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Abstract

Predictability is a measure of prediction error relative to observed physical system vari-

ability. Here predictability of climate phenomena described by linear stochastic dynamics is

considered. Prediction error obeys the same linear stochastic dynamics that govern the physi-

cal system when perfect initial conditions and perfect linear prediction dynamics are assumed.

Prediction error growth depends on the choice of norm and on the interaction of the linear

dynamics and stochastic forcing. Here predictability is measured using norm-independent

multivariate generalizations of relative error. The predictability of linear stochastic dynamics

is shown to be minimized when the stochastic forcing is uncorrelated in normal-mode space.

Minimum predictability depends only on the eigenvalues of the dynamics and is a lower bound

for the predictability of systems where the stochastic forcing has arbitrary spatial structure. Is-

sues related to upper bounds for predictability are explored in a simple theoretical example.
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1. Introduction

The original work of Hasselmann (1976) on stochastic climate theory pioneered the use of lin-

ear stochastic dynamics for modeling and predicting various modes of climate variability. Since

then, evidence has been presented that many climate phenomena are described by linear stochas-

tic dynamics, at least as a first-order approximation (Penland and Matrosova, 1994; Whitaker and

Sardeshmukh, 1998). Consequently, linear stochastic models are routinely used in operational

climate forecasts (Penland and Matrosova, 1998; Winkler et al., 2001). Therefore, a general un-

derstanding of the predictability of phenomena described by linear stochastic dynamics is of theo-

retical interest and practical value.

A system is predictable on those time-scales where prediction errors do not exceed some pre-

determined fraction of climate variability (Lorenz, 1969). The ratio of prediction error variance to

observed climatological variance is a measure of predictability in univariate systems with Gaus-

sian distributions. This notion of predictability based on relative error can be extended to multi-

variate systems using thepredictive information matrix(Schneider and Griffies, 1999; Kleeman,

2001). The eigenvalues of the predictive information matrix can be used to construct multivariate

generalizations of relative prediction error. Importantly, these predictability measures are norm-

independent, unlike the commonly used predictive error variance.

Prediction error evolution has the form of linear stochastic dynamics when the physical system

is described by linear stochastic dynamics and the prediction system has linear deterministic dy-

namics. Prediction error growth depends only on the response of the prediction system dynamics

to stochastic forcing when the stochastic forcing is state-independent and the initial conditions are

perfect. Previous studies of similar error dynamics have found the stochastic forcing structures that

maximize prediction error growth (stochastic optimals) and have considered the prediction error

response to homogeneous, spatially uncorrelated stochastic forcing (Farrell and Ioannou, 1996;
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Kleeman and Moore, 1997). More recently, Chang et al. (2002) identified the forcing pattern that

maximizes the predictability of a linear stochastic system under an error variance based prediction

measure. A limitation of such results is that measures of prediction error are not invariant with

respect to linear transformations of the state-variable and are norm-dependent.

Here we examine predictability of linear stochastic dynamics general using norm-independent

predictability measures and consider systems where the stochastic forcing has general spatial struc-

ture. These two considerations are related since setting the stochastic forcing to be spatially uncor-

related and homogeneous requires fixing a norm. We determine a lower-bound for predictability

independent of the stochastic forcing and show that this minimum predictability is achieved when

the stochastic forcing is uncorrelated in normal-mode space. Stochastic forcing with arbitrary

spatial structure increases predictability.

We begin our discussion in Section 2 with an introduction to a linear stochastic system and

its associated prediction error; in Section 3 we analyze the predictability of the linear stochastic

system under a set of general predictability measures; in Section 4 we use a theoretical example

to explore open issues related to upper bounds for predictability; in Section 5 we summarize our

findings and discuss their implications.

2. Linear stochastic dynamics

We assume the observed phenomenon of interest is represented by a realn-dimensional state-

vectorwobs whose evolution is governed by linear stochastic dynamics. That is to say, we assume

the observed statewobs satisfies

dwobs

dt
= Awobs+ Fξ , wobs(t = 0) = wobs

0 , (1)

where the dynamics matrixA and the forcing matrixF are constant, realn × n matrices;ξ is

n-dimensional, spatially uncorrelated Gaussian white-noise,〈ξ(t1)ξ(t2)T 〉 = δ(t1 − t2)I where the
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notation〈·〉 denotes ensemble average and()T denotes matrix transpose. A general deterministic

prediction system has the form

dwpred

dt
= Apredwpred, wpred(t = 0) = wpred

0 . (2)

Differences between the observed statewobs and the predicted statewpred are due to (i) differ-

ences between the observed initial conditionwobs
0 and the prediction initial conditionwpred

0 , (ii )

deficiencies in the prediction dynamicsApred and, (iii ) the presence of stochastic processes in the

observations. This dependence is explicit in the equation for the evolution of the prediction error

w ≡ wobs−wpred

dw

dt
= Apredw + (A− Apred)wobs+ Fξ , w(t = 0) = wobs

0 −wpred
0 . (3)

The forcing in the prediction error dynamics consists of two components. The first component

(A − Apred)wobs represents the error due to imperfect deterministic dynamics of the prediction

model and depends on the observed state; the second componentFξ represents the unpredictable

stochastic processes in the observations and is state-independent. We take the forcing to be state-

independent and assume that the prediction system has perfect dynamicsApred = A. Additionally

we assume perfect initial conditionswpred
0 = wobs

0 . Therefore, the source of the prediction error is

entirely due to the stochastic processes. Chang et al. (2002) refer to this situation as theperfect

initial conditionscenario and give a more detailed discussion. In this scenario, the prediction error

w evolves according to

dw

dt
= Aw + Fξ , w(t = 0) = 0 . (4)

We take the dynamics matrixA to be stable, i.e., all its eigenvaluesλk(A) have negative real part.

We use the convention that the eigenvalues ofA are ordered least damped to most damped so that

0 > Re λ1(A) ≥ Re λ2(A) · · · ≥ Re λn(A).

The prediction error covariance at lead-timeτ is defined asCτ ≡ 〈w(τ)w(τ)T 〉 and is well-

described by its eigenvectors and eigenvalues. The eigenvectors or EOFs of the prediction error
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covariance are orthogonal and order state-space according to the amount of variance they explain;

λk(Cτ ) is the variance explained by thek-th eigenvector ofCτ ; λ1(Cτ ) ≥ λ2(Cτ ) ≥ · · · ≥

λn(Cτ ) ≥ 0. Since orthogonality depends on the choice of norm, or equivalently on the choice

of state-variable, the eigenvalue decomposition of the prediction error covariance is not invariant

under linear transformations of the state-variable. If we define a new state-variableŵ = Lw where

L is a linear transformation, the transformed prediction error covarianceĈτ ≡ 〈ŵ(τ)ŵ(τ)T 〉, is

given byĈτ = LCτLT . The prediction error covariance matricesCτ andĈτ have the same eigen-

values only whenL is an orthogonal transformation, in which case the transformationL relates

eigenvectors ofCτ to eigenvectors of̂Cτ . Measures of prediction error growth that depend on the

eigenvalues ofCτ , for instance, the total variancetrCτ , depend on the choice of state-variable.

For the prediction error dynamics in (4), the prediction error covariance is

Cτ =

∫ τ

0

etAFFT etAT

dt . (5)

Suppose the dynamics matrixA is diagonalizable with eigendecompositionA = ZΛZ−1; the

matrix Λ of eigenvalues is ann × n diagonal matrix whosek-th diagonal entry isλk(A); thek-th

column of then × n matrix Z is the eigenvectorzk and satisfiesAzk = λk(A)zk. The matrixY

of adjoint eigenvectors ofA is defined byY ≡ (Z−1)
† where the notation()† denotes conjugate

transpose. We assume without loss of generality that the columnsyk of Y are unit vectors with

y†kyk = 1. Now the prediction error covarianceCτ can be expressed in the basis of the eigenvectors

of the dynamics asCτ = ZC̃τZ†. Using the relationY†Z = Z†Y = I, the matrixC̃τ is determined

by

C̃τ = Y†CτY =

∫ τ

0

eΛtY†FFTYeΛ†t dt

= Y†FFTY ◦ Eτ ,

(6)

where the notation◦ denotes Hadamard product1, and the entries of the positive semidefinite matrix

1The Hadamard product of two matricesX andY with entriesXkl andYkl, respectively, is the matrix whose entries
areXklYkl.
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Eτ are

[Eτ ]kl =

∫ τ

0

e(λk(A)+λl(A))t dt =
e(λk(A)+λl(A))τ − 1

λk(A) + λl(A)
. (7)

The matrixEτ depends only on the eigenvalues of the dynamics and the lead-timeτ . The pro-

jectionP of the forcing matrixF onto the adjoint eigenvectorsY is defined byP ≡ FTY. The

representationCτ = Z
(
P†P ◦ Eτ

)
Z† shows the dependence of the prediction error covariance on

the eigendecomposition of the dynamics, as well as on the projectionP of the forcing matrix onto

the adjoint eigenvectors.

The dependence of the prediction error covariance on the dynamics is particularly clear when

the stochastic forcing is uncorrelated in normal-mode space, that is, whenFFT = ZDZ† andD is

diagonal. This characterization of the forcing matrix is invariant with respect to linear transforma-

tions of the state-variable. When the stochastic forcing is uncorrelated in normal-model space, the

adjoint eigenvectors of the dynamics diagonalize the prediction error covariance at all lead times,

i.e., normal modes are uncorrelated, andCτ = Z(D◦Eτ )Z†. Note that thatD◦Eτ is a diagonal ma-

trix whosek-th diagonal entry isDkk[Eτ ]kk. Although this representation separates temporal and

spatial structures of the prediction error covariance, it is not the eigenvalue decomposition since

the matrix of eigenvectorsZ is generally not orthogonal. Lower bounds for the largest eigenvalue

and the total prediction error variance in the case of normal-mode uncorrelated stochastic forcing

are

λ1(Cτ ) ≥ max
1≤k≤n

y†kCτyk = max
1≤k≤n

e2Re λk(A)τ − 1

2 Re λk(A)
Dkk , (8)

trCτ =
n∑

k=1

e2Re λk(A)τ − 1

2 Re λk(A)
Dkkz

†
kzk

≥
n∑

k=1

e2 Re λk(A)τ − 1

2 Re λk(A)
Dkk .

(9)

The second inequality follows fromz†kzk = sec2 θk ≥ 1 whereθk is the angle between the eigen-

vectorzk and the adjoint eigenvectoryk.2 Consequently the prediction error variance is large when

2Recall thatsec θk = ‖zk‖‖yk‖/y†
kzk and‖yk‖ = y†

kzk = 1.
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Re λk(A) is small and whenzk andyk are nearly orthogonal.

The inequalities in (8) and (9) are equalities when the dynamics matrixA is normal and the

stochastic forcing is uncorrelated in normal-mode space. Spatially uncorrelated stochastic forcing

is also uncorrelated or white in normal-mode space for normal dynamics. Moreover, in this case,

the eigenvalues of the prediction error covariance are given by

λk(Cτ ) = λk(diag Eτ ) =
e2Re λk(A)τ − 1

2 Re λk(A)
Dkk , (10)

recalling thatRe λk(A) < 0; diag Eτ is the diagonal matrix whose entries are given by the diagonal

elements ofEτ . Consequently, useful measures of the size of the prediction error covarianceCτ ,

such astrCτ anddetCτ , are entirely determined by the eigenvalues of the dynamics matrixA

and the forcing coefficientsDkk when the dynamics is normal. Additionally, the eigenvectors of

the covariance matrixCτ are closely related to the eigenvectors of the dynamics. Whenzk is real

(or equivalentlyλk(A) is real),zk is thek-th eigenvector ofCτ ; whenλk(A) is not real,Cτ has a

repeated eigenvalue and two corresponding, nonunique eigenvectorsRe zk andIm zk.

Since details of the stochastic forcing are seldom known, it is useful to know which forcing

structures most efficiently excite error growth. Generally, the most efficient stochastic forcing is

not uncorrelated in normal-mode space and stochastic forcing with arbitrary spatial structure must

be considered. For instance, the ratioλ1(Cτ )/λ1(FFT ) is largest whenFFT = I (Tippett and Cohn,

2001). The ratio of prediction error variance to stochastic forcing variancetrCτ/trFFT is largest

whenF has one nonzero column that is the leading eigenvector of the matrixBτ defined by

Bτ ≡
∫ τ

0

etAT

etA dt , (11)

that is, whenF is the leading stochastic optimal. These two choices of forcing are uncorrelated

in normal-mode space only whenA is normal. Therefore, maximal prediction error growth in

nonnormal systems is due to forcing with general spatial structure. Unfortunately, prediction error

due to arbitrary forcing is less simply described and analyzed.
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The remarks here show that prediction error growth depends strongly on details of the forc-

ing structure, particularly the projection of the forcing onto adjoint eigenmodes of the dynamics.

Therefore prediction error growth due to normal-mode uncorrelated forcing is simply described.

However, normal-mode uncorrelated forcing does not in general include the most (or least) effi-

cient forcing. Additionally, prediction error growth measures depend on the choice of norm.

3. Predictability

A prediction is useful on time-scales where the prediction error is, in some sense, less than the

climatological variability. Therefore, the utility of a prediction at lead-timeτ depends on both the

prediction error covarianceCτ and the climatological error covarianceC∞. This notion of pre-

dictability is the basis for predictability measures defined using thepredictive information matrix

Gτ ≡ CτC−1
∞ (Schneider and Griffies, 1999).3 The eigenvalues of the predictive information ma-

trix give a multivariate generalization of the univariate relative error variances2
τ/s

2
∞ wheres2

τ is

the prediction error variance at lead-timeτ ands2
∞ is the climatological variance. The eigenvalues

of the predictive information matrix can be used to construct multivariate analogs of the univariate

predictability measure,1− s2
τ/s

2
∞.

The eigenvalue decomposition of the predictive informationGτ decomposes phase-space into

uncorrelated patterns ordered by their relative prediction error. Whenλ is an eigenvalue ofGτ , its

adjoint eigenvectorq satisfiesqTGτ = λqT . The eigenvalues ofGτ are between zero and unity

since

λ =
qTCτq

qTC∞q
, (12)

and qTC∞q ≥ qTCτq > 0. The eigenvalues ofGτ behave like relative error, initially zero

because of the perfect initial condition assumption, and increasing with lead-time until they reach

3The climatological covariance matrix is invertible, i.e., there are no perfectly predictable components, if the pair
(A,F) is controllable; a sufficient condition for controllability is that forcing covarianceFFT be invertible.
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unity in the limit of large lead-time. The quantity(qTCτq)/(qTC∞q) is the relative error of the

linear combination(qTw) of state-variable elements. The weightqn that minimizes the relative

error in (12) is then-th adjoint eigenvector of the predictive information matrix and defines the

first predictable component(qT
nw) and its relative error varianceλn(Gτ ) (Schneider and Griffies,

1999). The eigenvectorpn corresponding to the adjoint eigenvectorqn is the firstpredictable

pattern(Schneider and Griffies, 1999). The second predictable component is determined by the

next smallest eigenvalue ofGτ and is temporally uncorrelated with the first predictable component.

The eigenvalues of the predictive information matrix are invariant with respect to linear trans-

formations of the state-variable. If a new state-variableŵ ≡ Lw and its prediction error covariance

Ĉτ is defined, the new predictive information matrixĜτ is related toGτ by a similarity transfor-

mation

Ĝτ = Ĉτ Ĉ
−1
∞ = LCτC

−1
∞ L−1 = LGτL

−1 , (13)

so thatGτ andĜτ have the same eigenvalues. Therefore, predictability measures defined by eigen-

values of the predictive information matrix are invariant with respect to linear transformations of

the state-variable and are norm-independent. The eigenvectors of the predictive information ma-

trix transform in the same manner as the state-variable; ifp is an eigenvector ofGτ thenLp is an

eigenvector of̂Gτ .

The predictable patterns and their relative error variances are simply related to the dynamics

when the forcing is uncorrelated in normal-mode space, i.e., whenFFT = ZDZ† andD is diagonal.

We require thatD be invertible to insure that the climatological covarianceC∞ is also invertible.

In this case, the predictive information matrixGτ has the simple form

Gτ = Z(D ◦ Eτ )Z
† (Z†)−1

(D ◦ E∞)−1Z−1

= Z diag(Eτ ) diag(E∞)−1Z−1 ,

(14)

and is remarkably independent of the forcing coefficientD. Since (14) is the eigendecomposition

10



of Gτ , the eigenvalues ofGτ are

λk(Gτ ) = 1− e2Re λn−k+1(A)τ , (15)

and depend only on the real part of the eigenvalues of the dynamics. The eigenvectors ofGτ are

the eigenvectors of the dynamics. Therefore, the leading eigenvectorz1 of the dynamics is the

first predictable pattern at all lead-times of a system with normal-mode uncorrelated forcing; the

relative error of the associated first predictable component is1 − e2Re λ1(A). The predictability of

the first predictable component decreases exponentially with decay-rate determined by the least

damped eigenmode of the dynamics.

For general forcing, it is useful to write the prediction error covarianceCτ as

Cτ =

∫ ∞

0

etAFFT etAT

dt−
∫ ∞

τ

etA†FFT etAT

dt ,

= C∞ − eτAC∞eτAT

,

(16)

so that

Gτ = I− eAτC∞eAT τC−1
∞ . (17)

The eigenvalues ofGτ are then

λk(Gτ ) = λk(I−WτW
T
τ )

= 1− σ2
n−k+1(Wτ ) ,

(18)

where we defineWτ ≡ eÂτ andÂ ≡ C−1/2
∞ AC1/2

∞ ; the notationσk(X) denotes thek-th singular

value of a matrixX ordered so thatσ1(X) ≥ σ2(X) ≥ . . . σn(X) ≥ 0. The matrixÂ is the

dynamics matrix of the whitened state-variableŵ ≡ C−1/2
∞ w. The climatological covariancêC∞

is the identity matrix in the whitened state-variable;Wτ is the state-propagator of the whitened

state-variable. The eigendecomposition ofGτ is determined by the singular value decomposition

of Wτ . Another way of arriving at (18) is to recall that the eigenvalues ofGτ are invariant under

linear transformations of the state-variable and note that in the whitened state-variable

Ĝτ = Ĉτ = I−WτW
T
τ . (19)
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Predictability analysis is equivalent to principle component analysis of the whitened state-vector

ŵ (Schneider and Griffies, 1999).

The whitened dynamicŝA is normal when the forcing is uncorrelated in normal-mode space.

In this case, the whitened-state propagatorWτ is also normal,σ2
k(Wτ ) = |λk(Wτ )|2 = e2Re λk(A)τ ,

and (15) is a consequence. When the forcing is correlated in normal-mode space,Wτ is nonnormal

and its singular values are not determined by its eigenvalues. However, the eigenvalues and singular

values of any matrix must satisfy certain inequalities. For instance, the largest singular value must

be larger than the modulus of the largest eigenvalue. That is to say,σ2
1(Wτ ) ≥ |λ1(Wτ )|2, which

combined with (18) gives the upper bound

λn(Gτ ) ≤ 1− e2 Re λ1(A)τ , (20)

for the smallest eigenvalue of the predictive information matrix. This upper bound means that

the relative error of the first predictable component is always less than the relative error of the

first predictable component when the stochastic forcing is uncorrelated in normal-mode space. In

other words, the relative error of the first predictable component is maximized when the forcing

is uncorrelated in normal-mode space. When the stochastic forcing is correlated in normal-mode

space, normal modes are correlated and linear combinations of normal modes can be constructed

whose relative error is less than the relative error of any single normal mode. Therefore, normal-

mode uncorrelated forcing minimizes predictability as measured by the relative error of the first

predictable component.

The same conclusion that normal-mode uncorrelated stochastic forcing minimizes predictabil-

ity holds for general predictability measures defined abstractly by

predictability≡
n∑

k=1

h(1− λk(Gτ )) =
n∑

k=1

h(σ2
k(Wτ )) , (21)

where the functionh has the property thath(ex) is a convex and increasing function ofx. Theorem
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1 of the Appendix and (18) give that

predictability=
n∑

k=1

h(σ2
k(Wτ )) ≥

n∑
k=1

h(|λ2
k(Wτ )|) =

n∑
k=1

h
(
e2Re λk(A)

)
. (22)

The right-hand side of (22) is the predictability of the system with normal-mode uncorrelated forc-

ing and depends only the the real part of the eigenvalues of the dynamics. General predictability

measures are minimized when the stochastic forcing is uncorrelated in normal-mode space.

Examples of predictability measures that can be written in the form of (21) are the quantity

1− trGτ/n =
1

n

n∑
k=1

σ2
k (Wτ ) , (23)

thepredictive informationRτ , defined by (Schneider and Griffies, 1999)

Rτ ≡ −n

2
log detGτ = −n

2

n∑
k=1

log
(
1− σ2

k(Wτ )
)

, (24)

andrelative entropyrτ defined by (Kleeman, 2001)

rτ ≡
1

2
[− log (detGτ ) + tr (Gτ )− n] = −1

2

n∑
k=1

log
(
1− σ2

k(Wτ )
)

+ |λk(Wτ )|2 . (25)

Normal-mode uncorrelated forcing minimizes all these measures of predictability and gives lower

bounds for predictability that depend only on the eigenvalues of the dynamics (see Lemmas 1 and

2 of the Appendix). The same statement is true when the sums in (23) – (24) are truncated, and

predictability is measured using the leading eigenvalues of the predictive information matrix.

These results have an interpretation in the framework where the forcing is fixed as homo-

geneous and spatially uncorrelated, i.e., whenFFT = I. In this case, the stochastic forcing is

uncorrelated in normal-mode space whenY†Y is diagonal. WhenY†Y is diagonal,Y†Y = I and

the dynamics are normal since the columns ofY are unit vectors. Therefore, for homogeneous

and spatially uncorrelated forcing, predictability is minimized when the dynamics is normal. Non-

normal dynamics is more predictable than normal dynamics with the same eigenvalues when the

stochastic forcing is homogeneous and spatially uncorrelated.
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4. Upper bounds for predictability

Our analysis shows that the predictability of a system described by linear stochastic dynamics is

minimized when the stochastic forcing is uncorrelated in normal-mode space. However, some

questions remain unanswered. For instance, what stochastic forcing produces maximum pre-

dictability and when is this maximum predictability strictly larger than that given by normal-mode

uncorrelated forcing? Such questions are difficult to answer generally because predictability is a

nonlinear function of the stochastic forcing. We explore these issues in a simple 2-D linear stochas-

tic system. The relevance of this type of simple model to real climate systems is discussed in Chang

et al. (2002) where a 2-D stochastically driven damped inertial oscillator was used as a prototype

coupled system to illustrate the importance of nonnormal growth in enhancing the predictability of

climate systems.

Consider the2× 2 dynamics matrix given by

A =

[
λ1 + iφ 0

0 λ2 − iφ

]
, (26)

whereλ1 andλ2 are negative real constants;φ is a real constant andi =
√
−1. We assume that the

two eigenvalues ofA are either both real or complex conjugates. There is no loss of generality in

taking the dynamics to be diagonal since our predictability measures are invariant linear transfor-

mation of the state variable. Normal-mode uncorrelated stochastic forcing for diagonal dynamics

corresponds toFFT being diagonal. In this case, the predictive information matrixGτ is diagonal

and given by

Gτ =

[
1− e2λ1τ 0

0 1− e2λ2τ

]
, (27)

and can be used to compute the minimum predictability of the system. When the eigenvalues of

the dynamics are identical,λ ≡ λ1 = λ2 andφ = 0, the dynamics is essentially scalar and

Cτ =
1− e2λτ

2λ
FFT , (28)
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Figure 1. The predictability measure1− trGτ/2 for normal-mode uncorrelated forcing (gray line)

and rank-1 forcing (black line) withλ1 = −1 andλ2 = −2.

for general stochastic forcing. In this case, the climatological covarianceC∞ = FFT /(2λ) is

invertible whenFFT is, and the predictive information matrix is independent of the forcing and

given by (27) withλ1 = λ2. Therefore no forcing structure increases predictability when the

eigenvalues of the dynamics are identical, a result that is true in general.

Suppose that the forcing matrix is rank-1 so that the stochastic forcing covariance can be written

FFT = ffT wheref is a vector with nonzero elements. A general result that follows directly from

(6) is that

Cτ = ffT ◦ Eτ = Diag(f) Eτ Diag(f) , (29)

when the forcing matrixF is rank-1 and the dynamics are diagonal; the notationDiag(f) denotes

the diagonal matrix whose diagonal entries are the elements of the vectorf . In general, the inverta-

bility of the climatological covarianceC∞ is not guaranteed for rank-1 forcing. The climatological

covarianceC∞ is invertible for2× 2 diagonal dynamics when the entries off are nonzero and the

eigenvalues of the dynamics are distinct. For rank-1 forcing, the eigenvalues ofGτ are given by

λk(Gτ ) = λk(EτE−1
∞ ) and remarkably, are independent of the forcingf . A direct calculation gives

that the predictability measure (23) of the system with rank-1 forcing is

1− 1

2
trGτ =

1

2

(
e2 λ1 t + e2 λ2 t

)
+

2λ1λ2

((
eλ1τ − eλ2τ

)2
+ 2e(λ1+λ2)τ (1− cos 2φ)

)
4φ2 + (λ1 − λ2)2

. (30)
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The result in (30) is valid when the eigenvalues of the dynamics are distinct. The first term on the

right-hand side of (30) is the minimum predictability of the system, and the second term is strictly

positive. Therefore, rank-1 forcing gives predictability that isstrictly larger than normal-mode

uncorrelated forcing. Figure 1 compares the quantity1 − trGτ/2 for normal-mode uncorrelated

and for rank-1 forcing as function of lead-timeτ with λ1 = −1 andλ2 = −2. In this example,

rank-1 stochastic forcing is seen to enhance predictability on time-scales comparable to the system

e-folding time. Rank-1 forcing also increases predictability as measured by the predictive informa-

tion Rτ and the relative entropyrτ . In fact, there is no rank-2 forcing that gives more predictability.

The optimization problems of maximizing1 − trGτ/2, Rτ andrτ can be solved in closed form

for the2 × 2 system and show that rank-1 forcing maximizes predictability. Whether rank-1, or

perhaps approximately rank-1, forcing gives maximum predictability in general remains an open

question. However, limited numerical experiments do not contradict this conjecture.

5. Discussion

In this work we have considered error growth and predictability in linear stochastic systems with

perfect initial conditions and state-independent stochastic forcing. We have focused our study on

the impact of stochastic forcing spatial structure on error growth and predictability. Two classes

of forcing were considered: forcing that is uncorrelated in normal-mode space and forcing with

arbitrary spatial structure. Prediction error growth depends strongly on details of the forcing,

even for the special case of normal-mode uncorrelated forcing. Properly chosen forcing structures

can produce prediction error growth more efficiently or less efficiently than normal mode forc-

ing. Norm-dependence of prediction error growth measures further complicates the analysis of

prediction error growth.

Predictability can be defined in a norm-invariant manner using thepredictive information ma-

trix (Schneider and Griffies, 1999). Remarkably, predictability of a system with normal-mode
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uncorrelated forcing is independent of the forcing amplitudes. Moreover, the predictable patterns

are simply the eigenmodes of the dynamics. Predictability of systems where the stochastic forcing

has general spatial structure is more difficult to analyze. However, in contrast to the results of pre-

diction error growth analysis where general stochastic forcing can either increase or decrease error

growth, general stochastic forcing always increases predictability; normal-mode uncorrelated forc-

ing gives minimum predictability. Therefore, normal mode analysis of the predictability problem

gives lower bounds for the system with general forcing structure.

These results can also be interpreted in the framework where eigenvectors of the dynamics are

allowed to vary and the forcing is fixed as homogeneous and spatially uncorrelated. Homogeneous

and spatially uncorrelated forcing is uncorrelated in normal-mode space when the dynamics is

normal. Therefore, for homogeneous and spatially uncorrelated stochastic forcing, a system with

nonnormal dynamics is more predictable than a system with the same eigenvalues but normal

dynamics.

Our results are in the form of lower bounds for predictability. The fact that the lower bound

of the predictability depends only the real part of the eigenvalues implies that if the forcing is

uncorrelated in the normal mode space, then the predictability does not depend on the oscillatory

behavior of the system. An topic for future research is the formulation ofupperbounds for pre-

dictability. We expect such upper bounds to depend only on the eigenvalues of the dynamics, as in

the simple example. Another issue is the characterization of forcing structures that give maximum

predictability as in Chang et al. (2002) where the forcing producing maximum predictability for

norm-dependent error variance predictability measures was found.
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Appendix

The necessary and sufficient condition relating the eigenvaluesλk(W) and singular valuesσk(W)

of an invertable matrixW is the inequality

j∑
k=1

log σk(W) ≥
j∑

k=1

log |λk(W)| , (31)

for j = 1, 2, . . . , n with equality forj = n (Marshall and Olkin, 1979). The sequence{log σk(W)}

is said tomajorizethe sequence{log |λk(W)|}. The following classical result of Weyl identifies

functions that preserve majorization.

Theorem 1 (Weyl (1949); Chapter 5, A.2.a of Marshall and Olkin (1979)). SupposeW is an in-

vertiblen×n matrix with eigenvaluesλk(W) and singular valuesσk(W). If h(ex) is an increasing

convex function then,
j∑

k=1

h(σk(W)) ≥
j∑

k=1

h(|λk(W)|) , (32)

for j = 1, 2, . . . , n.

The following lemmas are consequences of Theorem 1 with specific choices of the function

h. Lemma 1 follows from takingh(x) = xs and fromh(ex) = esx being an increasing convex

function fors > 0.

Lemma 1. SupposeW is ann×n matrix with with eigenvaluesλk(W) and singular valuesσk(W).

For s > 0,
j∑

k=1

σs
k(W) ≥

j∑
k=1

|λk(W)|s , j = 1, 2, . . . , n . (33)

The functionh(ex) is a convex increasing function for−∞ ≤ x ≤ 0 whenh is an increasing

convex function on the interval(0, 1). The following lemma is a consequence of− log(1−x2) and

−(log(1− x2) + x2) being convex increasing functions on the interval(0, 1).
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Lemma 2. Under the assumptions of Theorem 1, andσ1(W) < 1

−
j∑

k=1

log
(
1− |σk(W)|2

)
≥ −

k∑
k=1

log
(
1− λ2

k(W)
)

, (34)

and

−
j∑

k=1

log
(
1− |λk(W)|2

)
+ |λk(W)|2 ≥ −

j∑
k=1

log
(
1− σ2

k(W)
)

+ |σk(W)|2 , (35)

for j = 1, 2, . . . , n.
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