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Atmospheric general circulation models (GCMs) forced with observed sea sur-

face temperature (SST) reproduce aspects of observed Sahel rainfall variabil-

ity, particularly decadal variability. Here a filter based on signal-to-noise (S/N)

EOFs is applied to seven GCM simulations of Sahel precipitation to improve

representation of interannual variability. Using filter coefficients based on GCM

estimates of internal variability has limited, though positive, impact on simu-

lation skill. Additional removal of empirically identified model error improves

the representation of both decadal and interannual variability. The spurious GCM

response shows coherence across the seven GCMs and correlates with local At-

lantic SST. We hypothesize that the model error is related to errors in the rep-

resention of ocean-atmosphere interactions in the SST-forced GCM simulations.
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1. Introduction

Sahelian rainfall shows considerable variability on both interannual and decadal time-scales,

including several decades of dry conditions beginning in the late 1960s and continuing into the

1990s. Sea surface temperature (SST) patterns are one of the modulators of Sahelian rainfall,

and statistical methods have identified SST patterns related to Sahelian rainfall variability [Fol-

land et al., 1986]. General circulation models (GCMs) provide a dynamical estimate of the

atmospheric response to SST forcing [Rowell et al., 1995]. Many GCMs forced by observed

SST reproduce aspects of the decadal variability of rainfall in the Sahel, but most have difficulty

reproducing the interannual variability [Giannini et al., 2003; Moron et al., 2003].

The deficiencies of GCM simulations could be due to an inherent lack of predictability, in

the sense that SST information alone may be insufficient to constrain Sahelian rainfall interan-

nual variability. However, this explanation seems questionable since at least one GCM forced

with observed SST does reproduce Sahelian rainfall interannual variability [Giannini et al.,

2003, 2005]. Poor representation of physical processes, particularly those related to convection,

may be another problem in the GCM simulations. Statistical methods can be used to compensate

for such model errors when GCMs successfully simulate part of the climate signal [Feddersen

et al., 1999; Tippett et al., 2005], and GCM simulated winds are a useful surrogate for observed

Sahelian rainfall [Moron et al., 2004]. Another potential source of error in GCM simulations

forced by observed SST is the neglected feedback of the atmosphere to the ocean [Peña et al.,

2003] which has been shown to be important in the simulation of the Asian monsoon [Fu et al.,

2002; Wang et al., 2004].
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Here a filtering approach is used to reduce the effects of atmospheric internal variability and

model error in seven GCM simulations of Sahelian precipitation. Using ensemble averages

and projecting the GCM output onto signal-to-noise (S/N) EOFs reduces the impact of internal

variability. [Hasselmann, 1979, 1997; Venzke et al., 1999; Barreiro et al., 2002]. The S/N

EOFs maximize the ensemble mean variance relative to the inter-ensemble variance and are

the most reproducible modes of the GCM given the SST forcing; S/N analysis of one GCM

identified modes whose time-series correlated well with Sahelian rainfall variability on decadal

and interannual time-scales [Tippett and Giannini, 2005]. A least-squares estimate of the SST-

forced signal is constructed by applying a damping factor in conjunction with the projection

of the ensemble mean onto S/N EOFs. The damping factor depends on the the ensemble size

and the S/N ratio of each mode; larger S/N ratio and ensemble size leads to less damping. The

filter mimics the reduction of internal variability obtained by ensemble averaging. However, as

shown in Section 3, direct use of this filtering method does not lead to substantial improvement

of the interannual skill of the GCM simulations of Sahelian rainfall. Modifying the filter to

remove model error improves the representation of Sahelian rainfall variability on both decadal

and interannual time-scales. Model error is classified as those simulation components that, in

spite of being identified by the S/N analysis as robust responses of the GCM to SST forcing, do

not contribute to simulation skill. Some commonality is found in the model error across GCMs.

2. Data

All analyses use July-September (JAS) seasonal averages. The seven GCMs analyzed are:

ECHAM 4.5, GFDL AM2p12b, NSIPP-1, ECPC, COLA, CCM 3.6, and NCEP/MRF9 [Roeck-

ner et al., 1996; Anderson and Coauthors, 2005; Bacmeister et al., 2000; Kanamitsu and Coau-
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thors, 2002; Kinter et al., 1997; Hack et al., 1998; Livezey et al., 1996, respectively]. The

GCMs are forced with observed SST. The simulation period, number of ensemble members and

horizontal resolution for each GCM are shown in Table 1.

The S/N EOFs are computed using simulated precipitation from the West Africa region 2◦N to

20◦N and 20◦W to 35◦E containing 176 GCM grid points for the T42 resolution. The primary

rainfall observations used in this analysis come from the Hulme precipitation data set, based

on gauge data gridded at 2.5◦ latitude by 3.75◦ longitude resolution for the 49-year period

1950-1998 [Hulme, 1992]; additional analysis uses the CPC Merged Analysis of Precipitation

(CMAP) [Xie and Arkin, 1996]. SST data are taken from the ERSST data set version 2 [Smith

and Reynolds, 2004].

3. Methods

A least-squared error estimate of the SST-forced signal is the starting point for the derivation

of the filter. Suppose that the GCM precipitation anomaly field x (an n-dimensional column

vector) of a particular ensemble member can be decomposed

x = xS + xN , (1)

where xS is the SST-forced signal and xN represents random internal variability (“noise”) un-

related to the SST forcing. The ensemble mean xM of an m-member ensemble has a smaller

contribution from internal variability and can be written

xM = xS +
xN√
m

. (2)
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The least-squares estimate x̂S of the signal based on the ensemble mean xM is given by linear

regression as

x̂S =
〈

xSxT

M

〉 〈

xMxT

M

〉

−1

xM , (3)

where the notation ()T and 〈·〉 denotes transpose and expectation, respectively. Defining the

covariances of the ensemble mean and internal variability CM ≡ 〈xMxT

M
〉 and CN ≡ 〈xNxT

N
〉,

respectively, it follows from (3) that
〈

xSxT

M

〉

= CM − CN/m, and that the estimate x̂S of the

signal is

x̂S =

(

I − 1

m
CNC−1

M

)

xM , (4)

where I is the identity matrix.

S/N analysis is now used to interpret the regression in (4) as a filter, and show that the re-

gression matrix
(

I − CNC−1

M
/m

)

is diagonal in basis of S/N EOFs; this interpretion is not

widely known, to the author’s knowledge. For each S/N EOF, S/N analysis identifies a vector

of coefficients f , a pattern p and a S/N ratio λ. The leading S/N EOF maximizes the S/N ratio

λ =
fT CMf

fT CNf
(5)

of the linear combination (fT x). Subsequent (in order of decreasing S/N ratio) S/N EOFs

maximize the S/N ratio under the constraint that their time-series be uncorrelated in time; unlike

usual EOFs, S/N EOFs are not orthogonal in space. The coefficient vectors are eigenvectors of

the matrix C−1

N
CM , whose eigenvalue decomposition is C−1

N
CM = FΛF−1 where the columns

of F are coefficient vectors and the entries of the diagonal matrix Λ are the associated S/N ratios.

Associated with the matrix F of coefficients is the matrix P of patterns defined by P ≡ F −T .

Since CNC−1

M
= PΛ−1F T , the optimal estimate in (4) of the SST-forced signal can be expressed
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using S/N EOFs as

x̂S = P
(

I − (mΛ)−1
)

F T xM

=
n

∑

i=1

pi

(

1 − (mΛii)
−1

)

fT

i
xM ,

(6)

where fi and pi are the i-th columns of the matrices F and P respectively, and Λii the diagonal

elements of the matrix Λ. The form of (6) shows the signal estimate is obtained by (i) forming

the linear combinations determined by the coefficients fi, (ii) multiplying by a damping factor

that depends on the S/N ratio and ensemble size, and (iii) reconstructing the field using the

patterns. Small S/N ratio and small ensemble size lead to larger damping. No damping is

necessary in the limits of large S/N ratio or large ensemble size, in which case PF T = I

implies x̂S = xM . Terms can be omitted from the sum or the damping coefficient set to zero

when the S/N EOF represents an unphysical or erroneous response of the GCM to SST forcing.

Estimation of the S/N EOFs requires inverting the noise covariance CN which is invertible

for the domain size, ensemble size and number of years used. The inversion of the noise ma-

trix CN is computed from its eigenvalue decomposition. Since the smallest eigenvalues of the

noise covariance are likely underestimated, an approach from ridge regression is used and the

leading (in decreasing order) 80% of the eigenvalues are kept at their estimated value and the

remaining eigenvalues set to the value of the eigenvalue at the 80% limit. This procedure has

the effect of inflating the intra-ensemble spread associated with the smallest eigenvalues of the

noise covariance matrix CN .

4. Results

The results are summarized using a Sahel rainfall index that is defined as the average of

the precipitation in the box 20◦W to 17◦E and 10◦N to 19◦N. This index is computed for the



X - 8 TIPPETT : FILTERING GCM SIMULATED SAHEL RAINFALL

observations and for three sets of GCM data: the raw ensemble mean and two filter experiments.

The first filter experiment, denoted F1, uses (6) and keeps the modes in the sum that have

a S/N ratio greater than 1.134; this value corresponds to a correlation of 0.75. The second

filter experiment, F2, keeps modes that have a S/N ratio greater than 1.134 and that improve

the correlation (high frequency) with the observed Sahel index. The notation rtotal denotes the

correlation of the GCM index with the observed index, and rhf denotes the correlation of the

high-frequency components, defined as the deviation from the 21-year running-average.

Correlations between the observations and the GCM indices are shown in Table 2; also in-

cluded are correlation with the standardized multi-model sum of the GCM time-series. The

correlation rtotal of the raw GCM output of most of the models is high; rtotal = 0.72 for the

multi-model sum. However, much of that correlation is related to decadal variability, and only

one GCM has a significant high-frequency correlation with the observations; rhf = 0.31 for the

multi-model sum. Figure 1a shows that the GCM high frequency indices are more similar to

each other than to the observations; the correlation of the multi-model sum with the individual

models, a perfect model skill measure, is 0.71. The raw indices, for the most part, do not cor-

relate well with NINO 3.4 (see Table 2); the observed correlation between the Sahel index and

NINO 3.4 is -0.59.

The F1 filter results show a generally positive impact on the correlation rtotal and a more

modest positive impact on rhf. In the F2 filter, 3 to 8 modes that improve the correlation rhf are

retained, explaining from 44 to 75 percent of the GCM precipitation variance in the entire West

Africa domain (see Table 2). Filter F2 shows increased values of the total correlation (rtotal =

0.86 for the multi-model sum) as well as increased values of the high-frequency correlation
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(rhf = 0.71 for the multi-model sum; see Fig. 1b). The high-frequency correlation of the

multi-model sum of the F2 filter indices with NINO 3.4 is -0.56, similar to the observed value.

Model error is defined for each GCM as the difference between the F1 and F2 filtered sim-

ulations and the associated standardized high-frequency Sahel index time-series (see Fig. 2a)

is constructed. Although there is considerable variability across models, the correlation of the

multi-model sum of the model error indices with that of the individual models is 0.62, and there

is consensus in the sign of the model error in some years. Correlation of the SST with the multi-

model sum of the model error indices (Fig. 2b) shows small positive (maximum value ∼ 0.4)

correlations off the coast of West Africa. The sign of the correlation means that warm SST near

the West African coast is associated with a positive error in the GCM simulated Sahel index.

The largest positive value of the mean model error index occurs in JAS 1984, the driest of the

drought years, when several of the GCMs overestimated Sahel precipitation (Fig. 2a). The SST

of 1984 was anomalously warm in the Gulf of Guinea and off the coast of Senegal, exceeding

27◦C (see Figs. 3a,b). CMAP estimates show positive rainfall anomalies in the Guinea coast

region (consistent with the warm SST anomalies in the Gulf of Guinea) and negative rainfall

anomalies in the Sahel region and off the coast of Senegal (see Fig. 3c). However, the GCMs,

while simulating dry conditions in part of the Sahel region, simulated wetter conditions on the

coast near the warm SST anomalies; the precipitation anomaly of the ECPC GCM is shown

in Fig. 3d. Warm local SST appears to be associated with spurious enhanced GCM simulated

precipitation. The negative precipitation anomalies over ocean in the CMAP estimate are based

on satellite data and may reflect decreased cloudiness that may be related to the coincident posi-

tive SST anomalies. Also reduced Sahel rainfall is associated with weak monsoon flow, driving



X - 10 TIPPETT : FILTERING GCM SIMULATED SAHEL RAINFALL

less oceanic upwelling in the Guinea Dome region and resulting in warmer local SST [Fontaine

et al., 1995; Signorini et al., 1999]. Either mechanism gives SST that is negatively correlated

with local preciptation which is difficult to represent in the SST-forced GCM simulations.

5. Summary

Many GCM simulations of Sahelian rainfall reproduce aspects of decadal variability observed

in the 20th century. Fewer models, however, reproduce the observed interannual variability.

Here a signal-to-noise (S/N) filtering technique has been applied to the precipitation simulations

of seven GCMs forced by observed SST. There is little improvement when the S/N ratio is used

to determine filter coefficients. Significant improvement is seen when modes classified as model

error are removed.

Model error, defined as comprising those components that degrade simulation skill in spite of

significant S/N ratio, shows some coherence across the seven GCMs. The multi-model model

error time-series shows correlation with regional Atlantic SST; the efficacy of using the S/N

EOFs as a filter basis may be the result of signal and error being related to SST. In 1984 when

several GCMs overestimated Sahel rainfall, warm SST conditions were observed near the coast

of West Africa. The enhanced SST, possibly due to reduced cloudiness or oceanic upwelling,

appears to be associated with spurrious enhanced precipitation the GCMs. We hypothesize that

part of the systematic model error observed in GCM simulations of Sahel rainfall is related to

error in the representation of ocean-atmosphere interaction in SST-forced simulations.
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Model period ensemble size resolution

ECHAM 4.5 1950-2004 24 T42

GFDL AM2p12b 1950-2000 10 2.5◦ × 2◦

NSIPP-1 1950-2000 9 2.5◦ × 2.5◦

ECPC 1950-2001 10 T63

COLA 1950-2003 10 T63

CCM 3.6 1950-2004 24 T42

NCEP MR9 1950-1999 10 T42

Table 1. The simulation period, ensemble size and horizontal resolution of the GCMs used in

this study.
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Model modes (F2) % variance (F2) Hulme Sahel index NINO 3.4

rtotal rhf rhf

raw F1 F2 raw F1 F2 raw F1 F2

ECHAM 4.5 1,2,3,4,7,8, 75 0.54 0.72 0.81 0.077 0.37 0.67 0.053 -0.17 -0.44

GFDL AM2p12b 1,2,3,4,5, 58 0.62 0.63 0.75 0.23 0.27 0.57 -0.18 -0.18 -0.37

NSIPP-1 1,2,3,4, 63 0.73 0.75 0.8 0.43 0.46 0.59 -0.37 -0.39 -0.52

ECPC 1,2,4,5, 51 0.7 0.71 0.76 0.25 0.29 0.56 -0.57 -0.59 -0.62

COLA 1,2,4, 46 0.57 0.56 0.84 0.094 0.08 0.64 -0.1 -0.093 -0.27

CCM 3.6 1,2,4,5,6, 44 0.34 0.33 0.67 0.14 0.065 0.51 -0.2 -0.18 -0.5

NCEP MR9 1,2,4,5,6,7,8,9, 74 0.63 0.67 0.71 0.25 0.29 0.4 -0.38 -0.4 -0.42

Multi-model sum 0.72 0.76 0.86 0.31 0.39 0.71 -0.33 -0.39 -0.56

Table 2. Correlations of the simulation (unfiltered and two types of filters) of each of the seven

GCMs with observed precipitation and the ENSO state. See text for detail.



TIPPETT : FILTERING GCM SIMULATED SAHEL RAINFALL X - 17

(a)

1950 1960 1970 1980 1990 2000
−3

−2

−1

0

1

2

3
Correlation of multi−model average with obs.=0.31

(b)

1950 1960 1970 1980 1990 2000
−3

−2

−1

0

1

2

3
Correlation of multi−model average with obs.=0.71

Figure 1. Time-series of the high-frequency components of the observed Sahel index (heavy

line) and the GCM simulated index computed from the (a) raw ensemble mean and (b) filter F2.

The vertical line marks JAS 1984.
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Figure 2. (a) The time-series of the high-frequency components of the standardized difference

of the F1 and F2 Sahel indices; heavy line is the multi-model mean; the vertical line marks JAS

1984. (b) Correlation of the multi-model mean with SST.
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Figure 3. JAS 1984 (a) SST (contour interval is 1◦C), (b) SST anomaly with respect to

1950-1999 climatology (contour interval is 0.25◦C), (c) CMAP, (d) ECPC simulated and (e) F2

filtered precipitation anomalies. Darkest shade of green (brown) indicates an anomaly of 3 (-3)

mm/day.


