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Abstract

Predictability is a measure of prediction error relative to observed variability and so de-
pends on both the physical and prediction systems. Here predictability is investigated for cli-
mate phenomena described by linear stochastic dynamics and prediction systems with perfect
initial conditions and perfect linear prediction dynamics. Predictability is quantified using the
predictive information matrixonstructed from the prediction error and climatological covari-
ances. Predictability measures defined using the eigenvalues of the predictive information ma-
trix are invariant under linear state-variable transformations and for univariate systems reduce
to functions of the ratio of prediction error and climatological variances. The predictability of
linear stochastic dynamics is shown to be minimized for stochastic forcing that is uncorrelated
in normal-mode space. This minimum predictability depends only on the eigenvalues of the
dynamics and is a lower bound for the predictability of the system with arbitrary stochastic
forcing. Issues related to upper bounds for predictability are explored in a simple theoretical

example.



1. Introduction

The original work of Hasselmann (1976) on stochastic climate theory pioneered the use of linear
stochastic dynamics for modeling and predicting various modes of climate variability. Since then,
evidence has been presented that many climate phenomena are described, at least approximately,
by linear stochastic dynamics (Penland and Matrosova, 1994; Whitaker and Sardeshmukh, 1998).
Consequently linear stochastic models are routinely used for operational climate forecasts (Pen-
land and Matrosova, 1998; Winkler et al., 2001). A general understanding of the predictability of
phenomena described by linear stochastic dynamics is of theoretical interest and practical value.
A system is predictable on those time-scales where prediction errors do not exceed some pre-
determined fraction of climate variability (Lorenz, 1969). The ratio of prediction error variance to
observed climatological variance is a measure of predictability in univariate systems with Gaussian
distributions. This notion of predictability based on relative error can be extended to multivariate
systems using thpredictive information matrixonstructed from the prediction error and clima-
tological covariances (Schneider and Griffies, 1999). Eigenvalues of the predictive information
matrix are invariant under linear transformations of the state-variable and can be used to define
predictability measures that are independent of the choice of inner product or vector-norm, unlike
the commonly used predictive error variance (Schneider and Griffies, 1999; Kleeman, 2002).
Prediction error statistics are a function of both the physical and prediction systems. Here we
consider physical systems described by linear stochastic dynamics and prediction systems with lin-
ear deterministic dynamics. In this setting, prediction error is due to inaccurate initial conditions,
misspecification of the dynamics, and the stochastic forcing present in the description of the ob-
served system (Penland and Matrosova, 2001). In this study, we limit our investigation to systems
where the only source of prediction error is the stochastic forcing. Prediction error in similar sys-

tems has been studied by many authors. Some of the issues considered have included analysis of



the prediction error response to homogeneous, spatially uncorrelated stochastic forcing and char-
acterization of the stochastic forcing structures that maximize prediction error growth (stochastic
optimals) (loannou, 1995; Farrell and loannou, 1996; Kleeman and Moore, 1997). The focus of
previous studies has been prediction error variance or in some cases the ratio of prediction error
and climatological variances (Penland, 1989; Chang et al., 2002). However, a limitation of such
results is that measures of prediction error such as variance are not invariant with respect to linear
transformations of the state-variable; equivalently, they depend on the choice of vector-norm or
inner product. Classification of dynamics as normal or nonnormal depending on the orthogonality
of its eigenvectors, an important theme in such studies, is also not invariant with respect to linear
transformations of the state-variable.

Here we examine predictability of linear stochastic dynamics using norm-independent pre-
dictability measures based on the predictive information matrix. We find that minimum predictabil-
ity is achieved for stochastic forcing that is uncorrelated in normal-mode space. The minimum
predictability is expressed simply in terms of the eigenvalues of the dynamics and is a lower bound
for predictability in systems where the stochastic forcing has arbitrary spatial structure.

We begin our discussion in Section 2 with an introduction to a linear stochastic system and
its associated prediction error; in Section 3 we analyze the predictability of the linear stochastic
system under a set of general predictability measures; in Section 4 we use a theoretical example
to explore open issues related to upper bounds for predictability; in Section 5 we summarize our

findings and discuss their implications.

2. Linear stochastic dynamics

We assume the observed phenomenon of interest is represented bynadieednsional state-

vectorw®’s whose evolution is governed by linear stochastic dynamics. That is to say, we assume



the observed state°Ps satisfies

dwobs

dt

= AW FE, wO(t = 0) = wp™, (1)

where the dynamics matriR and the forcing matriF are constant, real x n matrices;¢ is
n-dimensional, spatially uncorrelated Gaussian white-ndige, )¢ (t2)7) = d(t; — t2)1 where the
notation(-) denotes ensemble average did denotes matrix transpose. Properties of (1) have

by studied in a geophysical context by Penland (1989), DelSole and Farrell (1995), Penland and
Sardeshmukh (1995) and others.

A general deterministic prediction system has the form

dwpred
dt

— Apredwpred7 Wpred(t _ O) _ vVgred. (2)

Differences between the observed stat®® and the predicted state”™? are due toij differ-

ences between the observed initial conditiogP® and the prediction initial condition®™, (ii)
deficiencies in the prediction dynamidg™dand, (ii) the presence of stochastic processes in the
observations (Penland and Matrosova, 2001). This dependence is explicit in the equation for the

evolution of the prediction error = wobs — wPred

d
d_vtv — APredy, 4 (A _ Apred)wobs+ Fe¢, W(t _ 0) _ ngs_ Wgred‘ (3)

The prediction error dynamics forcing consists of two components. The first comp@hent

AP wobs represents prediction error due to imperfect deterministic dynamics of the prediction
model and depends on the observed state; the second comgnepresents the unpredictable
stochastic processes in the observations and is state-independent. We take the forcing to be state-
independent and assume that the prediction system has perfect dyd&itfles A. Additionally

we assume perfect initial conditions™ = w2". Therefore, the source of the prediction error is

entirely due to the stochastic processes. Chang et al. (2002) refer to this situatiorpegeioe



initial condition scenario and give a more detailed discussion. In this scenario, the prediction error
w evolves according to
dw

—- =Aw+FS, w(t=0)=0. (4)

We take the dynamics matri to be stable, i.e., all its eigenvalugg(A) have negative real part.
We use the convention that the eigenvalueA @fre ordered least damped to most damped so that
0> ReA;(A) > ReAy(A)--- > Re ), (A).

The prediction error covariance at lead-timés defined a€C, = (w(r)w(7)?) and is well-
described by its eigenvectors and eigenvalues. The stability of the dynamics means that predictions
are identically zero in the limit of large lead-timeand consequently the infinite lead-time predic-
tion error covarianc€, is the climatological covariance. The eigenvectors or EOFs of the predic-
tion error covariance are orthogonal and order state-space according to the amount of variance they
explain;\;(C,) is the variance explained by tteth eigenvector o€; A;(C,) > A (C,) > -+ >
A.(C;) > 0. Since orthogonality depends on the choice of norm, or equivalently on the choice
of state-variable, the eigenvalue decomposition of the prediction error covariance is not invariant
under linear transformations of the state-variable. If we define a new state-vaviablew where
L is a linear transformation, the transformed prediction error covari@ce (w(r)w(7)7), is
given byC, = LC,L”. The prediction error covariance matrid8sandC. have the same eigen-
values only wherlL is an orthogonal transformation, in which case the transformdticglates
eigenvectors o€, to eigenvectors of,. Measures of prediction error growth that depend on the
eigenvalues o€, such as the total varianceC.., are invariant only under orthogonal transforma-
tions of the state-variable.

For the prediction error dynamics in (4), the prediction error covariance is
C, = / AFFTAT gt (5)
0

Suppose the dynamics matri is diagonalizable with eigendecompositidn = ZAZ~!; the
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matrix A of eigenvalues is an x n diagonal matrix whosé-th diagonal entry is\;(A); the k-th

column of then x n matrix Z is the eigenvectoz,, and satisfied\z, = \;(A)z;. Eigenmodes of

the dynamics are also called principal oscillation patterns (Hasselmann, 1988; Penland, 1989). The
matrix Y of adjoint eigenvectors oA is defined byY = (Z*l)Jr where the notation)’ denotes
conjugate transpose. We assume without loss of generality that the cojynofsY are unit
vectors Withy};}’k = 1. Now the prediction error covarian€. can be expressed in the basis of

the eigenvectors of the dynamics@s= ZC,Z!. Using the relatio¥'Z = Z''Y = I, the matrix

C, is determined by

C,=YiC,Y = / AYTFFTY A gt
0 (6)
= (Y'FF'Y) o E,,

where the notation denotes Hadamard prodticand the entries of the positive semidefinite matrix

E. are
e(/\k(A)-FXz(A))T -1

(A N (A) ")

[a@:/EWWHﬂwﬁ:
0

The matrixE, depends only on the eigenvalues of the dynamics and the lead-tifiee projection

P of the forcing matrixF onto the adjoint eigenvectod is defined byP = F7Y. The represen-
tationC, = Z (PP o E,) ZT has the value of showing explicitly the dependence of the prediction
error covariance on the eigendecomposition of the dynamics, as well as on the prdeofitre
forcing matrix onto the adjoint eigenvectors.

The analysis of the prediction error covariance is particularly clear when the stochastic forc-
ing is uncorrelated in normal-mode space. In this case, the forcing covariance can be written
FFT = ZDZ' where the matriX® = PP is diagonal and gives the amplitudes of the forcing.
This characterization of the forcing is invariant with respect to linear transformations of the state-

variable. When the stochastic forcing is uncorrelated in normal-mode space, the adjoint eigenvec-

1The Hadamard product of two matricésandY with entriesX;,; andY;, respectively, is the matrix whose entries
areXp; Y.



tors of the dynamics diagonalize the prediction error covariance at all lead times, i.e., eigenmodes
are uncorrelated, afd, = Z(D o E,)Z'; D o E. is a diagonal matrix whoske-th diagonal entry is
D...[E.]xx. Although this representation separates temporal and spatial structures of the prediction
error covariance, it is not the eigenvalue decomposition since the matrix of eigenv&csarsly
orthogonal when the dynamics mat#is normal. A lower bound for the total prediction error

variance in the case of normal-mode uncorrelated stochastic forcing is

n 2Re A\ (A)T _ 1

e
trC, =y ——— Dzl
rCr o TORe N (A) R
n eQRe)\k(A)T -1
=N T Dysec?d
> The A(A) O ReSCC Tk (8)

k=1
n 62Re)\k(A)T -1

Z F—
1 2Re /\k(A)

Dkk = tI‘(ET @) D) y

whered),, is the angle between the eigenvectprand the adjoint eigenvectgr,.? The prediction

error variance is controlled by the proximity of the eigenvalues of the dynamics in the complex
plane to the imaginary axis, the angle between eigenvectors and adjoint eigenvectors, and the size
of the stochastic forcing.

Although the expression in (8) for the prediction error variance applies only to normal-mode
uncorrelated stochastic forcing, it provides some useful insights. First, when the dynamics matrix
A is normal and the stochastic forcing is uncorrelated in normal-mode space, the eigenvalues of
the prediction error covariance are the elements of the diagonal niatrik ., and the inequality
in (8) is an equality. Therefore (8) extends the result that nonnormality increases variance, proven
by loannou (1995) for unitary stochastic forcing, to normal-mode uncorrelated stochastic forcing.
Second, the expression in (8) illustrates how a linear change of state-variable affects prediction
error variance. A linear change of state-variable does not change the eigenvalues of the dynamics

or the forcing amplitude®,;, but being equivalent to a change of inner product can change the

2Recall thatec 0, = ||z |||y« /yizr and|ys| = yiz) = 1.



angles between eigenvectors and adjoint eigenvectors and consequently change the prediction error
variance.

The example of normal-mode uncorrelated stochastic forcing highlights the need to normal-
ize or re-scale the prediction error; prediction error variance can be increased by simply increas-
ing the stochastic forcing amplitude. Scalar normalization have proved useful in other contexts,
such as the identification of forcing structures that most efficiently excite error growth (Farrell
and loannou, 1996; Kleeman and Moore, 1997; Tippett and Cohn, 2001). Here, for the special
case of normal-mode uncorrelated stochastic forcing, evolution of the prediction error of each
eigenmode is independent, and the univariate approach of measuring predictability by the ratio
of prediction error and climatological variances can be applied to each eigenmode. Normalizing
the prediction error variance of each eigenmode by its climatological variance removes both the
forcing-amplitude and nonnormal factors. The resulting predictability measure can also be used to
compare the predictability of different eigenmodes. This approach to measuring predictability is

extended to general stochastic forcing in the following section.

3. Predictability

A prediction is useful on time-scales where the prediction error is, in some sense, less than the
climatological variability. Therefore, the utility of a prediction at lead-timéepends on both the
prediction error covarianc€,. and the climatological error covarian€g,,. This notion of pre-
dictability is the basis for predictability measures defined usingpthdictive information matrix

G. = C.C_! (Schneider and Griffies, 1999)The eigenvalues of the predictive information matrix

measure the relative error variance of a set of state-space patterns chosen to optimize relative error

SHere, the climatological covariance matrix is invertible, i.e., there are no perfectly predictable components, if the
pair (A, F) is controllable; a sufficient condition for controllability is that forcing covariaREé be invertible. When
the climatological covariance matrix is computed from data assumed to be Gaussian distributed, high dimensional
state-space and short data records make it singular. Regularization methods, such as projecting the climatological
covariance matrix onto truncated set of EOFs, are required and can significantly limit the number of predictable
components that can robustly estimated (Schneider and Griffies, 1999; Schneider and Held, 2001).
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variance and so can provide a multivariate generalization of the univariate relative error variance
s2/s% and the associated univariate predictability measures?/s% ; s2 is the prediction error
variance at lead-time ands?_ is the climatological variance.

The eigenvalue decomposition of the predictive informattardecomposes phase-space into
uncorrelated patterns ordered by their relative prediction error variance (Schneider and Griffies,
1999). When)\ is an eigenvalue 06, its adjoint eigenvectoq satisfiesq’ G, = Aq’. The

eigenvalues oG, are between zero and unity since

T
q Cq
gy ©)

andq’C.q > q’C,q > 0; q7(C, — C,)q > 0 follows from (5). The eigenvalues d&,
behave like relative error, initially zero because of the perfect initial condition assumption, and
increasing with lead-time until they reach unity in the limit of large lead-time. For any direction
q in state-space, the projection of the state-variablin the directionq is (q”w) and has rela-
tive error given by the quantityg”’ C.q)/(q” Cq). The directiong,, that minimizes the relative
error in (9) is then-th adjoint eigenvector of the predictive information matrix and defines the
first predictable componerfyy’ w) and its relative error variance,(G,) (Schneider and Griffies,
1999). The eigenvectqy,, corresponding to the adjoint eigenvecigris the firstpredictable pat-
tern (Schneider and Griffies, 1999). The second predictable component is determined by the next
smallest eigenvalue @ and is temporally uncorrelated with the first predictable component.

The eigenvalues of the predictive information matrix are invariant with respect to linear trans-
formations of the state-variable. If a new state-variable: Lw and its prediction error covariance
C. are defined, the new predictive information mat@x is related toG, by a similarity transfor-
mation

A

G,=CCl=LC.CIL ' =LG. L, (10)
so thatG, andG, have the same eigenvalues. Therefore, predictability measures defined by eigen-
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values of the predictive information matrix are invariant with respect to linear transformations of
the state-variable and are norm-independent. The eigenvectors of the predictive information ma-
trix transform in the same manner as the state-variabjejsfan eigenvector ob., thenLp is an
eigenvector ofG,.

The predictable patterns and their relative error variances are simply related to the dynamics
when the stochastic forcing is uncorrelated in normal-mode space, i.e., when the forcing covariance
can be representdtF” = ZDZ' andD is diagonal. We require th& be invertible to ensure that
the climatological covariancg, is also invertible. In this case, the predictive information matrix

G, has the simple form

G, =Z(DoE,)Z! (Z') ' (DoE,)'Z"!
(11)
= Z diag(E,) diag(E,) 'Z7*,
and is remarkably independent of the forcing coefficBntliag(E. ) is the diagonal matrix whose
entries are the diagonal element€nf Since (11) is the eigendecomposition®f, the eigenval-

ues ofG, are

M(G,) = 1 — FRedinn (A (12)

and depend only on the real part of the eigenvalues of the dynamics; the eigenve&oraref

the eigenvectors of the dynamics. Therefore, the leading eigenwgaibthe dynamics is the first
predictable pattern at all lead-times of a system with normal-mode uncorrelated stochastic forcing;
the relative error of the associated first predictable componént i i 1(A) 7 The predictability

of the first predictable component decreases exponentially with decay-rate determined by the least
damped eigenmode of the dynamics.

For general stochastic forcing, it is useful to write the prediction error covar@nes

C. = / eAFFT A gt — / AFFTA" gt 13
0 T 13
— Coo o GTACooeTAT ’
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so that

G, =1-e*CerC. (14)

The eigenvalues d&., are then

Me(Gr) = A (1 — W, WT)
(15)
=1- O-zszJrl (WT) )

where we defindV, = ¢A” andA = C./?ACY’; the notations;,(X) denotes thé-th singular
value of a matrixX ordered so that(X) > 04(X) > ...0,(X) > 0. The matrixA is the

dynamics matrix of the whitened state-variafite= C5."/*

w. The climatological covariancé.

is the identity matrix in the whitened state-variabW;. is the state-propagator of the whitened
state-variable. The eigendecompositiorfis determined by the singular value decomposition
of W... Another way of arriving at (15) is to recall that the eigenvalue&ofire invariant under

linear transformations of the state-variable and note that in the whitened state-variable

A

G, =C. =1-w. w7, (16)

Predictability analysis is equivalent to principle component analysis of the whitened state-vector
w (Schneider and Griffies, 1999). The appropriate choice of vector-norm or state-variable for
guestions of predictability is one that makes the climatological covariance the identity matrix.

The whitened dynamicA is normal when the stochastic forcing is uncorrelated in normal-
mode space. In this case, the whitened-state propa@atis also normalg? (W, ) = |\, (W,)|> =
e2Re (A7 “and the expression in (12) for the eigenvalues of the predictive information matrix is a
consequence. When the stochastic forcing is correlated in normal-mode ¥pacenonnormal
and its singular values are not determined by its eigenvalues. However, the eigenvalues and singu-
lar values of any matrix must satisfy certain inequalities. For instance, the largest singular value

must be larger than the modulus of the largest eigenvalue. That is teig&y,) > |\ (W,)|?,
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which combined with (15) gives the upper bound
)\TL(GT) S 1- BQRGAI(A)Ta (17)

for the smallest eigenvalue of the predictive information matrix. The left-hand side of (17) is the
relative error of the first predictable component of a system with general stochastic forcing, and the
right-hand side is the relative error of the first predictable component of a system with normal-mode
uncorrelated stochastic forcing. Therefore the inequality in (17) means that the relative error of the
first predictable component is maximized when the stochastic forcing is uncorrelated in normal-
mode space. In terms of predictability, (17) says that the predictability of the first predictable
component of a system is minimized when the stochastic forcing is uncorrelated in normal-mode
space.

A more physical interpretation of this result is that when the stochastic forcing is correlated
in normal-mode space, normal modes are correlated, and linear combinations of normal modes
can be constructed whose predictability is greater than that of any single normal mode. This
potential for constructive combination of normal modes is the same mechanism that allows systems
with nonnormal dynamics and unitary stochastic forcing to presewaller prediction error than
equivalent normal systems. Equation (7) of loannou (1995) shows that the smallest singular value
of W, = AT is maximized wheW. is normal. In the present context, this fact means that the
error of the first predictable component is maximized for stochastic forcing that is uncorrelated in
normal-mode space.

The same conclusion that normal-mode uncorrelated stochastic forcing minimizes predictabil-
ity is true for general predictability measures defined abstractly by

predictability=> " h(1 — \(G,)), (18)
k=1

where the functior has the property thdi(e”) is a convex and increasing functionaafTheorem
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1 of the Appendix and (15) give that

3

n

predictability= Zhak D) > h(IMW)P) =) b (2R A)) (19)

k=1 k= k=1

The right-hand side of (19) is the predictability of the system with normal-mode uncorrelated
stochastic forcing and depends only on the real part of the eigenvalues of the dynamics. General
predictability measures are minimized when the stochastic forcing is uncorrelated in normal-mode
space.

Predictability measures that can be written in the form of (18) are: the quantity

1 n
1—trG,;/n=— E or (W
n
k=1

| (20)
> _ 2Re/\k(A)
> Y,
k=1
the predictive information? ., defined by (Schneider and Griffies, 1999)
n n =
R, = ) logdet G, = —5 Z log (1 — az(WT))
(21)
> __Zlog 2Re)\k A)) ,
andrelative entropyr, defined by (Kleeman, 2002)
1
=g [—log (det G;) + tr (G;) — n]
1 n
=3 Zlog (1—07(W,)) + |ok(W,)|? (22)

Normal-mode uncorrelated stochastic forcing minimizes all these measures of predictability and
gives lower bounds for predictability that depend only on the eigenvalues of the dynamics (see
Lemmas 1 and 2 of the Appendix). These inequalities show that normal-mode analysis of the
predictability problem gives lower bounds for the system with general forcing structure. The in-

equalities in (20) — (22) are also valid when the sums are truncated, and predictability is measured

using the trailing eigenvalues of the predictive information matrix.
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These results have an interpretation in the framework where the forcing is fixed as unitary, i.e.,
whenFFT = 1. In this case, the stochastic forcing is uncorrelated in normal-mode space when
Y'Y is diagonal. WherY'Y is diagonalY'Y = I and the dynamics is normal since the columns
of Y are unit vectors. Therefore, for unitary stochastic forcing, predictability is minimized when
the dynamics is normal. Nonnormal dynamics is more predictable than normal dynamics with the
same eigenvalues for unitary stochastic forcing. loannou (1995) demonstrated in this setting that
nonnormality increases prediction error, and here we have shown that it increases predictability as

well.

4. Upper bounds for predictability

Our analysis shows that the predictability of a system described by linear stochastic dynamics is
minimized when the stochastic forcing is uncorrelated in normal-mode space. However, some
guestions remain unanswered. For instance, what stochastic forcing produces maximum pre-
dictability, and when is this maximum predictability strictly larger than that given by normal-mode
uncorrelated forcing? Such questions are difficult to answer generally because predictability is
a nonlinear function of the stochastic forcing. We explore these issues in a simple 2-D linear
stochastic system. The relevance of this type of simple model to real climate systems is discussed
in Chang et al. (2002) where a 2-D stochastically driven damped inertial oscillator is used as a
prototype coupled system to elucidate the importance of nonnormal growth in enhancing the pre-
dictability of climate systems.

Consider the x 2 dynamics matrix given by

C[M+ie 0
A_{lo Az_w], (23)

where\; and )\, are negative real constants;js a real constant and= /—1. We assume that

the two eigenvalues di are either both real or complex conjugates. There is no loss of generality

15



0.5¢

T
Figure 1 The predictability measure— tr G /2 for normal-mode uncorrelated forcing (gray line)

and rank-1 forcing (black line) with; = —1 andX, = —2.

in taking the dynamics to be diagonal since our predictability measures are invariant under linear
transformation of the state variable. Normal-mode uncorrelated stochastic forcing for diagonal
dynamics corresponds EF’ being diagonal. In this case, the predictive information maGixs
diagonal and given by

1 — 62)\17— 0

0 1— 62)\27— ) (24)

G, =
and can be used to compute the minimum predictability of the system. When the eigenvalues of
the dynamics are identical,= \; = A\, and¢ = 0, the dynamics is essentially scalar and

1— 62)\7
T 2)

C. FF”, (25)

for general stochastic forcing. In this case, the climatological covarifiace= FF7/(2)) is
invertible whenFF7 is, and the predictive information matrix is independent of the forcing and
given by (24) withA; = X,. Therefore no forcing structure increases predictability when the
eigenvalues of the dynamics are identical, a result that is true in general.

Suppose that the forcing matrix is rank-1 so that the stochastic forcing covariance can be written

FFT = ff7 wheref is a vector with nonzero elements. A general result that follows directly from

16



(6) is that

C, = ff” o E, = Diag(f) E, Diag(f), (26)

when the forcing matri¥ is rank-1 and the dynamics are diagonal; the notalig(f) denotes
the diagonal matrix whose diagonal entries are the elements of the Yettageneral, the invert-
ibility of the climatological covarianc€ ., is not guaranteed for rank-1 forcing. The climatological
covarianceC, is invertible for2 x 2 diagonal dynamics when the entriesfadre nonzero and the
eigenvalues of the dynamics are distinct. For rank-1 forcing, the eigenvald&sarke given by
Me(G,) = M\ (E-EZ!) and remarkably, are independent of the fording direct calculation gives
that the predictability measure (20) of the system with rank-1 forcing is

2A1 9 <(e)‘” — e)‘QT)2 + 2eMFA2)T (1 — cos 2(/5))
497 4+ (A1 — A)?

1 1
1—~trG, = -
5 G- =3

<62/\1t+€2)\2t> + (27)

The result in (27) is valid when the eigenvalues of the dynamics are distinct. The first term on the
right-hand side of (27) is the minimum predictability of the system, and the second term is strictly
positive. Therefore, rank-1 forcing gives predictability thasigctly larger than normal-mode
uncorrelated forcing. Figure 1 compares the quaritity tr G, /2 for normal-mode uncorrelated

and for rank-1 forcing as function of lead-timewith \; = —1 and )\, = —2. In this example,
rank-1 stochastic forcing is seen to enhance predictability on time-scales comparable to the system
e-folding time. Rank-1 forcing also increases predictability as measured by the predictive informa-
tion R, and the relative entropy;. In fact, there is no rank-2 forcing that gives more predictability.
The optimization problems of maximizing— tr G, /2, R. andr, can be solved in closed form

for the2 x 2 system and show that rank-1 forcing maximizes predictability. Whether rank-1, or
perhaps approximately rank-1, forcing gives maximum predictability in general remains an open

guestion. However, limited numerical experiments do not contradict this conjecture.
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5. Discussion

In this work we have considered prediction error growth and predictability in linear stochastic
systems with perfect initial conditions and state-independent stochastic forcing. We have focused
our study on the impact of stochastic forcing spatial-structure on prediction error growth and pre-
dictability. Two classes of forcing were considered: forcing that is uncorrelated in normal-mode
space and forcing with arbitrary spatial-structure. The analysis of systems with normal-mode
uncorrelated stochastic forcing is simple and complete since normal modes in such systems are
uncorrelated and evolve independently. Prediction error growth depends on details of the forcing,
even for the special case of normal-mode uncorrelated forcing where prediction error depends on
the forcing amplitudes. Appropriately chosen stochastic forcing with general spatial structures
can produce prediction error growth more efficiently or less efficiently than normal-mode uncorre-
lated stochastic forcing (loannou, 1995). The norm-dependence of prediction error growth further
complicates its analysis.

Predictability can be defined in a norm-invariant manner using eigenvaluesetietive in-
formation matrix(Schneider and Griffies, 1999). We consider a family of predictability measures
that includegredictive informatiorandrelative entropy(Schneider and Griffies, 1999; Kleeman,
2002). Remarkably, the predictability of a system with normal-mode uncorrelated stochastic forc-
ing is independent of the forcing amplitudes and is expressed simply in terms of the eigenvalues
of the dynamics. Moreover, the predictable patterns are simply the eigenmodes of the dynamics.
Predictability is more difficult to analyze in systems where the stochastic forcing has general spa-
tial structure. However, in contrast to the results of prediction error growth analysis where general
stochastic forcing can excite error growth more or less efficiently then normal-mode uncorrelated
forcing, general stochastic forcing always increases predictability; normal-mode uncorrelated forc-

ing gives minimum predictability. Therefore normal-mode analysis gives lower bounds for the
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predictability of systems with general stochastic forcing, and these bounds are simple functions of
the eigenvalues of the dynamics.

These results can also be interpreted in the framework where eigenvectors of the dynamics are
allowed to vary and the stochastic forcing is fixed as unitary. Prediction error growth has been
studied extensively in this framework (Farrell and loannou, 1996). Unitary stochastic forcing is
uncorrelated in normal-mode space when the dynamics is normal. Therefore, for unitary stochas-
tic forcing and fixed eigenvalues, a system with nonnormal dynamics is more predictable than a
system with normal dynamics.

Our results are in the form of lower bounds for predictability. Since the lower bound for pre-
dictability depends only the real part of the eigenvalues of the dynamics, predictability does not
depend on the oscillatory behavior of the system when the stochastic forcing is uncorrelated in
normal-mode space. A topic for future research is the formulatiappérbounds for predictabil-
ity. We expect such upper bounds to depend only on the eigenvalues of the dynamics, as in the
simple example. Another issue is the characterization of forcing structures that give maximum
predictability as in Chang et al. (2002) where the forcing producing maximum predictability for

norm-dependent error variance predictability measures was found.
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Appendix A

The necessary and sufficient condition relating the eigenvalp@¥) and singular values; (W)

of an invertable matri¥V is the inequality

> “logor(W) > > "log [A(W)] (A1)
k=1 k=1

forj =1,2,...,nwith equality forj = n (Marshall and Olkin, 1979). The sequer{deg o, (W)}
is said tomajorizethe sequencélog |A\,(W)|}. The following classical result of Weyl identifies

functions that preserve majorization.

Theorem 1 Weyl (1949); Chapter 5, A.2.a of Marshall and Olkin (197FupposaN is an in-
vertiblen x n matrix with eigenvalues; (W) and singular values; (W). If h(e”) is an increasing

convex function then, . ‘
> h(ok(W)) > h(IA(W))), (A.2)
k=1 k=1

forj=1,2,...,n.

The following lemmas are consequences of Theorem 1 with specific choices of the function
h. Lemma 1 follows from takindi(z) = z® and fromh(e®) = e** being an increasing convex

function fors > 0.

Lemma 1. SupposaV is ann x n matrix with with eigenvalues, (W) and singular values (W).
For s > 0,
j j
Y oW > IW)P L =12, n. (A3)
k=1

k=1

The functionh(e”) is a convex increasing function feroo < x < 0 whenh is an increasing
convex function on the intervél, 1). The following lemma is a consequence-ofog(1 — z?) and

—(log(1 — x?) + z*) being convex increasing functions on the interll).
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Lemma 2. Under the assumptions of Theorem 1, antW) < 1
—Zlog 1 — |on(W Zlog 1— (W), (A.4)
and
j
= “log (1= [A(W) ) + [Ap(W Zlog 1 — o2(W)) + |0k (W)]?, (A.5)
k=1

forj=1,2,...,n
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