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The bidirectional wave transformation developed for scalar equations is shown to have 
interesting extensions for first-order hyperbolic systems. Assuming a localized waveform of the 
solution gives an equation for the envelope of the localized wave. The type of the envelope 
equation depends on the characteristics of the original hyperbolic equations, and the speed of 
the localized wave. This method is applied to the cold plasma equations, In the general case 
integral representations are found for the fundamental solutions; and in a special case, exact 
solutions are constructed. 

I. INTRODUCTION 

There has been much interest recently in novel classes of 
solutions of various wave equations, the so-called localized 
waves. In contrast to plane waves, the localized waves are 
smooth solutions of hyperbolic equations, such as the wave 
equation, with the property that much of their energy is con- 
tained in a small, well-defined region of space-time and re- 
mains so over very large distances as they propagate from 
their initial position. These types of solutions are of interest 
for engineering applications since they offer the possibility of 
novel methods of energy transmission.’ They are also of 
theoretical interest as possible representations of parti- 
cles.2.3 

The first examples of localized waves were Britting- 
ham’s focus wave mode solutions that were derived by heu- 
ristic arguments.4 Ziolkowski presented a method of deriv- 
ing these localized wave solutions for the wave equation.5 
He assumed the form of the solution to be 

\I, (x,y,z,t) = e”“+ “$(x,y,z - t). (1.1) 
Inserting this into the scalar wave equation with wave speed 
normalized to unity yields a Schradinger equation 

[ 4$dr -I- VT ] ?,Kx,y,7-1 = 0, (1.2) 
where 7 = z - t, and x and y are the perpendicular coordi- 
nates. Choosing a particular solution of this equation, such 
as the Gaussian pulse, 

zJ(x,y,~) = e -fi”“z” + ““/4*i(z, + ir), (1.3) 

wherep = ,/m, one obtains a localized pulse solution of 
the wave equation that translates through space-time with 
only local variations: 

V’(x,y,z,t) = e’O” + ‘) e 
- /3p2/(4, + IT) 

4ni(z, + ir) ’ 
(1.4) 

By similar means, localized wave solutions have been found 
for the telegraph’ and Klein-Gordon equations.” 

An idea common in the derivation of these localized 
waves is that the solution is assumed to have a particular 
form. For instance, in the bidirectional form,6 the basic solu- 
tion is assumed to be a product of a forward traveling plane 

wave, a backward traveling plane wave, and an unknown 
envelope function that depends on transverse variables and 
one of the translating variables. Fur example, 

q(x,y,z,t) = $(x,y,7-fe”r’fe- iflr, 
where 

(1.5) 

T = y(z - vt), (1.6) 

77 = (z + AtI, (1.7) 
and a, fi, y, Y, and/t are parameters. This form is then substi- 
tuted into the original equation and an equation is obtained 
for the envelope function. The choice of parameters deter- 
mines the equation for the envelope function. Since the high- 
est-order derivatives are only affected by the parameter V, it 
is this parameter that determines the type of the envelope 
equation. In previous work the parameter v has been chosen 
so that the type ofenvelope equation is either elliptic or para- 
bolic. The choice of the other parameters, while not affecting 
the type of the envelope equation, is also important, For 
example, if the resulting envelope equation is elliptic, the 
existence of regular solutions vanishing at infinity is depen- 
dent on the undifferentiated terms in the equation. 

Using the results for scalar equations, results have been 
obtained for systems of equations. For example, localized 
traveling wave solutions to Maxwell’s equations have been 
presented using solutions to the scalar wave equation and 
I-Iertz potentials.’ Also, solutions to the Dirac equations 
were found using solutions of the Klein-Gordon equatiom3 

The equations encountered in mathematical physics for 
wave propagation are often in the form of a system of linear 
first-order hyperbolic partial differential equations, which, 
in general, cannot be reduced to a single scalar equation. 
Thus it is of interest to know if such localized wave solutions 
can be found for these problems. In this paper, the methods 
for finding localized wave solutions for scalar equations are 
extended to first-order linear systems of hyperbolic equa- 
tions. The form of the solution described above is assumed 
and a new system is obtained. It is desirable that the type of 
the new system be known; we give a simple criteria that en- 
sures the resulting system be elliptic or parabolic. 

The method is then applied to a specific system of equa- 
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tions, the cold plasma equations. For a special case (an un- 
magnetized plasma) the cold plasma equations can be 
brought into a vector Klein-Gordon equation form and the 
solutions obtained directly. However, in general, no such 
reduction is apparent. In this case the equations can be trans- 
formed to an elliptic system and a fundamental solution 
found by the method of Fourier transform. 

II. TRANSFORMATION OF FIRST-ORDER HYPERBOLIC 
PARTIAL DIFFERENTIAL EQUATIONS 

Consider the linear first-order system of partial differen- 
tial equations in one time and three space variables: 

u, +A,u, +A,#, +A,u, +A,u=O, (2.1) 
where u is an n vector, and the A, are n X n matrices, possibly 
functions of (x,y,z,t). The type of the equation system is 
determined by the existence of real characteristics or equiv- 
alently, the existence of propagating wave fronts. The equa- 
tion for the characteristics is 

P(c4,4,,$,4,) = det(W+ +,A, + 4,A + AA, 1 = 0. 
(2.2) 

The equations are hyperbolic if for any 4, ,q5Y ,$, not identi- 
cally equal to zero, the characteristic equation 
P(e%,,+,,$,,e5, ) = 0 has n real roots counting multiplicities. 
The speed s at which a disturbance propagates is given by 

s = Iq5, I/J& + 4: + 4:. (2.3) 

add the following 
El,4.% ,d).dz 1 = 0, then 

assumption: that if 

minle5,/4Z 1 = S> 0. (2.4) 
This means that we will assume that all disturbances propa- 
gate in the z direction with finite speed strictly greater than 
zero. This assumption is violated if there are time indepen- 
dent propagating disturbances, e.g., static solutions permit 
infinite propagation speeds. 

Now, as discussed above, assume the solution to be a 
product of backward and forward traveling waves with a 
function depending on the transverse variables (x,y) and the 
translating variable r, that is, 

u (x,y,z,t) = u (x,y,T)e’““e - ‘Or, (2.5) 
where the translating variables 

T = y(z - vt), (2.6) 
11 = (z + At). (2.7) 

The constants CY andP have dimensions of inverse length and 
the constants A and Y have dimensions of velocity so that r 
and 17 are spatial variables. Therefore, we are trying to con- 
struct a localized wave propagating in thez direction. Insert- 
ing the form (2.5) into the original equation yields a first- 
order system with independent variables x, y, and r: 

y(A, -vZ)fl, +A,u, +A,u, t-&=0, (2.8) 
where 

2, = A, + i(cY - &)A, + i(aA - PY)Z. (2.9) 
The equation for the characteristics of this system is 

DeM,y(A, - 4 + AA, +&A) = 0. (2.10) 

This equation can be written in terms of the polynomial P 
defined by the original system. In particular, the characteris- 
tic condition becomes 

P( - v4T,4x,~y,Y4r 1 = 0. (2.11) 

Using the assumption that the original system has a mini- 
mum speed, S> 0, at which disturbances propagate in the z 
direction, one sees that the characteristic equation 

P(abcde) =0 , 7 , , 
has real roots only when 

(2.12) 

la/e1 as. (2.13) 

Thus the characteristic equation has no real roots if 1~1 <S; 
that is, the transformed system is elliptic if the solution 
translates at a speed less than the slowest speed of propaga- 
tion in the z direction of the original system. The distinction 
between the slowest speed of propagation of the system and 
the slowest speed of propagation in the z direction is needed 
only for systems where there is a preferred direction. For 
isotropic equations such as the wave equation, the choice of 
the direction of propagation of the localized wave is arbi- 
trary. However, for a system such as the magnetohydrodyn- 
amics equations where wave propagation is highly direction- 
al, the choice of direction of propagation of the localized 
wave depends on the wave structure of the system. 

This condition for ellipticity is quite natural. In a hyper- 
bolic system the speed at which information propagates 
through the system is limited. Linear combinations of the 
dependent variables propagate at different speeds. In the 
present case, by forcing the data to move at a single speed Y, 
the speed at which the data propagates is limited by the 
slowest speed of propagation in the z direction of the system. 
On the other hand, if Y is chosen to be one of the eigenvalues 
of A,, as in the case of the focus wave modes, the trans- 
formed system is parabolic in the sense that one cannot solve 
for the r derivatives. This choice of Y corresponds to con- 
structing a localized wave solution propagating at the same 
speed at which disturbances propagate in the z direction. 
Solutions to either elliptic or parabolic problems may typi- 
cally have some weak decay properties at infinity so that the 
solution to the original problem with either of these choices 
for Y will be a localized modulated traveling wave. 

Note that as in the scalar case the traveling plane waves 
play no role in determining the type of the system. However, 
they are important in determining the nature of the solutions 
to the elliptic problem because they produce the undifferen- 
tiated terms contained in &. 

If the original problem has constant coefficients, a first 
step in understanding the resulting elliptic problem is to find 
a fundamental solution for the elliptic problem using Fourier 
transform methods. This is the approach we have taken with 
the cold plasma equations. 

III. LINEARIZED COLD PLASMA EQUATIONS 

We would now like to apply the method of Sec. II to the 
linearized cold plasma equations as found, for example in 
Ref. 7: 

0, = (q/m)[E+ (I/C)UXB”], (3.la) 
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CVXB = 4n-n,,qv + E,, (3.lb) 

cVxE= -B,, (3,lc) 

with B,, = B,,i being the background magnetic field, B the 
magnetic field vector, E the electric field strength vector, v 
the velocity vector, q the charge of an electron, m its mass, 
and c the speed of light. Momentum balance is represented 
by Eqs. (3.la), and Eqs. (3.lb) and (3.1~) are the usual 
Maxwell equations. We take the plasma to be an electron 
plasma, neglecting the heavier ions. These equations are of 
interest because they model wave propagation in a plasma 
such as the one found in the upper atmosphere, where ther- 
mal effects can be neglected. Setting the vector 

A first step in understanding the system of transformed 
equations is to find its fundamental solution or Green’s func- 
tion This fundamental solution is obtained by solving the 
corresponding inhomogeneous system having a forcing delta 
function on its right-hand side. This procedure can be ac- 
complished, at least formally, using the method of Fourier 
transform. The Fourier transform variables are 

Using the familiar properties of the Fourier transform we 
have an algebraic equation for it, the Fourier transform of u: 

V 

u= E, 
0 

(3.2) 
B 

w-i= 1, 

where W is explicitly 

we can write the cold plasma equations in the form of (2.1)) 
a first-order system of nine partial differential equations. We 
will use the same notation as in Sec. II for the coefficient 
matrices A,, which may be trivially written down. Note that 
the coefficient matrices are constants. The equation for the 
characteristics as given by (2.2) is 

&(&/c’ - 4; - 4; - qp,* = 0, (3.3) 
which shows that the equations are indeed hyperbolic. 
Clearly, these equations are highly degenerate; and this de- 
generacy is seen in the leading factor: 4:. Because of this 
factor, the assumption in (2.4) does not hold. These degen- 
eracies come from the existence of time independent distur- 
bances (static solutions) of the form 

E = VQ>(x,y,z), 

B = VY(&Y,Z), (3.4) 

u = u(x,y,z), 

iv-. ?a, - vm, +‘4,k, +A*& -f-J&, (3.7) 
and 1 is a vector of ones. The matrix W can be explicitly 
inverted in (3.6) to define the sohttion vector in Fourier 
space: 

in which there are five arbitrary functions. However, stan- 
dard techniques exist that can be used to deal with this de- 
generacy. 

Invoking the bidirectional solution form (2.5). results 
in a new first-order system with independent variables x,y,r 
as in (2.8). The characteristic equation for the transformed 
plasma equation system is given by (2.9) to be 

- (yv~;)~((c”-~)(y~;)*+c2~~ +2&)“=0. 
(3.5) 

ti = W ‘-1 = ( @‘.l),‘Q(k,,k,x,k,), (3.8) 
where Q is the determinant of Wand hence a polynomial in 
I<;, k, , and k,, and @J is defined by f 3.8). In fact, Q is a 
polynomial in k; and k f where the transverse wave number 

It, = @y-Tq (3.9) 
The form of the denominator gives information as to the 
structure of the sohitions. The polynomial Q(k,,k, ) is of 
ninth degree in k; and of fourth degree in k, with only even 
powers of k, appearing. The final step is to invert the trans- 
forms. Using the method of residues, one can invert (in prin- 
ciple) the transforms in kr and k, . Because Q is fourth de- 
gree in k, with only even powers appearing, one can always 
find the roots in k, and then invert that transform. In some 
special cases Qcan be factored explicitly and both the inverse 
transforms in k; and k; can be computed. 

We introduce the standard definitions for the cyclotron 
frequency and the plasma frequency, respectively: 

co: = 4n-n,,q’/m, (3.lOa) 

CO,, = qB,,/mc. (3.iOb) 

In the special case where a = B = 0, v = c, and y = 1, the 
transformed solution reduces to the form: 

ii= (~.l)/ki(kic’-a’)‘(ktc”+w~)‘, (3.11) 

where 
Due to the nature of the original equations (3.1), the new 
system is only partially elliptic if v < c. As stated before, if v is 
chosen to be one of the eigenvalues of A, : c, - c, or 0, one 
cannot solve for the r derivatives and the system is parabolic. 

1 

a’=c~~,,k:cJ/(kTc’+fC)~)‘fu$. (3.12) 

Another special caseis B. = 0, a = fl= 0, yand varbitrary. 
The transformed solution in this case becomes: 

.“. iv 1 
ZZ= (yvk,)“((yvk,)‘-w~)(-c’k: + (?-c*)k2, -GO;) * 

I 

(3.6) 

(3.13) 

In these special cases we can formally invert the transforms be constructed from which asymptotic information could be 
in the kr and k, variables, leaving only an integral with re- found. 
spect to e = tan - ‘(k/k, ). Consequently, an integral rep- For the special case of OX B,, = 0 some solutions can be 
resentation of the fundamental localized wave solution can written down directly. First, the equation system can be 
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combined to obtain a vector Klein-Gordon equation. In par- 
ticular, combining Eqs. (3. lb) and (3. lc), we obtain 

c’VXVXB = n,qVxv - B,, 

or 

(a,, - c’V”)B = n,qVxv, (3.14) 

since V-B = 0. Taking the derivative with respect to t of 
(3.14) yields 

(a,, - c2v2 + co; ) B, = 0. (3.15) 

We now examine the envelope equation. Assuming the bi- 
directional solution form (2.5), 

B, = 2, (x,y,T) e’““e - ‘Or, (3.16) 

the equation for the forward propagating envelope 3, is 

[ - 2~; - g(2 - s)az, + 2iaa, + b ]B, = 0, 
(3.17) 

where 

a = j(c2 - I?)/? - ay(2 + Av), 

b =cr*(~~--;1~) +p*$(c*-ti) 

(3.18a) 

- 2aDy(c* + ;Iv) + a$, (3.18b) 

v; =a: +a.;. (3.18~) 

For 1’ <c Eq. (3.17) is elliptic. By an appropriate choice of 
constants this operator can be made either a Schriidinger 
operator or a Helmholtz operator. To obtain a Schrodinger 
operator, setting Y = R = c, p = 0 gives 

(c’Vf + 4ia$,)B, = 0. (3.19) 

To get a Helmholtz operator, we set 

j> = c2/(c2 - I?). (3.20) 

This gives 

( - c2v2 + 2ia’a, + b ‘)%, = 0, (3.21) 

where 

F=v: +a:, (3.22a) 

a’ = c’fl- ay(c* + ilv), (3.22b) 

b’=a2(c2-jl’) +c*fl*-2a&(c2+/Iv) +c$. 
(3.22~) 

To eliminate the first derivatives we set 

/z = (P/ay- l)(c*/~). 

This gives 

(3.23) 

[ -~*~~+a~(c~--R~) -~*c2+w~]8, =O. (3.24) 

For there to be nonzero, nonsingular solutions of this equa- 
tion, which vanish at infinity, one must have 

a’(c’-A *) -p2c2 + co; CO. (3.25) 

In Ref. 3 the choice 

/I = c2( l/v) (3.26a) 

was made which implies 
j3 = 2ay. (3.26b) 

In this case, the condition (3.25) becomes 

- 4a2yZc2 - a2c4/yV + co; < 0. (3.27) 

Choosing 

y2 = a2c4/wiy, (3.28) 

which requires 

a = y(v/c)oJc, (3.29) 

further reduces this condition to the simple form: 

- 4a2y2c2 < 0. (3.30) 

These choices of parameters result in a Helmholtz equation 
for the envelope solution: 

(V2+4fa2)Et =O. (3.31) 

A general solution to this equation is 

$(x,y,~) =j,(2ayR)P;“(r/R)cos(mB), (3.32) 

where R = x2 + y* + *,j, is the spherical Bessel function 
of order I, and P;” is the associated Legendre function. AS 
noted in Ref. 3, although the integral of 1$1’ is not finite, 
finite energy solutions can be constructed by taking a super- 
position of the fundamental solutions (1.5) with $(x,y,r) 
given by (3.32). 

Using the localized solutions of the Klein-Gordon 
equation derived in Ref. 6, solutions can be constructed to 
the cold plasma equations (3.1). To form a solution that is 
consistent with the assumption that VXB, = 0, either v is 
parallel to B, or B, = 0. For the case of v parallel to B,, a 
localized wave solution of the cold plasma equations can 
then be constructed with (3.32) as follows: 

A=%, 

B = VxA, 

E= -A, -V@,, 

v= - (q/m)A-Vd?, 
where 

(3.33a) 

(3.33b) 

(3.33c) 

(3.33d) 

Y (x,y,z,t) = Jt(x,y,r) ein”e - ‘Or (3.34) 

is a localized wave solution to the Klein-Gordon equation 
(3.15) and the terms A and Q, are constrained by the rela- 
tion: 

V(Q>,, + w;‘D - V.A) = 0. (3.35) 

Note that the role played by A and a, in Eqs. (3.33b) and 
(3.3 lc) is like that of the usual vector and scalar potentials 
in electromagnetic theory. Equation (3.35) can be under- 
stood then as specifying a gauge. A specific choice of @ is to 
choose 

cP=--!-- ‘V.A(s)sin(ti,(t--))ds. 
s 

(3.36) 
*P 

Note that the flow is a compressible one and that the diver- 
gence of the electric field is nonzero and localized, indicating 
some moving localized charge density. 

For the case B, = 0 we construct a different type of 
localized wave solution by choosing 

A = Vx(i’I’) (3.37) 

and choosing E, B, and v as before. Since V*A = 0 we may 
chose Q = 0. This gives a solution where, unlike the solution 
described in (3.36)) the flow is incompressible and the diver- 
gence of E is zero. 
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Cold Plasma Localized Wave Solution Bessel function times 3.0704 cm. Note that the localization 
in the z direction is scaled by y, 

(a) IV. CONCLUSIONS 
1.0 The bidirectional wave transformation developed for 

scalar equations was extended to first-order hyperbolic sys- 
terns. Assuming a localized waveform of the solution gives 
an equation for the envelope of the localized wave. The type 
of the envelope equation depends on the characteristics of 
the original hyperbolic equations, and the speed of the local- 
ized wave. In particular, if the speed of the localized wave is 
less than the speeds associated with the characteristics ofthe 
original equations, the envelope equation is elliptic. 

This method was applied to the cold plasma equations. 
In rhe general case, integral representations were found for 
the fundamental solutions; and in a special case, exact solu- 
tions were constructed. These exact solutions were of two 
types, one compressible, the other incompressible. An unan- 
swered question, however, is the possibility of exciting such 
solutions. This issue is beyond the scope of the present work 
and will be addressed in future efforts. 

The existence of these localized waves is of interest both 
for the engineering possibilities they suggest and as a way of 
understanding wave propagation in linear hyperbolic partial 
differential equations. In this paper we have made explicit 
the relation between Iocalized wave solutions and the wave 
structure of the differential equation. This characterization 
suggests that solutions of this type may indeed be typical of 
linear hyperbolic equations. There are many other equation 
sets such as the equations of magnetohydrodynamics for 
which the existence of localized waves would be of interest. 
Moreover, this decomposition offers novel ways of analyzing~ 
the wave structure of linear hyperbolic equations. For exam- 
ple, the analysis done in scattering theory using plane waves 
as a solution basis might be reexamined using localized 
waves. 
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