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Atmospheric general circulation models (GCMs) forced with observed sea sur-

face temperature (SST) reproduce some aspects of observed Sahel rainfall vari-

ability, particularly decadal variability. Here a filter based on signal-to-noise (S/N)

EOFs is applied to seven GCM simulations of Sahel precipitation to extract SST-

forced variability. Using filter coefficients based on GCM estimates of internal

variability has limited, though positive, impact on simulation skill. Additional

removal of empirically identified model error improves the representation of both

decadal and interannual variability. The model error shows some coherence across

the seven GCMs and correlates with local Atlantic SST. We hypothesize that

the model error is related to the representation of ocean-atmosphere interactions

in the SST-forced GCM simulations.
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1. Introduction

Sahelian rainfall shows considerable variability on both interannual and decadal time-scales,

including several decades of dry conditions beginning in the late 1960s and continuing into the

1990s. Sea surface temperature (SST) patterns are one of the modulators of Sahelian rainfall,

and statistical methods have identified SST patterns related to Sahelian rainfall variability [Fol-

land et al., 1986]. General circulation models (GCMs) provide a dynamical estimate of the

atmospheric response to SST forcing [Rowell et al., 1995]. Many GCMs forced by observed

SST reproduce aspects of the decadal variability of Sahelian rainfall, but most have difficulty

reproducing interannual variability [Giannini et al., 2003; Moron et al., 2003].

The deficiencies of GCM simulations could be due to an inherent lack of predictability, in the

sense that SST information alone may be insufficient to constrain Sahelian rainfall interannual

variability. However, this explanation seems questionable since at least one GCM forced with

observed SST reproduces Sahelian rainfall interannual variability [Giannini et al., 2003, 2005].

Poor representation of physical processes, particularly those related to convection, may be a

problem in the GCM simulations. Statistical methods can be used to compensate for such model

errors when GCMs successfully simulate part of the climate signal [Feddersen et al., 1999;

Tippett et al., 2005], and GCM simulated winds are a useful surrogate for observed Sahelian

rainfall [Moron et al., 2004]. Another potential source of error in GCM simulations forced by

observed SST is the neglected feedback of the atmosphere to the ocean [Peña et al., 2003] which

has been shown to be important in the simulation of the Asian monsoon [Fu et al., 2002; Wang

et al., 2004].
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Here a filtering approach is used to reduce the effects of atmospheric internal variability and

model error in seven GCM simulations of Sahelian precipitation. Using ensemble averages

and projecting the GCM output onto signal-to-noise (S/N) EOFs reduces the impact of internal

variability. [Hasselmann, 1979, 1997; Venzke et al., 1999; Barreiro et al., 2002]. The S/N

EOFs maximize the ensemble mean variance relative to the inter-ensemble variance and are

the most reproducible modes of the GCM given the SST forcing; S/N analysis of one GCM

identified modes whose time-series correlated well with Sahelian rainfall variability on decadal

and interannual time-scales [Tippett and Giannini, 2005]. A least-squares estimate of the SST-

forced signal is constructed by applying a damping factor in conjunction with the projection of

the ensemble mean onto S/N EOFs. The damping factor depends on the ensemble size and S/N

ratio of each mode; larger S/N ratio and ensemble size leads to less damping. The filter mimics

the reduction of internal variability obtained by ensemble averaging. However, as shown in

Section 3, direct use of this filtering method does not lead to substantial improvement of the

interannual skill of the GCM simulations of Sahelian rainfall. Modifying the filter to remove

model error improves the representation of Sahelian rainfall variability on both decadal and

interannual time-scales. Model error is classified as those simulation components that, despite

being identified by the S/N analysis as robust GCM responses to SST forcing, do not contribute

to simulation skill. Some commonality is found in the model error across GCMs.

2. Data

All analyses use July-September (JAS) seasonal averages. The seven GCMs analyzed are:

ECHAM 4.5, GFDL AM2p12b, NSIPP-1, ECPC, COLA, CCM 3.6, and NCEP/MRF9 [Roeck-

ner et al., 1996; Anderson and Coauthors, 2005; Bacmeister et al., 2000; Kanamitsu and Coau-
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thors, 2002; Kinter et al., 1997; Hack et al., 1998; Livezey et al., 1996, respectively]. The

GCMs are forced with observed SST; different SST analyses were used. The simulation period,

number of ensemble members and horizontal resolution for each GCM are shown in Table 1.

The S/N EOFs for each GCM are computed using simulated precipitation over the West

Africa region 2◦N to 20◦N and 20◦W to 35◦E containing 176 GCM grid points for the T42

resolution. The primary rainfall observations used in this analysis come from the Hulme precip-

itation data set, based on gauge data gridded at 2.5◦ latitude by 3.75◦ longitude resolution for the

49-year period 1950-1998 [Hulme, 1992]; additional analysis uses the CPC Merged Analysis

of Precipitation (CMAP) [Xie and Arkin, 1996]. SST data are taken from the ERSST data set

version 2 [Smith and Reynolds, 2004].

3. Methods

A least-squared error estimate of the SST-forced signal is the starting point for the derivation

of the filter. Suppose the GCM precipitation anomaly field x (an n-dimensional column vector)

of a particular ensemble member is decomposed

x = xS + xN , (1)

where xS is the SST-forced signal and xN represents random internal variability (“noise”) un-

related to the SST forcing. The ensemble mean xM of an m-member ensemble has a smaller

contribution from internal variability and can be written

xM = xS +
xN√
m

. (2)
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The least-squares estimate x̂S of the signal from the ensemble mean xM is given by linear

regression as

x̂S =
〈

xSxT

M

〉 〈

xMxT

M

〉

−1

xM , (3)

where the notation ()T and 〈·〉 denotes transpose and expectation, respectively. Defining the

covariances of the ensemble mean and internal variability CM ≡ 〈xMxT

M
〉 and CN ≡ 〈xNxT

N
〉,

respectively, it follows from (3) that
〈

xSxT

M

〉

= CM −CN/m, and the estimate x̂S of the signal

is

x̂S =

(

I − 1

m
CNC−1

M

)

xM , (4)

where I is the identity matrix.

S/N analysis can be used to interpret the regression in (4) as a filter, and to show that the

regression matrix
(

I − CNC−1

M
/m

)

is diagonal in the basis of S/N EOFs; this interpretation is

new, to the author’s knowledge. Each S/N EOF is associated with a vector of coefficients f (an

optimal spatial filter in the terminology of Venzke et al. [1999]), a physical pattern p and a S/N

ratio λ. The leading S/N EOF maximizes the S/N ratio

λ =
fT CMf

fT CNf
(5)

of the linear combination (fT xM); regressing the time series of the linear combination onto the

ensemble mean gives the physical pattern p. Subsequent (in order of decreasing S/N ratio) S/N

EOFs maximize the S/N ratio under the constraint that the time-series be uncorrelated; unlike

usual EOFs, S/N EOFs are not orthogonal in space. The coefficient vectors are eigenvectors of

the matrix C−1

N
CM , whose eigenvalue decomposition is C−1

N
CM = FΛF−1 where the columns

of F are coefficient vectors and the entries of the diagonal matrix Λ are the associated S/N ratios.

Associated with the matrix F of coefficients is the matrix P of patterns defined by P ≡ F −T ; the
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pseudo-inverse is used for the rank deficient problem. Since CNC−1

M
= PΛ−1F T , the optimal

estimate in (4) of the SST-forced signal can be expressed using S/N EOFs as

x̂S = P
(

I − (mΛ)−1
)

F T xM

=
n

∑

i=1

pi

(

1 − (mΛii)
−1

)

fT

i
xM ,

(6)

where fi and pi are the i-th columns of the matrices F and P respectively, and Λii the diagonal

elements of the matrix Λ; the regression matrix in (4) is diagonal in the basis of the columns

of P . Equation (6) shows the signal estimate is obtained by (i) forming the linear combination

(fT

i
xM) of the ensemble mean, (ii) multiplying by a damping factor that depends on the S/N

ratio and ensemble size, and (iii) reconstructing the field using the patterns. Small S/N ratio and

small ensemble size lead to larger damping. No damping is necessary in the limits of large S/N

ratio or large ensemble size, in which case PF T = I implies x̂S = xM . Terms can be omitted

from the sum or the damping coefficient set to zero when the S/N EOF represents an unphysical

or erroneous response of the GCM to SST forcing.

Estimation of the S/N EOFs requires inverting the noise covariance CN which is invertible

for the domain size, ensemble size and number of years used; the noise is approximated by the

deviations between the ensemble members and the ensemble mean. The inversion of the noise

matrix CN is computed from its eigenvalue decomposition. Since the smallest eigenvalues of

the noise covariance are likely underestimated, an approach from ridge regression is used and

the leading (in decreasing order) 80% of the eigenvalues are kept at their estimated value and

the remaining eigenvalues set to the value of the eigenvalue at the 80% limit. This procedure

has the effect of inflating the intra-ensemble spread associated with the smallest eigenvalues of

the noise covariance matrix CN .
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4. Results

The results are summarized using a Sahel rainfall index defined as the average of the precip-

itation anomalies in the box 16◦W to 30◦E and 10◦N to 20◦N. This index is computed for the

observations and for three sets of GCM data: the raw ensemble mean (denoted raw) and two

filter experiments. The F1 filter experiment retains modes in (6) with a S/N ratio greater than

1.134; this value corresponds to a perfect model correlation of 0.75. The F2 filter experiment

keeps modes that have a S/N ratio greater than 1.134 and that improve the correlation (high

frequency) with the observed Sahel index.

Correlations between the observations and the GCM indices are shown in Table 2; also in-

cluded are correlation with the standardized multi-model sum of the GCM time-series. The

notation rtotal denotes the correlation with the observed index, and rhf denotes the correlation

of the high-frequency components, defined as the deviation from the 11-year running-average.

The correlation rtotal of the raw GCM output of most of the models is high; rtotal = 0.72 for the

multi-model sum. However, much of that correlation is related to decadal variability, and only

two GCMs have a significant high-frequency correlation with the observations; rhf = 0.31 for

the multi-model sum. Figure 1a shows that the GCM high-frequency indices are more similar to

each other than to the observations; the correlation of the multi-model sum with the individual

models, a perfect model skill measure, is 0.69. The raw indices of the GCMs with good high-

frequency simulation skill correlate appropriately with NINO 3.4 (see Table 2); the observed

correlation between the Sahel index and NINO 3.4 is -0.59.

The F1 filter results show a generally positive impact on the correlation rtotal and a modest

positive impact on rhf. In the F2 filter, modes that improve the correlation rhf are retained, ex-
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plaining from 7.5 to 70 percent of the GCM precipitation variance in the entire West Africa

domain (see Table 2). Filter F2 shows increased values of the total correlation (rtotal = 0.88 for

the multi-model sum) as well as increased values of the high-frequency correlation (rhf = 0.75

for the multi-model sum; see Fig. 1b). The high-frequency correlation of the multi-model

sum of the F2 filter indices with NINO 3.4 is -0.59, very similar to the observed value. To

measure the robustness of the F2 filter, we classified model error modes based on 1950-1978

performance, and calculated the F2 filter performance for periods 1950-1998 and 1979-1998

(multi-model sums labeled Sum 50-98 and Sum 79-98, respectively, in Table 2) . This proce-

dure gives a sense of the model error estimate sensitivity as well as stationarity of the GCM

skill. Overall, the F2 filter still shows improvement though the skill of some GCM simulations

is degraded; GCMs where F2 explained little variance or had modest skill were most strongly

affected.

Model error is defined for each GCM as the difference between the F1 and F2 filtered sim-

ulations and the associated standardized high-frequency Sahel index time-series (see Fig. 2a).

Although there is considerable variability across models, the correlation of the multi-model sum

of the model error indices with that of the individual models is 0.6, and there is consensus in

the sign of the model error in some years. Correlation of SST with the multi-model sum of the

model error indices (Fig. 2b) shows small positive (maximum value ∼ 0.4) correlations off the

coast of West Africa. The sign of the correlation means that warm SST near the West African

coast is associated with a positive error in the GCM simulated Sahel index. A large positive

value of the mean model error index occurs in JAS 1984, one of the driest of the drought years,

when several of the GCMs overestimated Sahel precipitation (Fig. 2a); the error of 1984 was
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also observed in the French model ARPEGE and discussed in Garric and Déqué [2002]. The

1984 SST was anomalously warm in the Gulf of Guinea and off the coast of Senegal, exceeding

27◦C (see Figs. 3a,b). CMAP estimates show positive rainfall anomalies in the Guinea coast

region (consistent with the warm SST anomalies in the Gulf of Guinea) and negative rainfall

anomalies in the Sahel region and off the coast of Senegal (see Fig. 3c). However, the GCMs,

while simulating dry conditions in part of the Sahel region, simulated wetter conditions on the

coast near the warm SST anomalies; the precipitation anomaly of the ECPC GCM is shown in

Fig. 3d. One possible explanation for the error in the GCM Sahel simulation is that the response

to SST forcing in the Guinea Gulf is too strong and effects the Sahel region. Also the GCMs

may be responding to warm SST near the coast of Senegal. The negative precipitation anomalies

over ocean in the CMAP estimate are based on satellite data and may reflect decreased cloudi-

ness that may be related to the coincident positive SST anomalies. Also reduced Sahel rainfall

is associated with weak monsoon flow, driving less oceanic upwelling in the Guinea Dome re-

gion and resulting in warmer local SST [Fontaine et al., 1995; Signorini et al., 1999]. Either

mechanism gives SST that is negatively correlated with local precipitation which is difficult to

represent in the SST-forced GCM simulations.

5. Summary

Many GCM simulations of Sahelian rainfall reproduce aspects of decadal variability observed

in the 20th century. Fewer models, however, reproduce the observed interannual variability.

Here a signal-to-noise (S/N) filtering technique has been applied to the precipitation simulations

of seven GCMs forced by observed SST. There is little improvement when the S/N ratio is used
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to determine filter coefficients. Significant improvement is seen when modes classified as model

error are removed.

Model error, defined as comprising those components that degrade simulation skill in spite of

significant S/N ratio, shows some coherence across the seven GCMs. The multi-model model

error time-series shows correlation with regional Atlantic SST, suggesting that the efficacy of

using the S/N EOFs as a filter basis due to signal and error being related to SST. In 1984, when

several GCMs overestimated Sahel rainfall, warm SST conditions were observed near the coast

of West Africa. The enhanced SST near the coast of Senegal, possibly due to reduced cloudi-

ness or oceanic upwelling, appears to be associated with spurious enhanced precipitation in

the GCMs. We hypothesize that part of the systematic model error observed in GCM simula-

tions of Sahel rainfall is related to error in the representation of ocean-atmosphere interaction

in SST-forced simulations.
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Model period ensemble size resolution

ECHAM 4.5 1950-2004 24 T42

GFDL AM2p12b 1950-2000 10 2.5◦ × 2◦

NSIPP-1 1950-2000 9 2.5◦ × 2.5◦

ECPC 1950-2001 10 T63

COLA 1950-2003 10 T63

CCM 3.6 1950-2004 24 T42

NCEP MRF9 1950-1999 10 T42

Table 1. The simulation period, ensemble size and horizontal resolution of the GCMs used in

this study.



X - 16 TIPPETT : FILTERING GCM SIMULATED SAHEL RAINFALL

Model modes (F2) % variance (F2) Hulme Sahel index NINO 3.4
rtotal rhf rhf

raw F1 F2 raw F1 F2 raw F1 F2

ECHAM 4.5 1,2,3,4 70 0.53 0.73 0.83 -0.076 0.31 0.7 0.031 -0.26 -0.5
GFDL AM2p12b 1,2,3,4,5,7,8 64 0.6 0.6 0.78 0.14 0.18 0.6 -0.13 -0.14 -0.35
NSIPP-1 1,2,3,4,9 65 0.79 0.81 0.85 0.49 0.51 0.6 -0.51 -0.52 -0.58
ECPC 1,2,4,5,8,9,10 55 0.77 0.77 0.79 0.4 0.45 0.65 -0.63 -0.65 -0.64
COLA 1,2 40 0.58 0.57 0.85 0.027 0.0031 0.68 -0.032 -0.017 -0.3
CCM 3.6 4 7.5 0.35 0.33 0.61 0.048 -0.084 0.59 -0.23 -0.16 -0.54
NCEP MRF9 1,4,7,8 55 0.65 0.68 0.74 0.14 0.2 0.37 -0.39 -0.4 -0.38
Sum 0.72 0.76 0.88 0.23 0.31 0.75 -0.35 -0.41 -0.59
Sum 50-98 0.72 0.76 0.83 0.23 0.31 0.69 -0.35 -0.41 -0.58
Sum 79-98 0.29 0.35 0.6 0.31 0.35 0.66 -0.42 -0.47 -0.63
Table 2. Correlations of the simulation (unfiltered and two types of filters) of each of the seven

GCMs and the multi-model sum with observed precipitation and the ENSO state. See text for

details.
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Figure 1. Time-series of the high-frequency components of the observed Sahel index (heavy

line) and the GCM simulated index computed from the (a) raw ensemble mean and (b) filter F2.

The vertical line marks JAS 1984.
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Figure 2. (a) The time-series of the high-frequency components of the standardized difference

of the F1 and F2 Sahel indices; heavy line is the multi-model mean; the vertical line marks JAS

1984. (b) Correlation of the multi-model mean with SST.
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Figure 3. JAS 1984 (a) SST (contour interval is 1◦C), (b) SST anomaly with respect to

1950-1999 climatology (contour interval is 0.25◦C), (c) CMAP, (d) ECPC simulated and (e) F2

filtered precipitation anomalies. Darkest shade of green (brown) indicates an anomaly of 3 (-3)

mm/day.


