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For a model stationary flow with hexagonal symmetry, we study the recurrence-time statistics. This
model flow has been shown elsewhere to provide a sharp transition from normal to anomalous transport.
We show here that this transition from normal to anomalous transport is accompanied by a correspond-

ing change of the recurrence-time statistics from *“normal” to “anomalous.”

In the anomalous case the

distribution of recurrence times has a power tail. Recurrence-time statistics provide a local measure-
ment to make evident the existence of anomalous transport.

PACS numbers: 47.25.Jn

In this Letter, we examine the chaotic behavior of pas-
sive particles in a given velocity field v(x,z) [1]. The
motion of a particle is described by the dynamical system

dx/vx =dy/v, =dz[v. =dt . ¢))

For stationary flows, v=v(x) and (1) also represents the
equations for streamlines. There are applications of (1)
to a variety of different practical situations. Also, (1) has
been employed in a dynamical systems approach to the
fast dynamo problem [2-4] and to the analysis of topo-
logical transformations of phase space in the route to tur-
bulence [5-7].

Here we investigate a particular case of the so-called Q
flows [S]. These 3D, incompressible flows have the form

_ 9y,
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where
ye(x,py)= ﬁ: Ajcos(R-e;)
/=

and R =(x,y), e; =[cos(2x;/q),sin(2zj/q)] are unit vec-
tors that form a regular g star; A4; are constants, taken
here all to be 1. These flows possess the Beltrami proper-
ty (Vxv)xv=0. It was shown that the streamlines of
the Q flow generate a “stochastic web” with g-fold sym-
metry [5] in phase space. The case ¢ =4 is the ABC flow
(Arnold-Beltrami-Childress). In this Letter we investi-
gate the case ¢ =3 with hexagonal symmetry. The cases
with g#1,2,3,4,6 possess quasicrystal symmetry.

In [8], properties of the transport generated by this
flow were calculated in the form of asymptotic scaling
laws

R ~1t* (t— o0), )

where R(¢) is the displacement of a particle in the (x,y)
plane and the averaging is over particles. The case
#=0.5 is considered normal transport in view of its
resemblance to Brownian motion. For 0 < u <0.5, “cap-
tured” particles dominate. For 0.5 <y <1, so-called
Lévy flights prevail and the transport is referred to as
anomalous. The flow that we have chosen to study has
the interesting property that there may be normal or
anomalous transport depending on the value of . A criti-
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cal value of ¢ was found to be ¢.=2.6; for € < ¢, there
was anomalous diffusion; for e= ¢. there was normal
diffusion.

It was found in [8] that bifurcation in the phase por-
trait accompanies the transition from normal to anoma-
lous transport. This can explain the sharpness of the
transition of u from one value to another. Figure 1 shows
the Poincaré section of a streamline by the z =0 plane
(mod2x) for €=2.9, when there is normal transport
(£ =0.50). Figure 1(a) shows the full picture in the
(x,y) plane; Fig. 1(b) shows a small part of the (x,y)
plane. The domains marked by circles will be described
below. Figure 2 shows the same as in Fig. 1(a) for
€ =2.3, when there is anomalous diffusion (u =0.70). It
is seen in Fig. 2 that in the anomalous regime long regu-
lar motion is possible in contrast to the case in Fig. 1(a).
Such motion is called a “flight.” Huge flights are called
“stochastic jets” [5]. Jets appear due to trappings in the
boundary layer of nonchaotic islands in the stochastic
web. These jets and flights are like Lévy flights for Q
flows [8,9]. There are several experimental observations
in fluid dynamics of the existence of flights with anoma-
lous passive scalar transport (see, for example, [10]).

The main properties of anomalous transport are re-
flected in the density probability function P(R,t), which
gives the probability of finding a particle at the point R
at the moment ¢. In the case of anomalous transport,
P(R,t) has no characteristic scale as in the normal
(Gaussian) case and, moreover, divergence of (R" for
n= 2 indicates a long-tail distribution of P(R,z) [11]. It
was shown in [11] that y is linked to the fractal dimen-
sion of the trajectory in space and time. It was also men-
tioned that a separation of these fractal properties is
sometimes impossible, u being determined by the fractal
dimension of both space and time simultaneously [12].
The existence of islands and cantori in real Hamiltonian
systems plays a crucial role in determining u.

Let us look again at (2) in a very general sense. Since
it describes a property that holds for large ¢ and R(z), (2)
gives a large-scale property of the system. In contrast,
the parameter u comes from the microscopic or local
properties of the phase space. The microscopic behavior
is described in a geometric way (fractal dimension),
which is in some sense physically unobservable whereas
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FIG. 1. Poincaré section of the orbits by the plane z
=0(mod2x) for €=2.9. (a) The entire plane; (b) a section of
size (47)? for forward crossings only.

the macroscopic diffusion is a fairly explicit process. We
would like to be able to observe macroscopic properties
from the local measurements of the system. Aside from
theoretical interest in being able to do this, there are
practical applications. The measurement of Poincaré re-
currence times (PRT) does just this.

Consider the motion of a particle in a Arx4n/3%2n
box with periodic boundary conditions. The recurrence
time T is the time a particle takes to return to a small
sphere S. During a single orbit, the particle will return to
the sphere S repeatedly. The distribution of those re-
currence times is given by the distribution function f(T).
We are interested in the asymptotics of f(7) and of its
cumulative distribution F(T),

FD=J f(0)dr. 3)

We will comment below on the dependence of f(T) on
the size and location of S. It will be shown that the nor-
mal diffusion (¢=2.9) produces a “normal” distribution
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FIG. 2. Poincaré section of the orbits by the plane z
=0(mod2x) for e=2.3 for forward and backward crossings.

of PRT times, while the anomalous diffusion (¢ =2.3)
produces an ‘“‘anomalous” distribution having a power
tail.

Consider a simple argument for the form of PRT
statistics for the case of normal diffusion. It is known
[13] that the number of periodic orbits with period
T() <Tis

P(T)~e"T | €))

where 4 is the Kolmogorov-Sinai entropy. More accurate
estimates can be found in [14] and several examples exist
in [15]. An important result for the following is the
Bowen and Maer theorem [14] on the asymptotic
equivalence of averaging over the phase space and over
the periodical orbits for K systems:

fé(x,y)p(x,y)dxdy

= lim ——

cyVe d ('d ¢ 5
Jim (‘(7;6,4 C(T)é(x veddx.dy (5)

where &(x,y) is a physical value at each phase point
(x,y), p(x,y) is the stationary measure on the phase
space, C(T) is a periodic orbit with period T, 4 is a box
of initial conditions with phase volume I' 4, summing is
performed over all periodic orbits belonging to A, and
(x.,y.) mean that the coordinates (x,y) belong to the
periodical orbit C.

Equations (4) and (5) can be used to obtain a qualita-
tive estimate of the probability density f(7) of the first
recurrence time 7. The set of recurrences to S are all
close to the set of periodic orbits that cross S, for large
enough 7. This allows us to consider the distribution of
periodic orbits instead of the quasiperiodical ones which
form the set of recurrences to S. In other words, the sug-
gestion is that not only is averaging over periodic orbits
equivalent to averaging over stochastic orbits, as stated in
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(5), but there is an equivalence between the distributions
of periodic orbits and the distribution of quasiperiodic or-
bits that return to S. Thus,

S =0/AT)exp(—TAT)) , (6)

with some constant (7, and is consistent with (4). It
seems that (7)~1/S for small enough S; however, this
point is more complicated and will be discussed below.
The cumulative distribution function defined by (3) can
be found from the normalized probability distribution (6)
to be

F(T)=1—exp(—T/KT)) @)

with mean recurrence time (7).

Let us introduce more rigorous arguments for the for-
mula (7) by considering a simple model mapping T:
Tx=Kx (mod 1), x € (0,1), where K is an integer and
K> 1. Consider the interval (0,1) and its partition over
subintervals S, (j):

S, =Li/K",G+1)/K"] (j=0,...,K"—1). (8)
The length of each subinterval S, (j) is

A,=K™". )
Applying the mapping T to S, (j) yields

TS, () =Li/K" ', G+ 1)/K"'1=S,-1())
or

7"S,()=(0,1) ,

independently of j.

Choose an initial point of an orbit to be in S, (jo) with
fixed j=jo. After the first iteration [the first action of
the operator 7 on S,(jo)] all points from S, (jo) escape
the interval except for a fraction, 1/K, of them which re-
turn to the interval. This property persists for subsequent
iterations until the nth iteration when all intervals, S,,
will cover homogeneously the interval (0,1). The remark-
able property of this construction is that the first re-
currence appears after n iterations with probability
A,[1—0(1/K)]. Using formula (9) for A,, one can see
that this probability and expression (6) are the same if
one takes into account discrete time and adds the normal-
ization constant {7 =1/InK.

There is a simple physical meaning to this result. Be-
cause of the mixing property of this chaotic mapping, an
orbit is likely to return to the initial volume S in a rela-
tively short time. Thus, because of the mixing, the proba-
bility of the first recurrence occurring after a long time
should be small. Stated another way, only a very small
volume A,[1 —O(1/K)] is filled by such orbits which can
avoid recurrences for a long time, T>>(T).

The real situation with Q flows is not so simple as in
the above example. Nevertheless, numerical simulation
confirms with extremely good accuracy the law (6) for
the case of normal diffusion.

FIG. 3. Poincaré recurrence-time statistics, plot of In[l1
—F(@)] vs t. Curve 1, €=2.9 normal diffusion; curve 2, ¢=2.3
anomalous diffusion; and curve 3, least-squares fit to curve 2.

To provide the numerical simulation of PRT statistics,
particle orbits were calculated for times of order 10> (in
dimensionless units), using a fourth-order Runge-Kutta
method. The general picture of diffusion and mixing is
shown in Figs. 1 and 2, where Poincaré sections are
displayed. To obtain PRT statistics, different spheres S
were taken. Their equatorial sections are shown by cir-
cles in Fig. 1(b). By changing the radius of a sphere, the
dependence of the PRT statistics on the recurrence
volume size may be observed. The size of S should be
small enough to avoid the influence of the boundaries of
the diffusion area. However, if the volume of S is too
small, there are not enough events. The main results of
the simulations are shown in Figs. 3 and 4 and in Table I.
In Figs. 3 and 4 we use the normalized time ¢t =T/(T).
The first group of results belongs to the normal diffusion
case when €=2.9. Two different domains S (all spheres)
are shown in Fig. 1(b). A third sphere was used for or-
bits crossing the plane z=0 in the reverse direction.
Coordinates of the centers of S are given in Table I in
parentheses. Different radii of the domain are represent-
ed in the left column of the table (the maximal radius
0.75 is shown in Fig. 1). It was found that all results
for these three domains fit the distribution f(¢)
=exp(—aT/(T)), where the average (T) was obtained
directly from the data series and a is a fitting constant. It
is seen from the table that for .S with a small enough ra-
dius there is a confirmation of the exponential law (6) or
(7) and a is very close to 1. The value N is the number
of events. The influence of the boundaries of chaotic be-
havior is seen to be stronger for the reverse flow relative
to the direction of the z axis (bottom part of Table I).
Even very large statistics in the second case shown in the
bottom part of Table I give a far from 1. The almost
straight line 1 in Fig. 3 corresponds to the second case
from the top part of Table 1. It confirms the exponential
law of PRT distribution.
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FIG. 4. Poincaré recurrence-time statistics for e=2.3, plot of
In[1 — F(£)] vs In(¢) with least-squares fit to tail.

The situation in the case of anomalous diffusion (e
=2.3) is very different from the normal one. There are
more flights than trappings and this property is reflected
in the value of u=0.70 for the law (2). Just this signa-
ture should appear in a power tail of the distribution
function of periodic orbits and in the PRT distribution

ST ~1/T" (T— o). (10)

It is clear that if flights have a finite measure, then the
exponential law (7) will hold only for a finite time. After
this a crossover to (10) takes place. The data presented
in Figs. 3 and 4 show just this result. These data come
from PRT statistics of a sphere centered at (5.25,7.5,
0.0) with radius 0.75. We comment below on the results
from the other spheres. For small 7 exponential behavior
is seen in curve 2 of Fig. 3; for convenience the best-fit
straight line is given (dashed line, labeled 3). For 1>>3
the numerical evidence indicates that the PRT distribu-
tion is not exponential. In Fig. 4 the tail of curve 2, >3,
is considered. The log-log plot in Fig. 4 suggests a
power-law tail corresponding to y=3.4 in formula (10).
There are 16422 events in this part of the distribution,
providing good accuracy of the results and reliability of
the crossover from exponential to power law.

The results for other spheres are qualitatively the same;
that is, they show a power-tail distribution. However, the
exponents y depend on the choice of domain S and its
size. This dependence is not surprising because of the
nonhomogeneous character of flights and the transport
exponent g in (2). It seems that the inhomogeneity of y
should appear and an interval of different values of y is
more reasonable than a single value.

One can consider PRT statistics as a local test of
large-scale behavior. After a long wandering, particles
come back to the domain S, carrying a memory about
phase space topologically far from S. This type of testing
could appear to be useful when a global experiment is not
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TABLE I. The main results of the simulations.

Radius (T a N
(xo =5.25,yo =7.5,Zo =0)

0.75 259 0.81 24113
0.375 2626 0.99 18372
(x0=8.5,y0=17.5,z0=0)

0.75 238 0.88 26296
0.375 2581 0.99 18692
(x0=7.25,y0=3.75,z0=0)

0.75 81 0.49 76694
0.375 349 0.65 138232
0.1875 1787 1.00 13986

available.
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