. (2002) where the forcing producing maximum predictability for

norm-dependent error variance predictability measures was found.
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Appendix

The necessary and sufficient condition relating the eigenvalp@¥) and singular values; (W)

of an invertable matri¥V is the inequality

> “logor(W) > > "log [A(W)] (31)
k=1 k=1

forj =1,2,...,nwith equality forj = n (Marshall and Olkin, 1979). The sequer{deg o, (W)}
is said tomajorizethe sequencélog |A\,(W)|}. The following classical result of Weyl identifies

functions that preserve majorization.

Theorem 1 Weyl (1949); Chapter 5, A.2.a of Marshall and Olkin (197FupposaN is an in-
vertiblen x n matrix with eigenvalues; (W) and singular values; (W). If h(e”) is an increasing

convex function then, . ‘
> h(ok(W)) > h(IA(W))), (32)
k=1 k=1

forj=1,2,...,n.

The following lemmas are consequences of Theorem 1 with specific choices of the function
h. Lemma 1 follows from takindi(z) = z® and fromh(e®) = e** being an increasing convex

function fors > 0.

Lemma 1. SupposaV is ann x n matrix with with eigenvalues, (W) and singular values (W).
For s > 0,
j j
Y oW > IW)P L =12, n. (33)
k=1

k=1

The functionh(e”) is a convex increasing function feroo < x < 0 whenh is an increasing
convex function on the intervél, 1). The following lemma is a consequence-ofog(1 — z?) and

—(log(1 — z?) + z*) being convex increasing functions on the interall).
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Lemma 2. Under the assumptions of Theorem 1, an(W) < 1

—Zlog (1 - |oR(W Zlog (1-A(W)) , (34)

and '
= Jlog (1= [A(W)?) + [As(W Zlog (1—02(W)) + |on(W)]*,  (35)

k=1

fory=1,2,...,n
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