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Abstract

Predictability is a measure of prediction error relative to observed variability and so de-

pends on both the physical and prediction systems. Here predictability is investigated for cli-

mate phenomena described by linear stochastic dynamics and prediction systems with perfect

initial conditions and perfect linear prediction dynamics. Predictability is quantified using the

predictive information matrixconstructed from the prediction error and climatological covari-

ances. Predictability measures defined using the eigenvalues of the predictive information ma-

trix are invariant under linear state-variable transformations and for univariate systems reduce

to functions of the ratio of prediction error and climatological variances. The predictability of

linear stochastic dynamics is shown to be minimized for stochastic forcing that is uncorrelated

in normal-mode space. This minimum predictability depends only on the eigenvalues of the

dynamics and is a lower bound for the predictability of the system with arbitrary stochastic

forcing. Issues related to upper bounds for predictability are explored in a simple theoretical

example.
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1. Introduction

The original work of Hasselmann (1976) on stochastic climate theory pioneered the use of linear

stochastic dynamics for modeling and predicting various modes of climate variability. Since then,

evidence has been presented that many climate phenomena are described, at least approximately,

by linear stochastic dynamics (Penland and Matrosova, 1994; Whitaker and Sardeshmukh, 1998).

Consequently linear stochastic models are routinely used for operational climate forecasts (Pen-

land and Matrosova, 1998; Winkler et al., 2001). A general understanding of the predictability of

phenomena described by linear stochastic dynamics is of theoretical interest and practical value.

A system is predictable on those time-scales where prediction errors do not exceed some pre-

determined fraction of climate variability (Lorenz, 1969). The ratio of prediction error variance to

observed climatological variance is a measure of predictability in univariate systems with Gaussian

distributions. This notion of predictability based on relative error can be extended to multivariate

systems using thepredictive information matrixconstructed from the prediction error and clima-

tological covariances (Schneider and Griffies, 1999). Eigenvalues of the predictive information

matrix are invariant under linear transformations of the state-variable and can be used to define

predictability measures that are independent of the choice of inner product or vector-norm, unlike

the commonly used predictive error variance (Schneider and Griffies, 1999; Kleeman, 2002).

Prediction error statistics are a function of both the physical and prediction systems. Here we

consider physical systems described by linear stochastic dynamics and prediction systems with lin-

ear deterministic dynamics. In this setting, prediction error is due to inaccurate initial conditions,

misspecification of the dynamics, and the stochastic forcing present in the description of the ob-

served system (Penland and Matrosova, 2001). In this study, we limit our investigation to systems

where the only source of prediction error is the stochastic forcing. Prediction error in similar sys-

tems has been studied by many authors. Some of the issues considered have included analysis of
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the prediction error response to homogeneous, spatially uncorrelated stochastic forcing and char-

acterization of the stochastic forcing structures that maximize prediction error growth (stochastic

optimals) (Ioannou, 1995; Farrell and Ioannou, 1996; Kleeman and Moore, 1997). The focus of

previous studies has been prediction error variance or in some cases the ratio of prediction error

and climatological variances (Penland, 1989; Chang et al., 2002). However, a limitation of such

results is that measures of prediction error such as variance are not invariant with respect to linear

transformations of the state-variable; equivalently, they depend on the choice of vector-norm or

inner product. Classification of dynamics as normal or nonnormal depending on the orthogonality

of its eigenvectors, an important theme in such studies, is also not invariant with respect to linear

transformations of the state-variable.

Here we examine predictability of linear stochastic dynamics using norm-independent pre-

dictability measures based on the predictive information matrix. We find that minimum predictabil-

ity is achieved for stochastic forcing that is uncorrelated in normal-mode space. The minimum

predictability is expressed simply in terms of the eigenvalues of the dynamics and is a lower bound

for predictability in systems where the stochastic forcing has arbitrary spatial structure.

We begin our discussion in Section 2 with an introduction to a linear stochastic system and

its associated prediction error; in Section 3 we analyze the predictability of the linear stochastic

system under a set of general predictability measures; in Section 4 we use a theoretical example

to explore open issues related to upper bounds for predictability; in Section 5 we summarize our

findings and discuss their implications.

2. Linear stochastic dynamics

We assume the observed phenomenon of interest is represented by a realn-dimensional state-

vectorwobs whose evolution is governed by linear stochastic dynamics. That is to say, we assume
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the observed statewobs satisfies

dwobs

dt
= Awobs+ Fξ , wobs(t = 0) = wobs

0 , (1)

where the dynamics matrixA and the forcing matrixF are constant, realn × n matrices;ξ is

n-dimensional, spatially uncorrelated Gaussian white-noise,〈ξ(t1)ξ(t2)T 〉 = δ(t1 − t2)I where the

notation〈·〉 denotes ensemble average and()T denotes matrix transpose. Properties of (1) have

by studied in a geophysical context by Penland (1989), DelSole and Farrell (1995), Penland and

Sardeshmukh (1995) and others.

A general deterministic prediction system has the form

dwpred

dt
= Apredwpred, wpred(t = 0) = wpred

0 . (2)

Differences between the observed statewobs and the predicted statewpred are due to (i) differ-

ences between the observed initial conditionwobs
0 and the prediction initial conditionwpred

0 , (ii )

deficiencies in the prediction dynamicsApred and, (iii ) the presence of stochastic processes in the

observations (Penland and Matrosova, 2001). This dependence is explicit in the equation for the

evolution of the prediction errorw ≡ wobs−wpred

dw

dt
= Apredw + (A− Apred)wobs+ Fξ , w(t = 0) = wobs

0 −wpred
0 . (3)

The prediction error dynamics forcing consists of two components. The first component(A −

Apred)wobs represents prediction error due to imperfect deterministic dynamics of the prediction

model and depends on the observed state; the second componentFξ represents the unpredictable

stochastic processes in the observations and is state-independent. We take the forcing to be state-

independent and assume that the prediction system has perfect dynamicsApred = A. Additionally

we assume perfect initial conditionswpred
0 = wobs

0 . Therefore, the source of the prediction error is

entirely due to the stochastic processes. Chang et al. (2002) refer to this situation as theperfect
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initial conditionscenario and give a more detailed discussion. In this scenario, the prediction error

w evolves according to

dw

dt
= Aw + Fξ , w(t = 0) = 0 . (4)

We take the dynamics matrixA to be stable, i.e., all its eigenvaluesλk(A) have negative real part.

We use the convention that the eigenvalues ofA are ordered least damped to most damped so that

0 > Re λ1(A) ≥ Re λ2(A) · · · ≥ Re λn(A).

The prediction error covariance at lead-timeτ is defined asCτ ≡ 〈w(τ)w(τ)T 〉 and is well-

described by its eigenvectors and eigenvalues. The stability of the dynamics means that predictions

are identically zero in the limit of large lead-timeτ , and consequently the infinite lead-time predic-

tion error covarianceC∞ is the climatological covariance. The eigenvectors or EOFs of the predic-

tion error covariance are orthogonal and order state-space according to the amount of variance they

explain;λk(Cτ ) is the variance explained by thek-th eigenvector ofCτ ; λ1(Cτ ) ≥ λ2(Cτ ) ≥ · · · ≥

λn(Cτ ) ≥ 0. Since orthogonality depends on the choice of norm, or equivalently on the choice

of state-variable, the eigenvalue decomposition of the prediction error covariance is not invariant

under linear transformations of the state-variable. If we define a new state-variableŵ = Lw where

L is a linear transformation, the transformed prediction error covarianceĈτ ≡ 〈ŵ(τ)ŵ(τ)T 〉, is

given byĈτ = LCτLT . The prediction error covariance matricesCτ andĈτ have the same eigen-

values only whenL is an orthogonal transformation, in which case the transformationL relates

eigenvectors ofCτ to eigenvectors of̂Cτ . Measures of prediction error growth that depend on the

eigenvalues ofCτ , such as the total variancetrCτ , are invariant only under orthogonal transforma-

tions of the state-variable.

For the prediction error dynamics in (4), the prediction error covariance is

Cτ =

∫ τ

0

etAFFT etAT

dt . (5)

Suppose the dynamics matrixA is diagonalizable with eigendecompositionA = ZΛZ−1; the

6



matrix Λ of eigenvalues is ann × n diagonal matrix whosek-th diagonal entry isλk(A); thek-th

column of then × n matrixZ is the eigenvectorzk and satisfiesAzk = λk(A)zk. Eigenmodes of

the dynamics are also called principal oscillation patterns (Hasselmann, 1988; Penland, 1989). The

matrix Y of adjoint eigenvectors ofA is defined byY ≡ (Z−1)
† where the notation()† denotes

conjugate transpose. We assume without loss of generality that the columnsyk of Y are unit

vectors withy†kyk = 1. Now the prediction error covarianceCτ can be expressed in the basis of

the eigenvectors of the dynamics asCτ = ZC̃τZ†. Using the relationY†Z = Z†Y = I, the matrix

C̃τ is determined by

C̃τ = Y†CτY =

∫ τ

0

eΛtY†FFTYeΛ†t dt

=
(
Y†FFTY

)
◦ Eτ ,

(6)

where the notation◦ denotes Hadamard product1, and the entries of the positive semidefinite matrix

Eτ are

[Eτ ]kl =

∫ τ

0

e(λk(A)+λl(A))t dt =
e(λk(A)+λl(A))τ − 1

λk(A) + λl(A)
. (7)

The matrixEτ depends only on the eigenvalues of the dynamics and the lead-timeτ . The projection

P of the forcing matrixF onto the adjoint eigenvectorsY is defined byP ≡ FTY. The represen-

tationCτ = Z
(
P†P ◦ Eτ

)
Z† has the value of showing explicitly the dependence of the prediction

error covariance on the eigendecomposition of the dynamics, as well as on the projectionP of the

forcing matrix onto the adjoint eigenvectors.

The analysis of the prediction error covariance is particularly clear when the stochastic forc-

ing is uncorrelated in normal-mode space. In this case, the forcing covariance can be written

FFT = ZDZ† where the matrixD = P†P is diagonal and gives the amplitudes of the forcing.

This characterization of the forcing is invariant with respect to linear transformations of the state-

variable. When the stochastic forcing is uncorrelated in normal-mode space, the adjoint eigenvec-

1The Hadamard product of two matricesX andY with entriesXkl andYkl, respectively, is the matrix whose entries
areXklYkl.
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tors of the dynamics diagonalize the prediction error covariance at all lead times, i.e., eigenmodes

are uncorrelated, andCτ = Z(D ◦Eτ )Z†; D ◦Eτ is a diagonal matrix whosek-th diagonal entry is

Dkk[Eτ ]kk. Although this representation separates temporal and spatial structures of the prediction

error covariance, it is not the eigenvalue decomposition since the matrix of eigenvectorsZ is only

orthogonal when the dynamics matrixA is normal. A lower bound for the total prediction error

variance in the case of normal-mode uncorrelated stochastic forcing is

trCτ =
n∑

k=1

e2Re λk(A)τ − 1

2 Re λk(A)
Dkkz

†
kzk

=
n∑

k=1

e2 Re λk(A)τ − 1

2 Re λk(A)
Dkk sec2 θk

≥
n∑

k=1

e2Re λk(A)τ − 1

2 Re λk(A)
Dkk = tr(Eτ ◦D) ,

(8)

whereθk is the angle between the eigenvectorzk and the adjoint eigenvectoryk.2 The prediction

error variance is controlled by the proximity of the eigenvalues of the dynamics in the complex

plane to the imaginary axis, the angle between eigenvectors and adjoint eigenvectors, and the size

of the stochastic forcing.

Although the expression in (8) for the prediction error variance applies only to normal-mode

uncorrelated stochastic forcing, it provides some useful insights. First, when the dynamics matrix

A is normal and the stochastic forcing is uncorrelated in normal-mode space, the eigenvalues of

the prediction error covariance are the elements of the diagonal matrixD ◦ Eτ , and the inequality

in (8) is an equality. Therefore (8) extends the result that nonnormality increases variance, proven

by Ioannou (1995) for unitary stochastic forcing, to normal-mode uncorrelated stochastic forcing.

Second, the expression in (8) illustrates how a linear change of state-variable affects prediction

error variance. A linear change of state-variable does not change the eigenvalues of the dynamics

or the forcing amplitudesDkk but being equivalent to a change of inner product can change the

2Recall thatsec θk = ‖zk‖‖yk‖/y†
kzk and‖yk‖ = y†

kzk = 1.
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angles between eigenvectors and adjoint eigenvectors and consequently change the prediction error

variance.

The example of normal-mode uncorrelated stochastic forcing highlights the need to normal-

ize or re-scale the prediction error; prediction error variance can be increased by simply increas-

ing the stochastic forcing amplitude. Scalar normalization have proved useful in other contexts,

such as the identification of forcing structures that most efficiently excite error growth (Farrell

and Ioannou, 1996; Kleeman and Moore, 1997; Tippett and Cohn, 2001). Here, for the special

case of normal-mode uncorrelated stochastic forcing, evolution of the prediction error of each

eigenmode is independent, and the univariate approach of measuring predictability by the ratio

of prediction error and climatological variances can be applied to each eigenmode. Normalizing

the prediction error variance of each eigenmode by its climatological variance removes both the

forcing-amplitude and nonnormal factors. The resulting predictability measure can also be used to

compare the predictability of different eigenmodes. This approach to measuring predictability is

extended to general stochastic forcing in the following section.

3. Predictability

A prediction is useful on time-scales where the prediction error is, in some sense, less than the

climatological variability. Therefore, the utility of a prediction at lead-timeτ depends on both the

prediction error covarianceCτ and the climatological error covarianceC∞. This notion of pre-

dictability is the basis for predictability measures defined using thepredictive information matrix

Gτ ≡ CτC−1
∞ (Schneider and Griffies, 1999).3 The eigenvalues of the predictive information matrix

measure the relative error variance of a set of state-space patterns chosen to optimize relative error

3Here, the climatological covariance matrix is invertible, i.e., there are no perfectly predictable components, if the
pair (A,F) is controllable; a sufficient condition for controllability is that forcing covarianceFFT be invertible. When
the climatological covariance matrix is computed from data assumed to be Gaussian distributed, high dimensional
state-space and short data records make it singular. Regularization methods, such as projecting the climatological
covariance matrix onto truncated set of EOFs, are required and can significantly limit the number of predictable
components that can robustly estimated (Schneider and Griffies, 1999; Schneider and Held, 2001).
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variance and so can provide a multivariate generalization of the univariate relative error variance

s2
τ/s

2
∞ and the associated univariate predictability measure,1 − s2

τ/s
2
∞; s2

τ is the prediction error

variance at lead-timeτ ands2
∞ is the climatological variance.

The eigenvalue decomposition of the predictive informationGτ decomposes phase-space into

uncorrelated patterns ordered by their relative prediction error variance (Schneider and Griffies,

1999). Whenλ is an eigenvalue ofGτ , its adjoint eigenvectorq satisfiesqTGτ = λqT . The

eigenvalues ofGτ are between zero and unity since

λ =
qTCτq

qTC∞q
, (9)

andqTC∞q ≥ qTCτq ≥ 0; qT (C∞ − Cτ )q ≥ 0 follows from (5). The eigenvalues ofGτ

behave like relative error, initially zero because of the perfect initial condition assumption, and

increasing with lead-time until they reach unity in the limit of large lead-time. For any direction

q in state-space, the projection of the state-variablew in the directionq is (qTw) and has rela-

tive error given by the quantity(qTCτq)/(qTC∞q). The directionqn that minimizes the relative

error in (9) is then-th adjoint eigenvector of the predictive information matrix and defines the

first predictable component(qT
nw) and its relative error varianceλn(Gτ ) (Schneider and Griffies,

1999). The eigenvectorpn corresponding to the adjoint eigenvectorqn is the firstpredictable pat-

tern (Schneider and Griffies, 1999). The second predictable component is determined by the next

smallest eigenvalue ofGτ and is temporally uncorrelated with the first predictable component.

The eigenvalues of the predictive information matrix are invariant with respect to linear trans-

formations of the state-variable. If a new state-variableŵ ≡ Lw and its prediction error covariance

Ĉτ are defined, the new predictive information matrixĜτ is related toGτ by a similarity transfor-

mation

Ĝτ = Ĉτ Ĉ
−1
∞ = LCτC

−1
∞ L−1 = LGτL

−1 , (10)

so thatGτ andĜτ have the same eigenvalues. Therefore, predictability measures defined by eigen-

10



values of the predictive information matrix are invariant with respect to linear transformations of

the state-variable and are norm-independent. The eigenvectors of the predictive information ma-

trix transform in the same manner as the state-variable; ifp is an eigenvector ofGτ thenLp is an

eigenvector of̂Gτ .

The predictable patterns and their relative error variances are simply related to the dynamics

when the stochastic forcing is uncorrelated in normal-mode space, i.e., when the forcing covariance

can be representedFFT = ZDZ† andD is diagonal. We require thatD be invertible to ensure that

the climatological covarianceC∞ is also invertible. In this case, the predictive information matrix

Gτ has the simple form

Gτ = Z(D ◦ Eτ )Z
† (Z†)−1

(D ◦ E∞)−1Z−1

= Z diag(Eτ ) diag(E∞)−1Z−1 ,

(11)

and is remarkably independent of the forcing coefficientD; diag(Eτ ) is the diagonal matrix whose

entries are the diagonal elements ofEτ . Since (11) is the eigendecomposition ofGτ , the eigenval-

ues ofGτ are

λk(Gτ ) = 1− e2 Re λn−k+1(A)τ , (12)

and depend only on the real part of the eigenvalues of the dynamics; the eigenvectors ofGτ are

the eigenvectors of the dynamics. Therefore, the leading eigenvectorz1 of the dynamics is the first

predictable pattern at all lead-times of a system with normal-mode uncorrelated stochastic forcing;

the relative error of the associated first predictable component is1− e2Re λ1(A)τ . The predictability

of the first predictable component decreases exponentially with decay-rate determined by the least

damped eigenmode of the dynamics.

For general stochastic forcing, it is useful to write the prediction error covarianceCτ as

Cτ =

∫ ∞

0

etAFFT etAT

dt−
∫ ∞

τ

etAFFT etAT

dt ,

= C∞ − eτAC∞eτAT

,

(13)
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so that

Gτ = I− eAτC∞eAT τC−1
∞ . (14)

The eigenvalues ofGτ are then

λk(Gτ ) = λk(I−WτW
T
τ )

= 1− σ2
n−k+1(Wτ ) ,

(15)

where we defineWτ ≡ eÂτ andÂ ≡ C−1/2
∞ AC1/2

∞ ; the notationσk(X) denotes thek-th singular

value of a matrixX ordered so thatσ1(X) ≥ σ2(X) ≥ . . . σn(X) ≥ 0. The matrixÂ is the

dynamics matrix of the whitened state-variableŵ ≡ C−1/2
∞ w. The climatological covariancêC∞

is the identity matrix in the whitened state-variable;Wτ is the state-propagator of the whitened

state-variable. The eigendecomposition ofGτ is determined by the singular value decomposition

of Wτ . Another way of arriving at (15) is to recall that the eigenvalues ofGτ are invariant under

linear transformations of the state-variable and note that in the whitened state-variable

Ĝτ = Ĉτ = I−WτW
T
τ . (16)

Predictability analysis is equivalent to principle component analysis of the whitened state-vector

ŵ (Schneider and Griffies, 1999). The appropriate choice of vector-norm or state-variable for

questions of predictability is one that makes the climatological covariance the identity matrix.

The whitened dynamicŝA is normal when the stochastic forcing is uncorrelated in normal-

mode space. In this case, the whitened-state propagatorWτ is also normal,σ2
k(Wτ ) = |λk(Wτ )|2 =

e2Re λk(A)τ , and the expression in (12) for the eigenvalues of the predictive information matrix is a

consequence. When the stochastic forcing is correlated in normal-mode space,Wτ is nonnormal

and its singular values are not determined by its eigenvalues. However, the eigenvalues and singu-

lar values of any matrix must satisfy certain inequalities. For instance, the largest singular value

must be larger than the modulus of the largest eigenvalue. That is to say,σ2
1(Wτ ) ≥ |λ1(Wτ )|2,
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which combined with (15) gives the upper bound

λn(Gτ ) ≤ 1− e2Re λ1(A)τ , (17)

for the smallest eigenvalue of the predictive information matrix. The left-hand side of (17) is the

relative error of the first predictable component of a system with general stochastic forcing, and the

right-hand side is the relative error of the first predictable component of a system with normal-mode

uncorrelated stochastic forcing. Therefore the inequality in (17) means that the relative error of the

first predictable component is maximized when the stochastic forcing is uncorrelated in normal-

mode space. In terms of predictability, (17) says that the predictability of the first predictable

component of a system is minimized when the stochastic forcing is uncorrelated in normal-mode

space.

A more physical interpretation of this result is that when the stochastic forcing is correlated

in normal-mode space, normal modes are correlated, and linear combinations of normal modes

can be constructed whose predictability is greater than that of any single normal mode. This

potential for constructive combination of normal modes is the same mechanism that allows systems

with nonnormal dynamics and unitary stochastic forcing to presentsmallerprediction error than

equivalent normal systems. Equation (7) of Ioannou (1995) shows that the smallest singular value

of Wτ = eÂτ is maximized whenWτ is normal. In the present context, this fact means that the

error of the first predictable component is maximized for stochastic forcing that is uncorrelated in

normal-mode space.

The same conclusion that normal-mode uncorrelated stochastic forcing minimizes predictabil-

ity is true for general predictability measures defined abstractly by

predictability≡
n∑

k=1

h(1− λk(Gτ )) , (18)

where the functionh has the property thath(ex) is a convex and increasing function ofx. Theorem
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1 of the Appendix and (15) give that

predictability=
n∑

k=1

h(σ2
k(Wτ )) ≥

n∑
k=1

h(|λk(Wτ )|2) =
n∑

k=1

h
(
e2Re λk(A)

)
. (19)

The right-hand side of (19) is the predictability of the system with normal-mode uncorrelated

stochastic forcing and depends only on the real part of the eigenvalues of the dynamics. General

predictability measures are minimized when the stochastic forcing is uncorrelated in normal-mode

space.

Predictability measures that can be written in the form of (18) are: the quantity

1− trGτ/n =
1

n

n∑
k=1

σ2
k (Wτ )

≥ 1

n

n∑
k=1

e2 Re λk(A) ,

(20)

thepredictive informationRτ , defined by (Schneider and Griffies, 1999)

Rτ ≡ −n

2
log detGτ = −n

2

n∑
k=1

log
(
1− σ2

k(Wτ )
)

≥ −n

2

n∑
k=1

log
(
1− e2 Re λk(A)

)
,

(21)

andrelative entropyrτ defined by (Kleeman, 2002)

rτ ≡
1

2
[− log (detGτ ) + tr (Gτ )− n]

= −1

2

n∑
k=1

log
(
1− σ2

k(Wτ )
)

+ |σk(Wτ )|2

≥ −1

2

n∑
k=1

log
(
1− e2 Re λk(A)

)
+ e2Re λk(A) .

(22)

Normal-mode uncorrelated stochastic forcing minimizes all these measures of predictability and

gives lower bounds for predictability that depend only on the eigenvalues of the dynamics (see

Lemmas 1 and 2 of the Appendix). These inequalities show that normal-mode analysis of the

predictability problem gives lower bounds for the system with general forcing structure. The in-

equalities in (20) – (22) are also valid when the sums are truncated, and predictability is measured

using the trailing eigenvalues of the predictive information matrix.
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These results have an interpretation in the framework where the forcing is fixed as unitary, i.e.,

whenFFT = I. In this case, the stochastic forcing is uncorrelated in normal-mode space when

Y†Y is diagonal. WhenY†Y is diagonal,Y†Y = I and the dynamics is normal since the columns

of Y are unit vectors. Therefore, for unitary stochastic forcing, predictability is minimized when

the dynamics is normal. Nonnormal dynamics is more predictable than normal dynamics with the

same eigenvalues for unitary stochastic forcing. Ioannou (1995) demonstrated in this setting that

nonnormality increases prediction error, and here we have shown that it increases predictability as

well.

4. Upper bounds for predictability

Our analysis shows that the predictability of a system described by linear stochastic dynamics is

minimized when the stochastic forcing is uncorrelated in normal-mode space. However, some

questions remain unanswered. For instance, what stochastic forcing produces maximum pre-

dictability, and when is this maximum predictability strictly larger than that given by normal-mode

uncorrelated forcing? Such questions are difficult to answer generally because predictability is

a nonlinear function of the stochastic forcing. We explore these issues in a simple 2-D linear

stochastic system. The relevance of this type of simple model to real climate systems is discussed

in Chang et al. (2002) where a 2-D stochastically driven damped inertial oscillator is used as a

prototype coupled system to elucidate the importance of nonnormal growth in enhancing the pre-

dictability of climate systems.

Consider the2× 2 dynamics matrix given by

A =

[
λ1 + iφ 0

0 λ2 − iφ

]
, (23)

whereλ1 andλ2 are negative real constants;φ is a real constant andi =
√
−1. We assume that

the two eigenvalues ofA are either both real or complex conjugates. There is no loss of generality
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Figure 1. The predictability measure1− trGτ/2 for normal-mode uncorrelated forcing (gray line)

and rank-1 forcing (black line) withλ1 = −1 andλ2 = −2.

in taking the dynamics to be diagonal since our predictability measures are invariant under linear

transformation of the state variable. Normal-mode uncorrelated stochastic forcing for diagonal

dynamics corresponds toFFT being diagonal. In this case, the predictive information matrixGτ is

diagonal and given by

Gτ =

[
1− e2λ1τ 0

0 1− e2λ2τ

]
, (24)

and can be used to compute the minimum predictability of the system. When the eigenvalues of

the dynamics are identical,λ ≡ λ1 = λ2 andφ = 0, the dynamics is essentially scalar and

Cτ =
1− e2λτ

2λ
FFT , (25)

for general stochastic forcing. In this case, the climatological covarianceC∞ = FFT /(2λ) is

invertible whenFFT is, and the predictive information matrix is independent of the forcing and

given by (24) withλ1 = λ2. Therefore no forcing structure increases predictability when the

eigenvalues of the dynamics are identical, a result that is true in general.

Suppose that the forcing matrix is rank-1 so that the stochastic forcing covariance can be written

FFT = ffT wheref is a vector with nonzero elements. A general result that follows directly from
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(6) is that

Cτ = ffT ◦ Eτ = Diag(f) Eτ Diag(f) , (26)

when the forcing matrixF is rank-1 and the dynamics are diagonal; the notationDiag(f) denotes

the diagonal matrix whose diagonal entries are the elements of the vectorf . In general, the invert-

ibility of the climatological covarianceC∞ is not guaranteed for rank-1 forcing. The climatological

covarianceC∞ is invertible for2× 2 diagonal dynamics when the entries off are nonzero and the

eigenvalues of the dynamics are distinct. For rank-1 forcing, the eigenvalues ofGτ are given by

λk(Gτ ) = λk(EτE−1
∞ ) and remarkably, are independent of the forcingf . A direct calculation gives

that the predictability measure (20) of the system with rank-1 forcing is

1− 1

2
trGτ =

1

2

(
e2 λ1 t + e2 λ2 t

)
+

2λ1λ2

((
eλ1τ − eλ2τ

)2
+ 2e(λ1+λ2)τ (1− cos 2φ)

)
4φ2 + (λ1 − λ2)2

. (27)

The result in (27) is valid when the eigenvalues of the dynamics are distinct. The first term on the

right-hand side of (27) is the minimum predictability of the system, and the second term is strictly

positive. Therefore, rank-1 forcing gives predictability that isstrictly larger than normal-mode

uncorrelated forcing. Figure 1 compares the quantity1 − trGτ/2 for normal-mode uncorrelated

and for rank-1 forcing as function of lead-timeτ with λ1 = −1 andλ2 = −2. In this example,

rank-1 stochastic forcing is seen to enhance predictability on time-scales comparable to the system

e-folding time. Rank-1 forcing also increases predictability as measured by the predictive informa-

tion Rτ and the relative entropyrτ . In fact, there is no rank-2 forcing that gives more predictability.

The optimization problems of maximizing1 − trGτ/2, Rτ andrτ can be solved in closed form

for the2 × 2 system and show that rank-1 forcing maximizes predictability. Whether rank-1, or

perhaps approximately rank-1, forcing gives maximum predictability in general remains an open

question. However, limited numerical experiments do not contradict this conjecture.
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5. Discussion

In this work we have considered prediction error growth and predictability in linear stochastic

systems with perfect initial conditions and state-independent stochastic forcing. We have focused

our study on the impact of stochastic forcing spatial-structure on prediction error growth and pre-

dictability. Two classes of forcing were considered: forcing that is uncorrelated in normal-mode

space and forcing with arbitrary spatial-structure. The analysis of systems with normal-mode

uncorrelated stochastic forcing is simple and complete since normal modes in such systems are

uncorrelated and evolve independently. Prediction error growth depends on details of the forcing,

even for the special case of normal-mode uncorrelated forcing where prediction error depends on

the forcing amplitudes. Appropriately chosen stochastic forcing with general spatial structures

can produce prediction error growth more efficiently or less efficiently than normal-mode uncorre-

lated stochastic forcing (Ioannou, 1995). The norm-dependence of prediction error growth further

complicates its analysis.

Predictability can be defined in a norm-invariant manner using eigenvalues of thepredictive in-

formation matrix(Schneider and Griffies, 1999). We consider a family of predictability measures

that includespredictive informationandrelative entropy(Schneider and Griffies, 1999; Kleeman,

2002). Remarkably, the predictability of a system with normal-mode uncorrelated stochastic forc-

ing is independent of the forcing amplitudes and is expressed simply in terms of the eigenvalues

of the dynamics. Moreover, the predictable patterns are simply the eigenmodes of the dynamics.

Predictability is more difficult to analyze in systems where the stochastic forcing has general spa-

tial structure. However, in contrast to the results of prediction error growth analysis where general

stochastic forcing can excite error growth more or less efficiently then normal-mode uncorrelated

forcing, general stochastic forcing always increases predictability; normal-mode uncorrelated forc-

ing gives minimum predictability. Therefore normal-mode analysis gives lower bounds for the
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predictability of systems with general stochastic forcing, and these bounds are simple functions of

the eigenvalues of the dynamics.

These results can also be interpreted in the framework where eigenvectors of the dynamics are

allowed to vary and the stochastic forcing is fixed as unitary. Prediction error growth has been

studied extensively in this framework (Farrell and Ioannou, 1996). Unitary stochastic forcing is

uncorrelated in normal-mode space when the dynamics is normal. Therefore, for unitary stochas-

tic forcing and fixed eigenvalues, a system with nonnormal dynamics is more predictable than a

system with normal dynamics.

Our results are in the form of lower bounds for predictability. Since the lower bound for pre-

dictability depends only the real part of the eigenvalues of the dynamics, predictability does not

depend on the oscillatory behavior of the system when the stochastic forcing is uncorrelated in

normal-mode space. A topic for future research is the formulation ofupperbounds for predictabil-

ity. We expect such upper bounds to depend only on the eigenvalues of the dynamics, as in the

simple example. Another issue is the characterization of forcing structures that give maximum

predictability as in Chang et al. (2002) where the forcing producing maximum predictability for

norm-dependent error variance predictability measures was found.
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Appendix A

The necessary and sufficient condition relating the eigenvaluesλk(W) and singular valuesσk(W)

of an invertable matrixW is the inequality

j∑
k=1

log σk(W) ≥
j∑

k=1

log |λk(W)| , (A.1)

for j = 1, 2, . . . , n with equality forj = n (Marshall and Olkin, 1979). The sequence{log σk(W)}

is said tomajorizethe sequence{log |λk(W)|}. The following classical result of Weyl identifies

functions that preserve majorization.

Theorem 1 (Weyl (1949); Chapter 5, A.2.a of Marshall and Olkin (1979)). SupposeW is an in-

vertiblen×n matrix with eigenvaluesλk(W) and singular valuesσk(W). If h(ex) is an increasing

convex function then,
j∑

k=1

h(σk(W)) ≥
j∑

k=1

h(|λk(W)|) , (A.2)

for j = 1, 2, . . . , n.

The following lemmas are consequences of Theorem 1 with specific choices of the function

h. Lemma 1 follows from takingh(x) = xs and fromh(ex) = esx being an increasing convex

function fors > 0.

Lemma 1. SupposeW is ann×n matrix with with eigenvaluesλk(W) and singular valuesσk(W).

For s > 0,
j∑

k=1

σs
k(W) ≥

j∑
k=1

|λk(W)|s , j = 1, 2, . . . , n . (A.3)

The functionh(ex) is a convex increasing function for−∞ ≤ x ≤ 0 whenh is an increasing

convex function on the interval(0, 1). The following lemma is a consequence of− log(1−x2) and

−(log(1− x2) + x2) being convex increasing functions on the interval(0, 1).
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Lemma 2. Under the assumptions of Theorem 1, andσ1(W) < 1

−
j∑

k=1

log
(
1− |σk(W)|2

)
≥ −

k∑
k=1

log
(
1− λ2

k(W)
)

, (A.4)

and

−
j∑

k=1

log
(
1− |λk(W)|2

)
+ |λk(W)|2 ≥ −

j∑
k=1

log
(
1− σ2

k(W)
)

+ |σk(W)|2 , (A.5)

for j = 1, 2, . . . , n.
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Application to the El Nĩno-Southern Oscillation.J. Climate, 7, 1352–1372.

Penland, C. and Matrosova, L. 1998. Prediction of Tropical Atlantic Sea Surface Temperatures

Using Linear Inverse Modeling.J. Climate, 11, 483–496.

Penland, C. and Matrosova, L. 2001. Expected and actual errors of linear inverse model forecasts.

Mon. Wea. Rev., 129, 1740–1745.

Penland, C. and Sardeshmukh, P. D. 1995. The optimal-growth of tropical sea-surface temperature

anomalies.J. Climate, 8, 1999–2024.

Schneider, T. and Griffies, S. 1999. A Conceptual Framework for Predictability Studies.J. Climate,

12, 3133–3155.

Schneider, T. and Held, I. M. 2001. Discriminants of twentieth-century changes in earth surface

temperatures.J. Climate, 14, 249–254.

Tippett, M. K. and Cohn, S. E. 2001. Adjoints and low-rank covariance representation.Nonlinear

Processes in Geophysics, 8, 331–340.

22



Weyl, H. 1949. Inequalities between two kinds of eigenvalues of a linear transformation.Proc.

Nat. Acad. Sci U.S.A., 35, 408–411.

Whitaker, J. S. and Sardeshmukh, P. D. 1998. A Linear Theory of Extratropical Synoptic Eddy

Statistics.J. Atmos. Sci., 55, 237–258.

Winkler, C. R., Newman, M., and Sardeshmukh, P. D. 2001. A Linear Model of Wintertime

Low-Frequency Variability. Part I: Formulation and Forecast Skill.J. Climate, 14, 4474–4494.

23


