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ABSTRACT

Predictability is a measure of prediction error relative to observed variability and so depends on
both the physical and prediction systems. Here predictability is investigated for climate phenomena
described by linear stochastic dynamics and prediction systems with perfect initial conditions and
perfect linear prediction dynamics. Predictability is quantified using the predictive information matrix
constructed from the prediction error and climatological covariances. Predictability measures defined
using the eigenvalues of the predictive information matrix are invariant under linear state-variable
transformations and for univariate systems reduce to functions of the ratio of prediction error and
climatological variances. The predictability of linear stochastic dynamics is shown to be minimized
for stochastic forcing that is uncorrelated in normal-mode space. This minimum predictability depends
only on the eigenvalues of the dynamics, and is a lower bound for the predictability of the system with
arbitrary stochastic forcing. Issues related to upper bounds for predictability are explored in a simple
theoretical example.

1. Introduction

The original work of Hasselmann (1976) on
stochastic climate theory pioneered the use of lin-
ear stochastic dynamics for modeling and predicting
various modes of climate variability. Since then, evi-
dence has been presented that many climate phenom-
ena are described, at least approximately, by linear
stochastic dynamics (Penland and Matrosova, 1994;
Whitaker and Sardeshmukh, 1998). Consequently lin-
ear stochastic models are routinely used for oper-
ational climate forecasts (Penland and Matrosova,
1998; Winkler et al., 2001). A general understanding
of the predictability of phenomena described by lin-
ear stochastic dynamics is of theoretical interest and
practical value.
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Palisades, NY 10964-8000, USA. e-mail: tippett@iri.
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A system is predictable on those time-scales where
prediction errors do not exceed some predetermined
fraction of climate variability (Lorenz, 1969). The ratio
of prediction error variance to observed climatologi-
cal variance is a measure of predictability in univari-
ate systems with Gaussian distributions. This notion
of predictability based on relative error can be ex-
tended to multivariate systems using the predictive
information matrix constructed from the prediction
error and climatological covariances (Schneider and
Griffies, 1999). Eigenvalues of the predictive informa-
tion matrix are invariant under linear transformations
of the state-variable and can be used to define pre-
dictability measures that are independent of the choice
of inner product or vector-norm, unlike the commonly
used predictive error variance (Schneider and Griffies,
1999; Kleeman, 2002).

Prediction error statistics are a function of both
the physical and prediction systems. Here we con-
sider physical systems described by linear stochastic
dynamics and prediction systems with linear deter-
ministic dynamics. In this setting, prediction error is
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due to inaccurate initial conditions, misspecification
of the dynamics and the stochastic forcing present in
the description of the observed system (Penland and
Matrosova, 2001). In this study, we limit our investi-
gation to systems where the only source of prediction
error is the stochastic forcing. Prediction error in sim-
ilar systems has been studied by many authors. Some
of the issues considered have included analysis of the
prediction error response to homogeneous, spatially
uncorrelated stochastic forcing and characterization
of the stochastic forcing structures that maximize pre-
diction error growth (stochastic optimals) (Ioannou,
1995; Farrell and Ioannou, 1996; Kleeman and Moore,
1997). The focus of previous studies has been predic-
tion error variance or in some cases the ratio of pre-
diction error and climatological variances (Penland,
1989). However, a limitation of such results is that
measures of prediction error such as variance are not
invariant with respect to linear transformations of the
state-variable; equivalently, they depend on the choice
of vector-norm or inner product. Classification of dy-
namics as normal or nonnormal depending on the or-
thogonality of its eigenvectors, an important theme in
such studies, is also not invariant with respect to linear
transformations of the state-variable.

Here we examine predictability of linear stochas-
tic dynamics using norm-independent predictability
measures based on the predictive information matrix.
We find that minimum predictability is achieved for
stochastic forcing that is uncorrelated in normal-mode
space. The minimum predictability is expressed sim-
ply in terms of the eigenvalues of the dynamics and is
a lower bound for predictability in systems where the
stochastic forcing has arbitrary spatial structure.

We begin our discussion in Section 2 with an in-
troduction to a linear stochastic system and its asso-
ciated prediction error; in Section 3 we analyze the
predictability of the linear stochastic system under a
set of general predictability measures; in Section 4 we
use a theoretical example to explore open issues re-
lated to upper bounds for predictability; in Section 5
we summarize our findings and discuss their
implications.

2. Linear stochastic dynamics

We assume the observed phenomenon of interest is
represented by a real n-dimensional state-vector wobs

whose evolution is governed by linear stochastic dy-
namics. That is to say, we assume the observed state
wobs satisfies

dwobs

dt
= Awobs + Fξ, wobs(t = 0) = wobs

0 , (1)

where the dynamics matrix A and the forcing ma-
trix F are constant, real n × n matrices; ξ is n-
dimensional, spatially uncorrelated Gaussian white-
noise, 〈ξ (t1)ξ (t2)T 〉 = δ(t1 − t2)I where the notation
〈·〉 denotes ensemble average and ( )T denotes matrix
transpose. Properties of eq. (1) have been studied in a
geophysical context by Penland (1989), DelSole and
Farrell (1995), Penland and Sardeshmukh (1995) and
others.

A general deterministic prediction system has the
form

dwpred

dt
= Apredwpred, wpred(t = 0) = wpred

0 . (2)

Differences between the observed state wobs and the
predicted state wpred are due to (i) differences between
the observed initial condition wobs

0 and the prediction
initial condition wpred

0 , (ii) deficiencies in the prediction
dynamics Apred, and (iii) the presence of stochastic
processes in the observations (Penland and Matrosova,
2001). This dependence is explicit in the equation for
the evolution of the prediction error w ≡ wobs − wpred

dw
dt

= Apredw + (A − Apred)wobs + Fξ,

w(t = 0) = wobs
0 − wpred

0 . (3)

The prediction error dynamics forcing consists of two
components. The first component (A − Apred)wobs rep-
resents prediction error due to imperfect deterministic
dynamics of the prediction model and depends on the
observed state; the second component Fξ represents
the unpredictable stochastic processes in the obser-
vations and is state-independent. We take the forcing
to be state-independent and assume that the predic-
tion system has perfect dynamicsApred = A. Addition-
ally we assume perfect initial conditions wpred

0 = wobs
0 .

Therefore, the source of the prediction error is entirely
due to the stochastic processes. In this scenario, the
prediction error w evolves according to

dw
dt

= Aw + Fξ, w(t = 0) = 0. (4)

We take the dynamics matrix A to be stable, i.e. all
its eigenvalues λk(A) have negative real part. We use
the convention that the eigenvalues of A are ordered
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least damped to most damped so that 0 > Re λ1(A) ≥
Re λ2(A) · · · ≥ Re λn(A).

The prediction error covariance at lead-time τ is de-
fined as Cτ ≡ 〈w(τ )w(τ )T 〉 and is well described by
its eigenvectors and eigenvalues. The stability of the
dynamics means that predictions are identically zero
in the limit of large lead-time τ , and consequently the
infinite lead-time prediction error covariance C∞ is the
climatological covariance. The eigenvectors or Empir-
ical Orthogonal Functions (EOFs) of the prediction er-
ror covariance are orthogonal and order state-space ac-
cording to the amount of variance they explain; λk(Cτ )
is the variance explained by the kth eigenvector of
Cτ ; λ1(Cτ ) ≥ λ2(Cτ ) ≥ · · · ≥ λn(Cτ ) ≥ 0. Since or-
thogonality depends on the choice of norm, or equiv-
alently on the choice of state-variable, the eigenvalue
decomposition of the prediction error covariance is
not invariant under linear transformations of the state-
variable. If we define a new state-variable ŵ = Lw,
whereL is a linear transformation, the transformed pre-
diction error covariance Ĉτ ≡ 〈ŵ(τ )ŵ(τ )T 〉 is given by
Ĉτ = LCτLT . The prediction error covariance matri-
ces Cτ and Ĉτ have the same eigenvalues only when
L is an orthogonal transformation, in which case the
transformation L maps eigenvectors of Cτ to eigen-
vectors of Ĉτ . Measures of prediction error growth
that depend on the eigenvalues of Cτ , such as the to-
tal variance tr Cτ , are invariant only under orthogonal
transformations of the state-variable.

For the prediction error dynamics in eq. (4), the
prediction error covariance is

Cτ =
∫ τ

0
etAFFT etAT

dt. (5)

Suppose the dynamics matrix A is diagonalizable
with eigenvalue decomposition A = Z	Z−1; the ma-
trix 	 of eigenvalues is an n × n diagonal matrix
whose kth diagonal entry is λk(A); the kth column
of the n × n matrix Z is the eigenvector zk and satis-
fies Azk = λk(A)zk . Eigenmodes of the dynamics are
also called principal oscillation patterns (Hasselmann,
1988; Penland, 1989). The matrix Y of adjoint eigen-
vectors of A is defined by Y ≡ (Z−1)†, where the nota-
tion ( )† denotes conjugate transpose. We assume with-
out loss of generality that the columns yk of Y are unit
vectors with y†

kyk = 1. Now the prediction error co-
variance Cτ can be expressed in the basis of the eigen-
vectors of the dynamics as Cτ = ZC̃τZ†. Using the
relation Y†Z = Z†Y = I, the matrix C̃τ is determined
by

C̃τ = Y†CτY =
∫ τ

0
e	tY†FFT Ye	† t dt

= (
Y†FFT Y

) ◦ Eτ , (6)

where the notation ◦ denotes Hadamard product1, and
the entries of the positive semidefinite matrix Eτ are

[Eτ ]kl =
∫ τ

0
e(λk (A)+λl (A))t dt = e(λk (A)+λl (A))τ − 1

λk(A) + λl (A)
. (7)

The matrix Eτ depends only on the eigenvalues of the
dynamics and the lead-time τ . The projection P of
the forcing matrix F onto the adjoint eigenvectors
Y is defined by P ≡ FT Y. The representation Cτ =
Z(P†P ◦ Eτ )Z† has the value of showing explicitly the
dependence of the prediction error covariance on the
eigenvalue decomposition of the dynamics, as well as
on the projection P of the forcing matrix onto the ad-
joint eigenvectors.

The analysis of the prediction error covariance is
particularly clear when the stochastic forcing is uncor-
related in normal-mode space. In this case, the forcing
covariance can be written by FFT = ZDZ†, where the
matrix D = P†P is diagonal and gives the amplitudes
of the forcing. This characterization of the forcing is
invariant with respect to linear transformations of the
state-variable. When the stochastic forcing is uncor-
related in normal-mode space, the adjoint eigenvec-
tors of the dynamics diagonalize the prediction error
covariance at all lead times, i.e. eigenmodes are un-
correlated, and Cτ = Z(D ◦ Eτ )Z†; D ◦ Eτ is a diag-
onal matrix whose kth diagonal entry is Dkk[Eτ ]kk .
Although this representation separates temporal and
spatial structures of the prediction error covariance, it
is not the eigenvalue decomposition, since the matrix
of eigenvectors Z is only orthogonal when the dynam-
ics matrix A is normal. A lower bound for the total
prediction error variance in the case of normal-mode
uncorrelated stochastic forcing is

tr Cτ =
n∑

k=1

e2 Re λk (A)τ − 1

2 Re λk(A)
Dkkz†kzk

=
n∑

k=1

e2 Re λk (A)τ − 1

2 Re λk(A)
Dkk sec2 θk

≥
n∑

k=1

e2 Re λk (A)τ − 1

2 Re λk(A)
Dkk = tr (Eτ ◦ D), (8)

1The Hadamard product of two matrices X and Y with
entries Xkl and Ykl , respectively, is the matrix whose entries
are XklYkl .
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where θk is the angle between the eigenvector zk and
the adjoint eigenvector yk .2 The prediction error vari-
ance is controlled by the proximity of the eigenvalues
of the dynamics in the complex plane to the imagi-
nary axis, the angle between eigenvectors and adjoint
eigenvectors, and the size of the stochastic forcing.

Although the expression in eq. (8) for the predic-
tion error variance applies only to normal-mode un-
correlated stochastic forcing, it provides some useful
insights. First, when the dynamics matrix A is normal
and the stochastic forcing is uncorrelated in normal-
mode space, the eigenvalues of the prediction error
covariance are the elements of the diagonal matrix
D ◦ Eτ , and the inequality in eq. (8) is an equality.
Therefore eq. (8) extends the result that non-normality
increases variance, proven by Ioannou (1995) for uni-
tary stochastic forcing, to normal-mode uncorrelated
stochastic forcing. Second, the expression in eq. (8) il-
lustrates how a linear change of state-variable affects
prediction error variance. A linear change of state-
variable does not change the eigenvalues of the dynam-
ics or the forcing amplitudes Dkk but, being equivalent
to a change of inner product, can change the angles be-
tween eigenvectors and adjoint eigenvectors and con-
sequently change the prediction error variance.

The example of normal-mode uncorrelated stochas-
tic forcing highlights the need to normalize or re-
scale the prediction error; prediction error variance
can be increased by simply increasing the stochastic
forcing amplitude. Scalar normalization has proved
useful in other contexts, such as the identification
of forcing structures that most efficiently excite er-
ror growth (Farrell and Ioannou, 1996; Kleeman and
Moore, 1997; Tippett and Cohn, 2001). Here, for the
special case of normal-mode uncorrelated stochastic
forcing, the prediction error evolution of each eigen-
mode is independent, and the univariate approach of
measuring predictability by the ratio of prediction er-
ror and climatological variances can be applied to each
eigenmode separately. Normalizing the prediction er-
ror variance of each eigenmode by its climatological
variance removes both the forcing-amplitude and non-
normal factors. The resulting predictability measure
can also be used to compare the predictability of dif-
ferent eigenmodes. This approach to measuring pre-
dictability is extended to general stochastic forcing in
the following section.

2Recall that sec θk = ‖zk‖‖yk‖/y†kzk and ‖yk‖ = y†kzk =
1.

3. Predictability

A prediction is useful on time-scales where the pre-
diction error is, in some sense, less than the climatolog-
ical variability. Therefore, the utility of a prediction at
lead-time τ depends on both the prediction error co-
variance Cτ and the climatological error covariance
C∞. This notion of predictability is the basis for pre-
dictability measures defined using the predictive infor-
mation matrix Gτ ≡ CτC−1

∞ (Schneider and Griffies,
1999).3 The eigenvalues of the predictive information
matrix measure the relative error variance of a set of
state-space patterns chosen to optimize relative error
variance and so can provide a multivariate general-
ization of the univariate relative error variance s2

τ /s2
∞

and the associated univariate predictability measure,
1 − s2

τ /s2
∞; s2

τ is the prediction error variance at lead-
time τ and s2

∞ is the climatological variance.
The eigenvalue decomposition of the predictive in-

formation Gτ decomposes phase-space into uncorre-
lated patterns ordered by their relative prediction error
variance (Schneider and Griffies, 1999). When λ is
an eigenvalue of Gτ , its adjoint eigenvector q satisfies
qT Gτ = λqT . The eigenvalues of Gτ are between zero
and unity since

λ = qT Cτ q
qT C∞q

, (9)

and qT C∞q ≥ qT Cτ q ≥ 0; qT (C∞ − Cτ )q ≥ 0 fol-
lows from (5). The eigenvalues of Gτ behave like rel-
ative error, initially zero because of the perfect initial
condition assumption, and increasing with lead-time
until they reach unity in the limit of large lead-
time. For any direction q in state-space, the projec-
tion of the prediction error w in the direction q is
(qT w) and has relative error given by the quantity
(qT Cτ q)/(qT C∞q). The direction qn that minimizes
the relative error in (9) is the n-th adjoint eigenvec-
tor of the predictive information matrix and defines

3Here, the climatological covariance matrix is invertible,
i.e. there are no perfectly predictable components, if the pair
(A,F) is controllable; a sufficient condition for controllabil-
ity is that forcing covariance FFT be invertible. When the
climatological covariance matrix is computed from data as-
sumed to be Gaussian distributed, high-dimensional state-
space and short data records make it singular. Regularization
methods, such as projecting the climatological covariance
matrix onto a truncated set of EOFs, are required and can
significantly limit the number of predictable components
that can robustly estimated (Schneider and Griffies, 1999;
Schneider and Held, 2001).
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the first predictable component (qT
n w) and its relative

error variance λn(Gτ ) (Schneider and Griffies, 1999).
The eigenvector pn corresponding to the adjoint eigen-
vector qn is the first predictable pattern (Schneider and
Griffies, 1999). The second predictable component is
determined by the next smallest eigenvalue of Gτ and
is temporally uncorrelated with the first predictable
component.

The eigenvalues of the predictive information ma-
trix are invariant with respect to linear transformations
of the state-variable. If a new state-variable ŵ ≡ Lw
and its prediction error covariance Ĉτ are defined, the
new predictive information matrix Ĝτ is related to Gτ

by a similarity transformation

Ĝτ = Ĉτ Ĉ
−1
∞ = LCτC

−1
∞ L−1 = LGτL

−1, (10)

so that Gτ and Ĝτ have the same eigenvalues. There-
fore, predictability measures defined by eigenvalues
of the predictive information matrix are invariant with
respect to linear transformations of the state-variable
and are norm-independent. The eigenvectors of the
predictive information matrix transform in the same
manner as the state-variable; if p is an eigenvector of
Gτ then Lp is an eigenvector of Ĝτ .

The predictable patterns and their relative error
variances are simply related to the dynamics when
the stochastic forcing is uncorrelated in normal-mode
space, i.e. when the forcing covariance can be rep-
resented by FFT = ZDZ† and the forcing amplitude
matrix D is diagonal. We require that the forcing am-
plitude matrix D be invertible to ensure that the cli-
matological covariance C∞ is also invertible. In this
case, the predictive information matrix Gτ has the sim-
ple form

Gτ = Z(D ◦ Eτ )Z†(Z†)−1(D ◦ E∞)−1Z−1

= Z diag (Eτ ) diag (E∞)−1Z−1, (11)

and is remarkably independent of the forcing ampli-
tude D; diag(Eτ ) is the diagonal matrix whose entries
are the diagonal elements of Eτ . Since eq. (11) is the
eigenvalue decomposition of Gτ , the eigenvalues of
Gτ are

λk(Gτ ) = 1 − e2 Re λn−k+1(A)τ , (12)

and depend only on the real part of the eigenval-
ues of the dynamics; the eigenvectors of Gτ are the
eigenvectors of the dynamics. Therefore, the least
damped eigenvector z1 of the dynamics is the first
predictable pattern at all lead-times of a system with

normal-mode uncorrelated stochastic forcing; the rel-
ative error of the associated first predictable compo-
nent is 1 − e2 Re λ1(A)τ . The predictability of the first
predictable component decreases exponentially with
decay-rate determined by the least damped eigenmode
of the dynamics.

For general stochastic forcing, it is useful to write
the prediction error covariance Cτ as

Cτ =
∫ ∞

0
etAFFT etAT

dt −
∫ ∞

τ

etAFFT etAT
dt,

= C∞ − eτAC∞eτAT
, (13)

so that

Gτ = I − eAτC∞eAT τC−1
∞ . (14)

The eigenvalues of Gτ are then

λk(Gτ ) = λk(I − WτWT
τ )

= 1 − σ 2
n−k+1(Wτ ), (15)

where we define Wτ ≡ eÂτ and Â ≡ C−1/2
∞ AC1/2

∞ ; the
notation σk(X) denotes the kth singular value of a ma-
trixX ordered so that σ1(X) ≥ σ2(X) ≥ · · · σn(X) ≥ 0.
The matrix Â is the dynamics matrix of the whitened
state-variable ŵ ≡ C−1/2

∞ w. The climatological covari-
ance Ĉ∞ in the whitened state-variable is the identity
matrix; Wτ is the state-propagator of the whitened
state-variable. The eigenvalue decomposition of Gτ

is determined by the singular value decomposition of
Wτ . Another way of arriving at eq. (15) is to recall
that the eigenvalues of Gτ are invariant under linear
transformations of the state-variable and note that in
the whitened state-variable

Ĝτ = Ĉτ = I − WτW
T
τ . (16)

Predictability analysis is equivalent to principle com-
ponent analysis of the whitened state-vector ŵ
(Schneider and Griffies, 1999). The appropriate choice
of vector-norm or state-variable for questions of pre-
dictability is one where the climatological covariance
is the identity matrix.

The whitened dynamics Â is normal when the
stochastic forcing is uncorrelated in normal-mode
space. In this case, the whitened-state propagator Wτ

is also normal, σ 2
k (Wτ ) = |λk(Wτ )|2 = e2 Re λk (A)τ , and

the expression in eq. (12) for the eigenvalues of the
predictive information matrix is a consequence. When
the stochastic forcing is correlated in normal-mode
space, Wτ is non-normal, and its singular values are
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not determined by its eigenvalues. However, the eigen-
values and singular values of any matrix must satisfy
certain inequalities. For instance, the largest singular
value of a matrix is always larger than the modulus
of its largest eigenvalue. That is to say, σ 2

1 (Wτ ) ≥
|λ1(Wτ )|2, which combined with eq. (15) gives the
upper bound

λn(Gτ ) ≤ 1 − e2 Re λ1(A)τ , (17)

for the smallest eigenvalue of the predictive informa-
tion matrix. The left-hand side of eq. (17) is the rela-
tive error of the first predictable component of a system
with general stochastic forcing, and the right-hand side
is the relative error of the first predictable component
of a system with normal-mode uncorrelated stochastic
forcing. Therefore the inequality in expression (17)
means that the relative error of the first predictable
component is maximized when the stochastic forcing
is uncorrelated in normal-mode space. In terms of pre-
dictability, expression (17) says that the predictability
of the first predictable component of a system is min-
imized when the stochastic forcing is uncorrelated in
normal-mode space.

A more physical interpretation of this result is that
when the stochastic forcing is correlated in normal-
mode space, normal modes are correlated, and lin-
ear combinations of normal modes can be constructed
whose predictability is greater than that of any single
normal mode. This potential for constructive combi-
nation of normal modes is the same mechanism that
allows systems with non-normal dynamics and uni-
tary stochastic forcing to present smaller prediction
error than equivalent normal systems. Equation (7) of
Ioannou (1995) shows that the smallest singular value
of Wτ = eÂτ is maximized when Wτ is normal. In the
present context, this fact means that the error of the
first predictable component is maximized for stochas-
tic forcing that is uncorrelated in normal-mode space.

The same conclusion that normal-mode uncorre-
lated stochastic forcing minimizes predictability is true
for general predictability measures defined abstractly
by

predictability ≡
n∑

k=1

h[1 − λk(Gτ )], (18)

where the function h has the property that h(ex ) is a
convex and increasing function of x. Theorem 1 of the
Appendix and eq. (15) give that

predictability =
n∑

k=1

h
[
σ 2

k (Wτ )
]

≥
n∑

k=1

h
(
|λk(Wτ )|2

)

=
n∑

k=1

h
(
e2 Re λk (A)

)
. (19)

The right-hand side of eq. (19) is the predictability of
the system with normal-mode uncorrelated stochas-
tic forcing and depends only on the real part of the
eigenvalues of the dynamics. General predictability
measures are minimized when the stochastic forcing
is uncorrelated in normal-mode space.

Predictability measures that can be written in the
form of expression (18) are: the quantity

1 − tr Gτ /n = 1

n

n∑
k=1

σ 2
k (Wτ )

≥ 1

n

n∑
k=1

e2 Re λk (A)τ , (20)

the predictive information Rτ , defined by (Schneider
and Griffies, 1999)

Rτ ≡ −n

2
log det Gτ = −n

2

n∑
k=1

log
[
1 − σ 2

k (Wτ )
]

≥ −n

2

n∑
k=1

log
(
1 − e2 Re λk (A)τ

)
, (21)

and relative entropy rτ defined by (Kleeman, 2002)

rτ ≡ 1

2
[− log (det Gτ ) + tr (Gτ ) − n]

= −1

2

n∑
k=1

log
[
1 − σ 2

k (Wτ )
] + |σk(Wτ )|2

≥ −1

2

n∑
k=1

log
(
1 − e2 Re λk (A)

) + e2 Re λk (A)τ . (22)

Normal-mode uncorrelated stochastic forcing mini-
mizes all these measures of predictability and gives
lower bounds for predictability that depend only on
the eigenvalues of the dynamics (see Lemmas 1 and 2
of the Appendix). These inequalities show that normal-
mode analysis of the predictability problem gives
lower bounds for the system with general forcing struc-
ture. The inequalities in expressions (20)–(22) are also
valid when the sums are truncated, and predictability
is measured using the trailing eigenvalues of the pre-
dictive information matrix.

These results have an interpretation in the frame-
work where the forcing is fixed as unitary, i.e. when
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FFT = I. In this case, the stochastic forcing is uncor-
related in normal-mode space when Y†Y is diagonal.
When Y†Y is diagonal, Y†Y = I and the dynamics is
normal, since the columns of Y are unit vectors. There-
fore, for unitary stochastic forcing, predictability is
minimized when the dynamics is normal. Non-normal
dynamics is more predictable than normal dynamics
with the same eigenvalues for unitary stochastic forc-
ing. Ioannou (1995) demonstrated in this setting that
non-normality increases prediction error, and here we
have shown that it increases predictability as well.

4. Upper bounds for predictability

Our analysis shows that the predictability of a sys-
tem described by linear stochastic dynamics is min-
imized when the stochastic forcing is uncorrelated
in normal-mode space. However, some questions re-
main unanswered. For instance, what stochastic forc-
ing produces maximum predictability, and when is this
maximum predictability strictly larger than that given
by normal-mode uncorrelated forcing? Such questions
are difficult to answer generally because predictabil-
ity is a nonlinear function of the stochastic forcing.
We explore these issues in a simple two-dimensional
linear stochastic system.

Consider the 2 × 2 dynamics matrix given by

A =
[
λ1 + iφ 0

0 λ2 − iφ

]
, (23)

where λ1 and λ2 are negative real constants; φ is a real
constant and i = √−1. We assume that the two eigen-
values of A are either both real or complex conjugates.
There is no loss of generality in taking the dynamics
to be diagonal since our predictability measures are
invariant under linear transformation of the state vari-
able. Normal-mode uncorrelated stochastic forcing for
diagonal dynamics corresponds to FFT being diago-
nal. In this case, the predictive information matrix Gτ

is diagonal and given by

Gτ =
[

1 − e2λ1τ 0
0 1 − e2λ2τ

]
, (24)

and can be used to compute the minimum predictabil-
ity of the system. When the eigenvalues of the dynam-
ics are identical,λ ≡ λ1 = λ2 andφ = 0, the dynamics
is essentially scalar and

Cτ = 1 − e2λτ

2λ
FFT , (25)

for general stochastic forcing. In this case, the climato-
logical covariance C∞ = FFT /(2λ) is invertible when
FFT is, and the predictive information matrix is in-
dependent of the forcing and given by eq. (24) with
λ1 = λ2. Therefore no forcing structure increases pre-
dictability when the eigenvalues of the dynamics are
identical, a result that is true in general.

Suppose that the forcing matrix is rank-1 so that the
stochastic forcing covariance can be written FFT =
ffT , where f is a vector with nonzero elements. A gen-
eral result that follows directly from eq. (6) is that

Cτ = ffT ◦ Eτ = Diag(f) Eτ Diag(f), (26)

when the forcing matrix F is rank-1 and the dynamics
are diagonal; the notation Diag(f) denotes the diago-
nal matrix whose diagonal entries are the elements of
the vector f. In general, the invertibility of the clima-
tological covariance C∞ is not guaranteed for rank-1
forcing. The climatological covariance C∞ is invert-
ible for 2 × 2 diagonal dynamics when the entries of
f are nonzero and the eigenvalues of the dynamics are
distinct. For rank-1 forcing, the eigenvalues of Gτ are
given by λk(Gτ ) = λk(EτE−1

∞ ) and remarkably, are in-
dependent of the forcing f. A direct calculation gives
that the predictability measure (20) of the system with
rank-1 forcing is

1 − 1

2
tr Gτ = 1

2
(e2λ1τ + e2λ2τ )

+ 2λ1λ2

[
(eλ1τ − eλ2τ )2+ 2e(λ1+λ2)τ (1 − cos 2φ)

]
4φ2 + (λ1 − λ2)2

.

(27)

The result in eq. (27) is valid when the eigenvalues of
the dynamics are distinct. The first term on the right-
hand side of eq. (27) is the minimum predictability
of the system, and the second term is strictly posi-
tive. Therefore, rank-1 forcing gives predictability that
is strictly larger than normal-mode uncorrelated forc-
ing. Figure 1 compares the quantity 1 − tr Gτ /2 for
normal-mode uncorrelated and for rank-1 forcing as
function of lead-time τ with λ1 = −1 and λ2 = −2.
In this example, rank-1 stochastic forcing is seen to en-
hance predictability on time-scales comparable to the
system e-folding time. Rank-1 forcing also increases
predictability as measured by the predictive informa-
tion Rτ and the relative entropy rτ . In fact, there is no
rank-2 forcing that gives more predictability. The opti-
mization problems of maximizing 1 − tr Gτ /2, Rτ and
rτ can be solved in closed form for the 2 × 2 system
and show that rank-1 forcing maximizes predictability.
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Fig. 1. The predictability measure 1 − tr Gτ /2 for normal-
mode uncorrelated forcing (gray line) and rank-1 forcing
(black line) with λ1 = −1 and λ2 = −2.

Whether rank-1, or perhaps approximately rank-1,
forcing gives maximum predictability in general re-
mains an open question. However, limited numerical
experiments do not contradict this conjecture.

5. Discussion

In this work we have considered prediction error
growth and predictability in linear stochastic systems
with perfect initial conditions and state-independent
stochastic forcing. We have focused our study on the
impact of stochastic forcing spatial-structure on pre-
diction error growth and predictability. Two classes
of forcing were considered: forcing that is uncorre-
lated in normal-mode space and forcing with arbitrary
spatial-structure. The analysis of systems with normal-
mode uncorrelated stochastic forcing is simple and
complete, since normal modes in such systems are un-
correlated and evolve independently. For the special
case of normal-mode uncorrelated forcing, prediction
error depends on the forcing amplitudes. In general,
prediction error growth depends on details of both the
spatial structure and amplitude of the forcing. Appro-
priately chosen stochastic forcing structures can pro-
duce prediction error growth more efficiently or less
efficiently than normal-mode uncorrelated stochastic
forcing (Ioannou, 1995). The norm-dependence of pre-
diction error growth further complicates its analysis.

Predictability can be defined in a norm-invariant
manner using eigenvalues of the predictive informa-
tion matrix (Schneider and Griffies, 1999). We con-
sider a family of predictability measures that includes
predictive information and relative entropy (Schneider
and Griffies, 1999; Kleeman, 2002). Remarkably, the
predictability of a system with normal-mode uncorre-

lated stochastic forcing is independent of the forcing
amplitudes and is expressed simply in terms of the
eigenvalues of the dynamics, and the first predictable
pattern is the least damped eigenmode of the dynam-
ics. Predictability is more difficult to analyze in sys-
tems where the stochastic forcing has general spatial
structure. However, in contrast to the results of predic-
tion error growth analysis where general stochastic
forcing can excite error growth more or less effi-
ciently then normal-mode uncorrelated forcing, gen-
eral stochastic forcing always increases predictabil-
ity; normal-mode uncorrelated forcing gives minimum
predictability. Therefore normal-mode analysis gives
lower bounds for the predictability of systems with
general stochastic forcing, and these bounds are sim-
ple functions of the eigenvalues of the dynamics.

These results can also be interpreted in the frame-
work where eigenvectors of the dynamics are allowed
to vary and the stochastic forcing is fixed as unitary.
Prediction error growth has been studied extensively
in this framework (Farrell and Ioannou, 1996). Uni-
tary stochastic forcing is uncorrelated in normal-mode
space when the dynamics is normal. Therefore, for uni-
tary stochastic forcing and fixed eigenvalues, a system
with non-normal dynamics is more predictable than a
system with normal dynamics.

Our results are in the form of lower bounds for pre-
dictability. Since the lower bound for predictability
depends only the real part of the eigenvalues of the
dynamics, predictability does not depend on the os-
cillatory behavior of the system when the stochastic
forcing is uncorrelated in normal-mode space. A topic
for future research is the formulation of upper bounds
for predictability. We expect such upper bounds to
depend only on the eigenvalues of the dynamics, as
in the simple example. Another issue is the charac-
terization of forcing structures that give maximum
predictability.
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7. Appendix

The necessary and sufficient condition relating the
eigenvalues λk(W) and singular values σk(W) of an
invertable matrix W is the inequality

j∑
k=1

log σk(W) ≥
j∑

k=1

log |λk(W)|, (A1)

for j = 1, 2, . . . , n with equality for j = n (Marshall
and Olkin, 1979). The sequence {log σk(W)} is said
to majorize the sequence {log |λk(W)|}. The follow-
ing classical result of Weyl identifies functions that
preserve majorization.

Theorem 1 [Weyl (1949); Chapter 5, A.2.a of
Marshall and Olkin (1979)]. Suppose W is an invert-
ible n × n matrix with eigenvaluesλk(W) and singular
values σk(W). If h(ex ) is an increasing convex func-
tion, then

j∑
k=1

h[σk(W)] ≥
j∑

k=1

h[|λk(W)|], (A2)

for j = 1, 2, . . . , n.

The following lemmas are consequences of Theo-
rem 1 with specific choices of the function h. Lemma 1

follows from taking h(x) = xs and from h(ex ) = esx

being an increasing convex function for s > 0.

Lemma 1. Suppose W is an n × n matrix with with
eigenvalues λk(W) and singular values σk(W). For
s > 0,

j∑
k=1

σ s
k (W) ≥

j∑
k=1

|λk(W)|s , j = 1, 2, . . . , n. (A3)

The function h(ex ) is a convex increasing function
for −∞ ≤ x ≤ 0 when h is an increasing convex func-
tion on the interval (0, 1). The following lemma is a
consequence of − log(1 − x2) and −[log(1 − x2) +
x2] being convex increasing functions on the interval
(0, 1).

Lemma 2. Under the assumptions of Theorem 1, and
σ1(W) < 1

−
j∑

k=1

log
[
1 − |σk(W)|2] ≥ −

k∑
k=1

log
[
1 − λ2

k(W)
]
,

(A4)

and

−
j∑

k=1

log
[
1 − |λk(W)|2] + |λk(W)|2

≥ −
j∑

k=1

log
[
1 − σ 2

k (W)
] + |σk(W)|2, (A5)

for j = 1, 2, . . . , n.
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