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ABSTRACT

There are a variety of multivariate statistical methods for analyzing the relations

between two data sets. Two commonly used methods are canonical correlation anal-

ysis (CCA) and maximum covariance analysis (MCA) which find the projections of

the data onto coupled patterns with maximum correlation and covariance, respectively.

These projections are often used in linear prediction models. Redundancy analysis and

principal predictor analysis construct projections that maximize the explained variance

and the sum of squared correlations of regression models. This paper shows that the

above patterns methods are equivalent to different diagonalizations of the regression

between the two data sets. The different diagonalizations are computed using the sin-

gular value decomposition of the regression matrix developed using data that is suit-

ably transformed for each method. This common framework for the pattern methods

permits easy comparison of their properties. Principal component regression is shown

to be a special case of CCA-based regression. A commonly used linear prediction

model constructed from MCA patterns does not give a least-squares estimate since

correlations among MCA predictors are neglected. A variation, denoted LSE-MCA,

is suggested that uses the same patterns but minimizes squared error. Since the differ-

ent pattern methods correspond to diagonalizations of the same regression matrix, they

all produce the same regression model when a complete set of patterns is used. Differ-

ent prediction models are obtained when when an incomplete set of patterns is used,

with each method optimizing different properties of the regression. Some key points

are illustrated in two idealized examples, and the methods are applied to statistical

downscaling of rainfall over the Northeast of Brazil.



1. Introduction

Multivariate statistical methods are used to analyze observational and model data, to make

statistical forecasts and to calibrate or correct dynamical forecasts. Some of the most commonly

used methods include principal component analysis (PCA), maximum covariance analysis (MCA)

and canonical correlation analysis (CCA) (e.g., Bretherton et al. 1992). PCA is usually applied to

a single data set, finding the projections (empirical orthogonal functions; EOFs) or components

that explain the most variance. Methods such as CCA and MCA work with two data sets, finding

projections that optimize some measure of linear association between the two data sets: CCA

selects components of each data set so as to maximize their correlation; MCA does likewise,

except maximizing covariance. A common application of these methods is the construction of

linear prediction models based on the identified, and often physically meaningful, coupled patterns.

Redundancy analysis (RDA) and principal predictor analysis (PPA) are pattern methods specif-

ically tailored for use in linear regression models and, unlike CCA and MCA, are asymmetric in

their treatment of the two data sets, identifying one data set as the predictor and the other as the

predictand. RDA selects predictor components that maximize explained variance (von Storch and

Zwiers 1999; Wang and Zwiers 2001). PPA selects predictor components that maximize the sum of

squared correlations (Thacker 1999). Another commonly used pattern regression method is prin-

cipal component regression (PCR; e.g., Yu et al. 1997) in which PCA is applied to the predictor

field and then a multiple linear regression is developed between the EOF coefficients or principal

components (PCs) and each predictand element individually.

The purpose of this paper is to elucidate the connection between methods for finding coupled

patterns and multivariate regression. A key element is the use of the singular value decomposition

(SVD) to analyze the matrix of regression coefficients. The SVD reveals the structure of the regres-

sion by finding orthogonal transformations that diagonalize the regression. The singular values are

the regression coefficients of the diagonalized regression. The regression is invariant with respect
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to linear transformations of the data (as long as the predictor transformation is invertible) in the

sense that the regression matrix is transformed in the same way as the data. However, the SVD

of the regression matrix is not invariant since, after a linear transformation of the data, the trans-

formations that diagonalize the regression are generally no longer orthogonal. Therefore applying

the SVD to regression matrices developed with different transformations of the data yields distinct

diagonalizations of the regression. Furthermore, these distinct diagonalizations diagnose different

properties of the regression as measured by the singular values. For instance, previous work has

shown that when the data are expressed in the basis of its principal components, the regression

matrix reduces to the cross-covariance matrix and its SVD corresponds to CCA with the singular

values being the canonical correlations (Bretherton et al. 1992; DelSole and Chang 2003). Here

we extend this idea and show that MCA, RDA and PPA are equivalent to SVDs of the regression

developed using data that is transformed in a distinct manner for each method. The connection

between the pattern methods and multivariate regression provides a common framework that is

useful for understanding and comparing the pattern methods, as well as for computation.

The paper is organized as follows. In Section 2 we examine in a univariate regression how,

with appropriate linear transformations of the data, the regression coefficient measures correlation,

explained variance, or covariance. In Section 3 we examine the behavior of multivariate regression

when linear transformations are applied to the data. In Section 4 we analyze the multivariate

regression and obtain the coupled pattern methods as singular vectors of a transformed regression.

We discuss reduced-rank regression in Section 5. Some of the key issues are illustrated with

idealized examples in Section 6. The methods are compared in a statistical downscaling example

in Section 7. Section 8 gives a summary and conclusions.
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2. Univariate linear regression

In the case of a single predictand and a single predictor, an estimateŷ of the predictandy based

on the predictorx is given by the linear regression

ŷ = ax (1)

where the regression coefficienta is

a =
〈xy〉
〈x2〉

, (2)

and〈·〉 denotes expectation; we takex andy to be anomaly values, that is, deviations from their

respective means, and thus the regression equation contains no constant term. The regression

coefficient can be manipulated to obtain quantities such as correlation, explained variance and

covariance which measure aspects of the linear relation between predictor and predictand. Specif-

ically,

correlation=
〈xy〉√
〈x2〉〈y2〉

= a

√
〈x2〉
〈y2〉

,

√
explained variance=

|〈xy〉|√
〈x2〉

= |a|
√
〈x2〉 ,

covariance=〈yx〉 = a〈x2〉 .

(3)

Here “explained variance” means the variance ofy explained by the regression,not the fraction

of variance which is the square of the correlation. The difference of the variance ofy and the

explained variance is the error variance of the regression. Since the linear regression minimizes

squared error, it maximizes explained variance.

The regression coefficienta changes in a simple way when a linear scaling is applied to the

variables. Suppose that new variables are defined byx′ = lx andy′ = my wherel andm are

scalars andl 6= 0. The regression equation for the new variables is

ŷ′ = a′x′ , (4)
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where the new regression coefficienta′ is related to the original regression coefficient by

a′ =
〈x′y′〉
〈x′2〉

=
m

l

〈xy〉
〈x2〉

=
m

l
a . (5)

Combining Eqs. (3) and (5) shows that particular choices ofl and m lead to the transformed

regression coefficienta′ having the following interpretations:

• when both variables are normalized to have unit variance,x′ = x/
√
〈x2〉, y′ = y/

√
〈y2〉,

and the regression coefficienta′ is the correlation betweenx andy;

• whenx alone is normalized to have unit variance,x′ = x/
√
〈x2〉, and the magnitude of the

regression coefficient|a′| is the square-root of the variance explained byx;

• whenx is normalized by its variance,x′ = x/〈x2〉, and the regression coefficienta′ is the

covariance betweenx andy.

The connection between transformations of the data and the interpretation of the regression

coefficient is simple but not particularly useful in the scalar case. The univariate regression does,

however, indicate that rescaling of the data, while changing the value and interpretation of the re-

gression coefficient, does not fundamentally change the regression; the rescalings of the data are

simply applied to the least-squares estimate and the regression coefficient. This concept is gener-

alized to the multivariate case in section 3, and in section 4 we present the appropriate multivariate

generalizations of these data transformations that lead to regression coefficients that measure: cor-

relation, explained variance or covariance–the same quantities that arise in methods for finding

coupled patterns.

3. Multivariate linear regression

Suppose that the multivariate predictandy is linearly related to the multivariate predictorx

wherex andy are anomaly fields; we use the convention thatx andy are column vectors. The
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least-squares estimateŷ of the predictand is given by linear regression as

ŷ =
〈
yxT

〉 〈
xxT

〉−1
x , (6)

where the notation()T and()−1 denote transpose and matrix inverse, respectively. Typically the

expectations are computed from data using sample-averages. The predictor data matrixX is the

matrix whosei-th column is thei-th sample of the predictorx; the number of rows ofX is equal to

the dimension ofx, and the number of columns ofX is equal to the number of samples. Likewise

the predictand data matrixY is the matrix whosei-th column is thei-th sample of the predictand

y. Then

ŷ = Ax , (7)

where the least-squares regression coefficient matrix is defined asA ≡
(
YXT

) (
XXT

)−1
.1

As in the univariate case of Eq. (5), linear transformations of the data lead to transformation of

the regression matrix. Suppose we introduce new variablesy′ = My andx′ = Lx whereL andM

are matrices. The regression matrixA′ relating the transformed variance is

A′ = Y′X′T (X′X′T )−1 = (MYXTLT )(LXXTLT )−1 . (8)

If, additionally,L is invertible then the transformed regression matrix has the simple form

A′ = MAL−1 , (9)

analogous to the univariate case in Eq. (5). This relation provides several pieces of useful informa-

tion. First, when the transformationL of the predictor is invertible, the least-squares estimateŷ′ of

y′ is

ŷ′ = A′x′ = MAL−1Lx = Mŷ , (10)

1We use the convention that the data inX andY are normalized by
√

n− 1 wheren is the number of samples. This

convention simplifies the notation by making〈xxT 〉 = XXT and〈yxT 〉 = YXT . The matrix of regression coefficient

is independent ofn.
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which means that the least-squares estimate using the transformed data is just the transformation

of the original least-squares estimate. Re-scaling the data or expressing it in another basis does not

fundamentally change the regression so long as the transformationL of predictor data is invertible.

The transformationL of the predictor data is not invertible whenLx = 0 for somex 6= 0,

which means that the transformL has the effect of reducing the number of predictors. Reducing

the number of predictors is often desirable when the dimension of the predictor is large compared to

the number of available samples. When the number of predictors is large compared to the number

of samples, the sample covariance matrixXXT is ill-conditioned or even singular, and reducing

the number of predictors regularizes the regression problem by making it have a unique solution

that is not overly sensitive to the data. The number of predictors is often reduced using principal

component analysis (PCA), which finds the components of the data that explain the most variance,

although other projections may be used as well (DelSole and Shukla 2006). Reducing the set

of predictors to some smaller number of principal components (PCs) is calledpre-filtering in the

context of CCA (Bretherton et al. 1992). In contrast to the general case of singular transformations

of the predictor data, whenL is the pre-filtering transformation that maps the data onto a subset of

its PCs, the regression developed with the pre-filtered data is the same as the original regression

applied to the pre-filtered data (see the Appendix).

The goal when selecting the number of predictors is a skillful model. However, the data used

to estimate the regression coefficients are not directly useful for determining the skill of the re-

gression.2 For instance, if the dimension of the predictorx exceeds the number of samples and

pre-filtering is done using the maximum number of PCs, the in-sample error is zero sinceY = AX.

However, since such a regression completely fits the data, including its random components, we

expect it to suffer fromoverfittingand have poor skill on independent data. Regression models with

fewer predictors are more likely to represent the actual relationships, avoid overfitting and better

2There are in-sample estimates of the out-of-sample error such as Akaike’s information criterion (AIC) and the

Bayesian information criterion (BIC) that take into account the number of predictors (Akaike 1973; Schwarz 1978).

6



predict out-of-sample data. To choose the number of predictors that optimizes the out-of-sample

skill of the regression, the data can be split into two segments with the regression coefficients

estimated using one segment and the number of predictors chosen to optimize the skill in the in-

dependent segment. This procedure does, however, give an overly optimistic estimate of skill due

to selection bias (Zucchini 2000), and the skill of the selected model should ideally be estimated

on a third independent set of data. In what follows, we assume that the number of predictors has

been reduced so that the number of predictors is less than the number of samples, and the predictor

covariance is invertible.

Another important consequence of the relation in Eq. (8) follows from noting that the error

variance(y′−ŷ′)T (y′−ŷ′) of the transformed variable is minimized, and that(y′−ŷ′)T (y′−ŷ′) =

(y − ŷ)T (MTM)(y − ŷ). Therefore, not only is the sum of squared error(y − ŷ)T (y − ŷ)

minimized, but so is the positive semi-definite quadratic function of the error(y−ŷ)T (MTM)(y−

ŷ). Changing the weighting of the error elements does not result in an estimate that is different

from the least-squares estimate, and in fact, some of the weights can be set to zero sinceM is not

required to be invertible. For instance, choosingM = eT
i whereei is thei-th column of the identity

matrix means that the least-squares estimate minimizes‖eT
i (y − ŷ)‖2 = (yi − ŷi)

2 which is the

error of thei-th element of the predictand. Therefore regression minimizes not only the total error

variance but the error variance of each element separately. Consequently, the regression estimate

developed using all the elements of the predictand simultaneously is the same as the one developed

with individual elements of the predictand separately. However, for questions of inference, such

as testing hypotheses about the regression coefficients, the multivariate character of the problem

cannot be neglected, and correlations between parameters must be considered.

This last property of regression aids the interpretation of principal component regression (PCR).

In PCR, regressions are developed between predictor PCs and and each of the predictands individ-

ually. The above conclusion means that PCR is the same as developing the regression between all

of the predictands and the PCs simultaneously. This shows a connection with canonical correlation

7



analysis (CCA) since a CCA-based regression model with EOF pre-filtering of the predictor (and

no other truncation) is the same as multiple linear regression between the predictor PCs and the

predictand (Glahn 1968; DelSole and Chang 2003). Therefore PCR is the same as a CCA-based re-

gression model with EOF pre-filtering of the predictor and no other truncation such as pre-filtering

of the predictand.

4. Analysis of the regression matrix

We now show that transforming the multivariate data in ways suggested by the univariate case

allows us to interpret the regression coefficients as correlation, variance explained, standardized

explained variance, or covariance of the original data. The SVD of the transformed regression ma-

trix diagonalizes the regression and identifies projections of the data that maximize these measures.

These projection are the same that are used in methods for finding coupled patterns.

a. Correlation

In the univariate case, normalizing the predictor and predictand by their standard deviation

makes the regression coefficient equal to the correlation between predictor and predictand. The

appropriate multivariate generalization is to multiply the variables by the inverse of the matrix

square-root3 of their covariance:

x′ = (XXT )−1/2x

y′ = (YYT )−1/2y .

(11)

The appearance of the inverse of the predictand covariance indicates that it may be necessary to

pre-filter the predictand as well as the predictor. The matrix square-root is not uniquely defined;

post-multiplication of a matrix square-root by an orthogonal matrix gives another matrix square-

root. A convenient choice for the matrix square-root of the inverse covariance is the transformation

3Z is a matrix square-root of the positive definite matrixP if ZZT = P.
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that replaces the data with its PC time series (normalized to have unit variance)–that is,x′ andy′ are

the normalized principal component scores. Such a transformation is sometimes called awhitening

transformation (DelSole and Tippett 2007) since the transformed data are uncorrelated and have

unit variance

X′X′T = I andY′Y′T = I (12)

whereI is the identity matrix. The regression matrix for predictingy′ from x′ is

A′ = Y′X′T (X′X′T )−1 = Y′X′T , (13)

sinceX′X′T = I. The(i, j)-th element ofA′ is the correlation between thei-th element ofy′ and

thej-th element ofx′, denotedy′i andx′
j respectively, since

A′
ij = eT

i A′ej = eT
i Y′X′T ej = eT

i Y′(eT
j X′)T = 〈y′ix′

j〉 , (14)

and the elements ofx′ andy′ have unit variance.

Instead of looking at the correlations between individual elements ofx′ andy′ we can examine

the correlation of 1-dimensional projections of the data. Projecting the transformed predictand and

predictor data onto theweight vectorsu andv, respectively, gives the time-series

uTY′
√

uTu
and

vTX′
√

vTv
, (15)

which from Eq. (12) have unit variance. The correlation between the time-series of the projections

is

uTY′(vTX′)T

√
uTu vTv

=
uTY′X′Tv√
uTu vTv

=
uTA′v√
uTu vTv

, (16)

where we use the definition ofA′ from Eq. (13). This ratio is maximized whenu and v are

respectively the left and right leading singular vectors ofA′ (Golub and Van Loan 1996). The

singular value decomposition (SVD) ofA′ is defined to be

A′ = USVT (17)
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whereU andV are square orthogonal matrices andS is a matrix with nonnegative diagonal entries

si ordered from largest to smallest; the columns ofU andV form complete, orthogonal bases for

the predictand and predictor, respectively. The singular vectorsui andvi are thei-th columns of

U andV and satisfy

uT
i A′vi = si , i = 1, . . . , k , (18)

wherek is the smaller of row and column dimensions ofA′. Therefores1 = uT
1 A′v1 is the largest

possible correlation between projections of the data. The next largest singular values2 = uT
2 A′v2

is the largest possible correlation between projections of the data subject to the constraint that

the projections be orthogonal to the first ones, that is, the constraint thatuT
2 u1 = vT

2 v1 = 0 .

This orthogonality constraint has the consequence that the associated time-series are uncorrelated

because

(uT
1 Y′)(uT

2 Y′)T = uT
1 u2 = 0 , and(vT

1 X′)(vT
2 X′)T = vT

1 v2 = 0 . (19)

Likewise, subsequent singular values are the maximum correlation subject to the constraint that

the projections are orthogonal (time-series are uncorrelated) to previous ones.

The weight vectors for the untransformed variables are the columns of the matricesQx and

Qy defined so that the projection of the untransformed variables is equal to the projection of the

transformed variables

QT
xX = VTX′ andQT

yY = UTY′ . (20)

Using Eq. (11) givesQy = (YYT )−1/2U andQx = (XXT )−1/2V. Although the weight vectors for

the transformed variables are orthogonal, the weight vectors for the untransformed variables are

not; or more precisely, they are orthogonal with respect to a different norm sinceQT
y (YYT )−1Qy =

I andQT
x (XXT )−1Qx = I. The data can be expressed aspatternsthat multiply the time-series.

The pattern vectors differ from the weight vectors since the weight vectors are not orthogonal. The

matricesPx andPy of pattern vectors are found by solving

X = PxQ
T
xX and Y = PyQ

T
yY (21)
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which givesPx = (XXT )1/2V andPy = (YYT )1/2U; these patterns solve (21) in a least-squares

sense when an incomplete set of projections is used. The pattern and weight vectors are orthogonal

to each other sincePT
xQx = I andPT

yQy = I.

The above analysis defines the decomposition of the data into patterns whose times series

have the maximum correlation subject to the constraint that subsequent predictor and predictand

time-series be uncorrelated. This decomposition is CCA with the columns ofQx (Qy) being the

predictor (predictand) weight vectors, the columns ofPx (Py) the predictor (predictand) patterns,

and the diagonal elements ofS the canonical correlations (DelSole and Chang 2003, see Appendix

of this paper for a derivation of the usual CCA equations). Using the relation betweenA andA′ in

(9), the regression matrix can be simply written using the weight vectors and patterns as

A = (YYT )1/2A′(XXT )−1/2 = (YYT )1/2USVT (XXT )−1/2 = PySQT
x . (22)

The above relation shows that CCA diagonalizes the regression. SinceQT
xPx = I, APx = PyS,

and predictor patterns are mapped to predictand patterns scaled by their correlation. The decom-

position ofA in Eq. (22) is not the usual SVD ofA sincePy andQx are not orthogonal matrices,

but can be interpreted as a SVD ofA with the usual vector norms replaced by the norms implied

by the whitening transformations4.

b. Variance explained

In the univariate case, normalizing the predictor by its standard deviation and leaving the pre-

dictand unchanged makes the regression coefficient equal the square root of the explained variance.

The appropriate generalization to the multivariate problem is to apply the whitening transformation

to the predictor as in Eq. (11)

x′ = (XXT )−1/2x , (23)

4The dependence of the SVD on choice of norm is well-known in ensemble forecasting where the SVD is some-

times used to generate initial perturbations (Ehrendorfer and Tribbia 1997).
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and to leave the predictand unchanged. The regression matrix relatingx′ andy is

A′ = YX′ (24)

sinceX′X′T = I. Proceeding as in the previous section shows that the(i, j) entry of the transformed

regression matrixA′ is the square root of variance explained by the regression betweenyi andx′
j.

The square root of the variance explained by a regression between projections using the weight

vectorsu andv of the predictand and predictor data is

uTY(vTX′)T

√
uTu vTv

=
uTA′v√
uTu vTv

. (25)

This ratio is maximized whenu andv are respectively the leading left and right singular vectors

of A′. Therefores2
1 = (uT

1 A′v1)
2 is the maximum variance explained by a single predictor. Con-

versely,〈yTy〉 − s2
1 is the minimum error variance of a regression that uses a single predictor. The

variance explained using the first two pairs of singular vectors iss2
1 + s2

2, and the minimum error

variance when two predictors are used is〈yTy〉 − s2
1 − s2

2. The variances add since the predictor

projections are uncorrelated, a consequence ofvT
1 X′X′Tv2 = vT

1 v2 = 0. The predictand projec-

tion time-series are correlated but the predictand weight (and pattern) vectors are orthogonal since

uT
1 u2 = 0. This decomposition of the data is called redundancy analysis (RDA; von Storch and

Zwiers 1999; Wang and Zwiers 2001). Additional details of the weight and pattern vectors are

given in Table 1. The RDA patterns diagonalize the regression with the diagonal elements measur-

ing the square root of the variance explained by each predictor pattern. A related method is EOT2

which finds the predictor element, rather than the linear combination of predictor elements, that

explains the maximum predictand variance (van den Dool 2006). Subsequent uncorrelated EOT2

components are computed iteratively by finding the predictor element at each step that explains the

most residual variance.
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c. Explained standardized variance

If the variances of the predictands are highly disparate,standardization, that is, normalizing

each predictand by its standard deviation, may be appropriate. Applying RDA to standardized

predictands finds the projections that maximize the explained standardized variance. Explicitly,

we use the transformations

x′ = (XXT )−1/2x

y′ = (Diag YYT )−1/2y ,

(26)

where the notationDiag YYT means the diagonal matrix whose diagonal elements are the same

as those ofYYT ; the elements of the diagonal matrixDiag YYT are the predictor variances and

y′ is y with each element divided by its standard deviation. This transformation of the predictand

normalizes each predictand to have unit variance as in CCA, but unlike CCA, the transformed

predictands remain correlated. The transformed regression matrix is

A′ = Y′X′T . (27)

The(i, j)-th element ofA′ is the correlation betweenyi andx′
j since

A′
ij = eT

i A′ej = eT
i Y′X′T ej =

1√
eT

i YYT ei

eT
i Y(eT

j X′)T . (28)

This quantity is also the square-root of the fraction of the variance ofyi explained byx′
j, that

is the square-root of the explained standardized variance. Paralleling the interpretation of CCA

and RDA, we project the transformed data onto the vectorsu and v. The square-root of the

standardized explained variance of the regression between the projections is

uTY′(vTX′)T

√
uTu vTv

=
uTA′v√
uTu vTv

. (29)

Theu andv that maximize this ratio are the leading singular vectors ofA′.

The explained standardized variance is the sum of the explained fraction of variance for each

predictand. On the other hand, the explained fraction of variance for each predictand is the square
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of the correlation between the prediction and the predictand. Therefore, maximizing the explained

standardized variance is the same as maximizing the sum of squared correlations between predic-

tand and prediction.

We call this decomposition of dataprincipal predictor analysis(PPA) after Thacker (1999)

who focused on the predictor patterns, which he called principal predictors and characterized as

maximizing the sum of squared correlation between the predictor patterns and the predictand data.

Like CCA and RDA, the PPA predictor projections are uncorrelated because of the use of the

whitening transformation. However, the predictand projections are neither uncorrelated nor or-

thogonal. Additional details of the weight and pattern vectors are give in Table 1. PPA provides

a diagonalization of the regression with the diagonal elements measuring the square-root of the

explained standardized variance for each pattern pair.

d. Covariance

In the univariate problem, normalizing the predictor by its variance makes the regression coef-

ficient equal to covariance. To generalize to the multivariate problem we multiply the predictor by

the inverse of its covariance:

x′ = (XXT )−1x , (30)

and do not transformy. The regression matrix for predictingy from x′ is

A′ = YX′T (X′X′T )−1 = YXT . (31)

The(i, j)-th element ofA′ is the covariance betweenyi andxj. The covariance between projections

of the predictand and predictor data in the directionsu andv, respectively, is

uTY(vTX)T

√
uTu vTv

=
uTA′v√
uTu vTv

. (32)
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This ratio is maximized whenu andv are the left and right leading singular vectors ofA′.5 This

decomposition of the data is maximum covariance analysis (MCA), sometimes referred to as SVD;

we use the name MCA to distinguish between the coupled pattern method based on the SVD of

the cross-covariance and the general SVD matrix procedure (von Storch and Zwiers 1999).

Writing the regression matrixA using the MCA projections gives

A = USVT (XXT )−1 , (33)

whereUSVT is the SVD ofYXT .6 The i-th MCA predictand projection is uncorrelated with the

j-th MCA predictor projection fori 6= j since the matrixUTYXTV only has nonzero elements on

its diagonal. However, this does not mean that a regression for thei-th MCA predictand projection

should only include thei-th MCA predictor projection. To show this, we express the predictor data

asX = VB, where the rows ofB contain the time-series of the projection of the predictors onto

V andB is given byB = VTX. Substituting this representation of the predictor data into Eq. (33)

gives

A =
(
USVT

) (
VBBTVT

)−1
= US

(
BBT

)−1
VT . (34)

This form is similar to usual MCA-based linear models. However, usuallyBBT is replaced by

the diagonal matrix whose firstny diagonal entries are the same as those ofBBT , the variance of

the MCA time-series and whose remaining diagonal entries are zero (e.g., Widmann et al. 2003);

ny is the dimension of the predictand. This approximation means that correlations between MCA

modes are neglected, and the resulting estimate is not generally a least-squares estimate (LSE).

Therefore we call the method using the regression matrix in Eq. (34)LSE-MCAsince it uses the

5The SVD of the cross-covariance matrix also arises in the solution of the orthogonal Procrustes problem (Gower

and Dijksterhuis 2004).
6FormingYXT is impractical and unnecessary when the predictor and predictand dimensions are large compared

to the number of samples. Instead, MCA can be applied to the covariance of the unnormalized predictor and predictand

PCs since the SVD is invariant under orthogonal transformations. The dimensions in the SVD calculation are thus

determined by the number of PCs rather than the predictor and predictand dimensions.
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projections that maximize covariance like MCA but is a least-squares estimate. Like MCA, LSE-

MCA requires no EOF pre-filtering. Widmann (2005) also noted that the usual MCA-based linear

models do not agree with CCA-based regression and multiple linear regression, even when the

predictand is a scalar. When the predictand is a scalar, the usual MCA-based linear model uses

a single SVD mode as predictor, truncating the predictor data. LSE-MCA, on the other hand,

does not truncate the data and reproduces the least-squares estimate. The usual MCA-based linear

model is the same as LSE-MCA when the predictor and predictand dimensions are the same and

BBT is indeed diagonal. The matrixBBT is diagonal when the MCA modesV also happen to

be EOFs of the predictor or when the predictors are uncorrelated with equal variance and the

covariance matrixXXT is proportional to the identity matrix; the latter condition is true when, for

instance, the predictors are whitened variables. Feddersen et al. (1999) used MCA projections in a

least-squares estimate but with an implementation that additionally required the solution be found

by numerical optimization. MCA is similar topartial least-squares(PLS) regression (Wold et al.

1984; Boulesteix and Strimmer 2007) in that the components maximize covariance, and the first

PLS component is the same the first MCA component. However, subsequent components differ

because PLS components are uncorrelated.

5. Reduced-rank regressions

We have shown that the regression matrix can be decomposed into patterns that optimize se-

lected quantities including correlation, explained variance, explained standardized variance and

covariance. These decompositions help diagnose properties of the regression by expressing the

data in bases so that the regression matrix is diagonal. As shown in section 3, the use of different

bases does not fundamentally change the regression as long as the bases are complete and there is

no truncation of the data. Therefore all the methods are the same as multiple regression when a

complete set of patterns are used. However, the regression is changed when a partial set of patterns
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is used, effectively truncating the data used to develop the regression. Such a simplification of the

regression may be desirable since it reduces the number of predictors, and hence the number of

parameters that must be estimated from the data. We expect that regressions that use too many

predictors will have poor skill on independent data due to overfitting and sampling error.

Reducing the number of patterns used in the regression is somewhat different from pre-filtering

which reduces the number of predictors or predictands without necessarily considering joint rela-

tions between predictor and predictand. Decomposition of the regression into pairs of patterns

produces measures of the strength of the relation between the patterns; for instance, CCA gives

the correlation between the time series of the patterns. Therefore, it is reasonable to retain those

pairs of patterns that represent the strongest relations and discard the rest. Since overfitting may

exaggerate the in-sample relationship, validation of the relation on independent data is useful for

deciding which pairs of patterns to retain. Often cross-validated skill is the basis for selecting

the patterns to keep in the regression. However, as mentioned earlier in the context of EOF pre-

filtering, the cross-validated skill of the selected model will give an overly optimistic estimate of

performance on independent data.

Since the pattern pairs are found by computing the SVD of the transformed regression ma-

trix A′, restricting the patterns used in the regression is the same as replacingA′ by a truncated

SVD, that is, the regression matrixA′ = USVT is replaced withȦ′ = UṠVT where the firstr

diagonal elements oḟS are the same as those ofS and the rest are zero; the patterns and weights

do not change. The resulting truncated regression matrixȦ = PyṠQT
x retainsr pairs of patterns

and has the property that it is the rank-r regression which optimizes the condition that the SVD

measures. In particular, depending on method, the rank-r regression may optimize mutual infor-

mation (CCA)7, explained variance (RDA), the sum of squared correlations (PPA) or the sum of

7This a consequence of the facts that (i) mutual information of normally distributed variables is an increasing

function of correlation alone and (ii) the mutual information of a sum of independent variables is the sum of their

mutual information.
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covariance (LSE-MCA).

The patterns obtained in each method are generally different, and for a given value ofr, the

rank-r regression will be different for each method. Therefore, the different pattern methods pro-

duce different regressions when the regression is truncated. The motives of the user or the nature

of the problem may indicate that one pattern method is preferable over another. For instance, CCA

can select patterns with large correlation but small explained variance. In this case, RDA might

be preferable as it maximizes explained variance. Similarly, LSE-MCA, by maximizing covari-

ance, may select patterns with large variance but not necessarily high correlation. In this case,

CCA might be preferable. The optimization of mutual information makes CCA attractive from

the viewpoint of predictability since mutual information is a predictability measure with many

attractive properties (DelSole and Tippett 2007).

A final point regarding these truncated regressions is that the truncated regression is indeed

the same as the regression developed using the data projected onto the retained patterns since

essentially a diagonal regression matrix is being truncated.

6. Two idealized examples

a. MCA and LSE-MCA

We now consider a simple example that illustrates the difference between the commonly used

MCA linear model and LSE-MCA. We takex andy each to have 2 elements. Suppose thatYXT =

I and the MCA modes are the columns of the identity matrix. Then from (33) the regression matrix

is simply

A = (XXT )−1 . (35)

The commonly used approximation of the regression matrix is the diagonal matrix

AMCA = Diag(XXT )−1 . (36)
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We take the predictor covariance to have the form

XXT =

cos θ − sin θ

sin θ cos θ


1 0

0 σ2


cos θ − sin θ

sin θ cos θ


T

, (37)

whereθ is the angle between the MCA modes and predictor EOFs, and the predictor EOFs have

variance of 1 andσ2. The angleθ is important because MCA and LSE-MCA are the same when

the MCA modes are predictor EOFs, i.e., whenθ = 0. Additionally, suppose the predictand

covariance has the similar structure

YYT =

cos θ − sin θ

sin θ cos θ


1/(0.8)2 0

0 1/(0.5σ)2


cos θ − sin θ

sin θ cos θ


T

. (38)

These choices for the covariances imply that the CCA weight vectors are the same as the EOFs

and that the canonical correlations are 0.8 and 0.5 (see A5 of the Appendix).

The error variance of the regression is

〈‖Ax− y‖2〉 = tr
(
A〈xxT 〉AT + 〈yyT 〉 − A〈xyT 〉 − 〈yxT 〉AT

)
= tr

(
AXXTAT + YYT − A− AT

)
= tr(YYT − (XXT )−1)

=
1

0.82
+

1

(0.5σ)2
− 1− 1

σ2
,

(39)

where we use the facts thatYXT = I andA = (XXT )−1. The error variance of the MCA model is

〈‖AMCAx− y‖2〉 = tr
(
AMCAXXTAT

MCA + YYT − AMCA − AT
MCA

)
= tr(YYT − (XXT )−1) + tr

(
AMCAXXTAT

MCA − (XXT )−1
)

= 〈‖Ax− y‖2〉+ tr
(
AMCAXXTAT

MCA − (XXT )−1
)

.

(40)

Therefore the error variance of the MCA linear model relative to that of the LSE-MCA regression

is

‖AMCAx− y‖2〉
〈‖Ax− y‖2〉

= 1 +
tr

(
AMCAXXTAT

MCA − (XXT )−1
)

〈‖Ax− y‖2〉
. (41)
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This error variance is governed byθ andσ. Figure 1 shows the error of the MCA linear model

relative to that of the LSE-MCA regression as a function ofθ andσ. Whenθ = 0, the MCA

modes are also EOFs of the predictors, and there is no difference between the methods. Increasing

θ increases the error of the MCA linear model. Whenσ = 1, the methods are the same since

XXT = I and again the MCA modes are the same as the predictor EOFs. Asσ decreases, the

relative error of the MCA linear model increases.

b. CCA, LSE-MCA and RDA

We now present a simple example to illustrate some issues regarding the truncation of the

regression as discussed in section 5. We construct a 2-dimensional, diagonal example where the

correlations of the two elements are specified and examine the error of rank-1 regressions as the

variance of one of the elements is varied. In particular, suppose that

XXT = YYT =

1 0

0 σ2

 . (42)

The first and second elements are uncorrelated and have variance 1 andσ2, respectively, for both

x andy. Note thatσ2 may or may not exceed 1. Suppose thatYXT is diagonal and given by

YXT =

c1 0

0 c2σ
2

 , (43)

so thatc1 andc2 are the canonical correlations;c1 ≥ c2. The regression matrix is

A =

c1 0

0 c2

 , (44)

and the regression error variance is

〈
‖y − Ax‖2

〉
= (1− c2

1) + (1− c2
2)σ

2 . (45)

The rank-1 CCA regression selects the part of the system with highest correlation, which is

the first element, regardless ofσ. We now show that when the first element has little variance, the
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regression based on the leading CCA pattern does not minimize squared error. The rank-1 CCA

regression matrix is

ACCA
1 =

c1 0

0 0.

 . (46)

The error variance of the rank-1 CCA regression relative to the full regression is

1− c2
1 + σ2

(1− c2
1) + (1− c2

2)σ
2
. (47)

On the other hand, LSE-MCA selects the part of the system with highest covariance. Examination

of Eq. (43) shows that forσ <
√

c1/c2, the first element has the highest covariance and the rank-1

LSE-MCA regression matrix is the same as the rank-1 CCA regression matrix. Forσ >
√

c1/c2,

the second element has highest covariance and the rank-1 LSE-MCA regression matrix is

ALSE-MCA
1 =

0 0

0 c2

 , (48)

and the error variance relative to the full regression is

1 + (1− c2
2)σ

2

(1− c2
1) + (1− c2

2)σ
2
. (49)

Comparing Eq. (47) with (49) shows that the error variance of the rank-1 LSE-MCA regression

is larger than that of the rank-1 CCA regression when
√

c1/c2 ≤ σ ≤ c1/c2 and smaller when

σ ≥ c1/c2. This result agrees with the intuition that ifσ is small, we expect that the squared error

to be minimized by the rank-1 regression matrix accounting for the first element which has highest

correlation. On the other hand, ifσ is sufficiently large, then the rank-1 regression should be based

on the second element.

Figure 2 shows the squared error of the rank-1 regressions as a function ofσ for c1 = 0.8

and c2 = 0.5. There are three regimes. Forσ ≤
√

c1/c2 ≈ 1.26, the LSE-MCA and CCA

rank-1 regressions are the same. For
√

c1/c2 ≤ σ ≤ c1/c2, the error of the LSE-MCA rank-1

regression is greater than that of the rank-1 CCA regression because the LSE-MCA is selecting
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the second element since it explains more covariance. However, the second element has lower

correlation, and the resulting regression has higher rms error. Forσ ≥ c1/c2 = 1.6, the error

of the rank-1 CCA regression is larger than that of the rank-1 LSE-MCA regression because the

large value ofσ dominates the rms error. In this simple 2-dimensional example, the RDA rank-1

regression coincides with either the CCA or LSE-MCA rank-1 regressions, depending on which

one has smaller rms error. In general, RDA based regression is distinct from and has smaller rms

error than either CCA or MCA-based regressions of the same rank.

7. Example: Statistical downscaling

General circulation models (GCMs) often have relatively coarse horizontal spatial resolution.

Information about smaller scales can sometimes be extracted from the coarse-scale GCM output

by forming a regression between GCM output and observations (Widmann et al. 2003). Such a

regression can also be used to remove systematic model errors (Feddersen et al. 1999). We apply

this procedure to the ensemble mean of a 24-member set of ECHAM 4.5 (Roeckner et al. 1996) T42

ensemble simulations of March-May (1950-2000) precipitation over the Northeast of Brazil (55W-

35W,13S-1N). With T42 model resolution corresponding to a2.8◦ × 2.8◦ spatial grid, the model

domain contains 63 grid points. During this time of the year, precipitation over the Northeast of

Brazil is closely related to sea surface temperature (SST), and the GCM forced with observed SST

skillfully reproduces some aspects of seasonal precipitation interannual variability. Observational

data are taken from a gridded (0.5◦ × 0.5◦) rainfall observation data set (New et al. 2000). Leave-

one-out cross-validation is used to select the level of EOF pre-filtering8 as well as the number of

patterns retained in the regression; the truncations for each method are chosen to maximize the

sum over gridpoints of those cross-validated correlations greater than 0.3. Results using rms error

as a truncation metric are similar, though rms error tends to select lower dimensional models, as

8Predictor and predictand are pre-filtered in CCA. Only the predictor is pre-filtered in RDA and PPA. No pre-

filtering is used with MCA or LSE-MCA.
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has been noted generally (Browne 2000).

The correlation map for a cross-validated univariate per gridpoint regression between the grid-

ded observations and the GCM output interpolated to the observation grid is shown in Fig. 3a.

Although there is a large region with correlations greater than 0.5, the gridpoint regression is

limited by not using spatial correlation information. Figures 3b-g show the correlation maps of

regressions based on PCR, CCA, RDA, MCA, LSE-MCA and PPA patterns, respectively. All of

the spatial pattern regression methods show overall improvement compared to the gridpoint re-

gression and are fairly similar to each other. Their similarity may reflect that there seems to be

only one or two meaningful modes in the regression which are captured by all the methods. The

CCA regression uses 5 predictor EOFs and 2 predictand EOFs to form a rank-2 regression; RDA

and PPA use rank-1 regressions based on 5 and 3 predictor EOFs, respectively.

The best overall results for correlation skill are obtained with CCA. Although CCA is expected

to perform better than PCR since PCR is the special case of CCA with an untruncated predictand,

there is no particular reason to expect CCA to outperform LSE-MCA or RDA, in general. The

differences in skill are mostly insignificant, in a statistical sense. Both MCA and LSE-MCA use

the same 4 modes that maximize covariance. Although we expect LSE-MCA to perform better

than MCA since MCA neglects correlations between predictors, the impact of sampling error on

the performance of the methods is unknown. One could imagine poor estimation of the correlations

among the predictors outweighing the neglection of inter-predictor correlations. In any case, in

this example, LSE-MCA does out-perform MCA, which has the worst performance of the pattern

regression methods. The regression with the smallest cross-validated rms error is RDA. The rank-1

CCA regression (not shown) has slightly lower overall correlation than the rank-2 CCA regression,

but has lower cross-validated rms error, and in fact is lower than that of the RDA regression.

23



8. Summary and conclusions

Two commonly used linear methods for finding coupled patterns in two data sets are canonical

correlation analysis (CCA) and maximum covariance analysis (MCA), which find projections of

the data having maximum correlation and covariance, respectively. Such methods are useful for

diagnosing relations between variables and constructing linear prediction models. Pattern methods

like redundancy analysis (RDA) and principal predictor analysis (PPA) were developed specifically

for use in linear prediction models and maximize explained variance and the sum of squared corre-

lations, respectively. In this paper we show that these methods diagonalize the regression and are

singular value decompositions (SVDs) of the matrix of regression coefficients for data transformed

suitably for each respective method.

The essential character of the regression does not change when linear transformations are ap-

plied to data, as long as the transformation of the predictors is invertible. One consequence of

the invariance of the regression is that regression-based prediction minimizes not only the sum

of squared errors but any positive semi-definite quadratic function of the error. This fact implies

that the regressions developed with each predictand individually will give the same predictions as

the regression developed with all the predictands simultaneously. Consequently, principal compo-

nent regression (PCR) in which regressions are developed between predictor PCs and individual

predictands gives the same prediction model as does the regression developed between the set of

predictands and the predictor PCs simultaneously, which in turn is the same as CCA with EOF

pre-filtering of the predictor and no other truncations.

Although the regression is invariant under linear transformations of the data, the meaning of

the regression coefficients changes depending on the transformation of the data. This connection

between the interpretation of the regression coefficients and transformation of the data is readily

apparent in the univariate case where differing normalizations of the data determine whether the

regression coefficient measures correlation, explained variance, or covariance. Analogous trans-

24



formations in the multivariate case lead to the regression matrix having coefficients that measure

the same quantities. The whitening transformation in which the data are replaced by its normalized

PCs is the multivariate generalization of normalizing a variable by its standard deviation.

The structure of the regression matrix is revealed by the singular value decomposition (SVD),

which finds orthogonal bases so that the regression matrix is diagonal. Depending on the transfor-

mation applied to the data, the singular values measure correlation, explained variance, explained

standardized variance or covariance. The singular vectors identify the projections of the data that

optimize these quantities and correspond to the methods CCA, RDA, PPA and MCA, respectively.

The SVD of a transformed regression can also be interpreted as the SVD of the untransformed re-

gression with particular choices of norm for the predictor and predictand (Ehrendorfer and Tribbia

1997).

A common method for constructing a linear prediction model from MCA patterns does not

produce a least-squares estimate since correlations between MCA predictors are neglected. A

variation, LSE-MCA, uses the same MCA patterns which maximize covariance but minimizes

squared error. There are some special cases when MCA and LSE-MCA are the same, such as

when the predictor and predictand dimensions are the same and MCA patterns are also EOFs of

the predictor. In general, as illustrated in a 2-dimensional example, the MCA linear model will

have larger rms error than LSE-MCA. In practice, where sampling error plays a role, the MCA

linear model may potentially gain some benefit by neglecting poorly estimated correlations among

the predictors. However, in statistical downscaling GCM simulated rainfall over the northeast of

Brazil, the MCA model had slightly worse performance compared to the other pattern methods.

Since the different coupled pattern methods correspond to decompositions of the same regres-

sion matrix, they all produce the same prediction model when a complete set of patterns is used.

The choice of pattern method is important to the regression model when the SVD is truncated–that

is, when an incomplete set of patterns is used. The regression model obtained by retaining only

the firstr pairs of patterns is the rank-r regression that maximizes mutual information, explained
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variance, explained standardized variance, and covariance for CCA, RDA, PPA and LSE-MCA,

respectively. We illustrate in a 2-dimensional example that the RDA rank-1 regression is the rank-

1 regression that minimizes rms error while the rank-1 regressions based on CCA or MCA patterns

generally do not.

The difference between reduced-rank regressions based on the different methods depends on

the difference between the subspaces spanned by the retained patterns of each method, not dif-

ferences between individual patterns. For instance, although the firstr RDA patterns (assuming

r > 1) may be different from the firstr CCA patterns, if they collectively span the same sub-

space, regressions based on them will be identical. This fact may help in understanding why all

the methods produce linear models with comparable skill in the statistical downscaling example.

The derivation of the pattern methods in the regression framework makes it easy to compare

the methods and is useful for computation. A practical benefit of this approach is that an algorithm

or computational method developed for one method is easily adapted for the other methods by

transforming the data. For instance, Table 2 shows that all the methods can be expressed as MCA

applied to transformed data.

An important issue that has not been examined closely here is the role of sampling error. The

finite number of samples causes sampling error to affect all the methods, such that the underlying

covariances are imperfectly known. EOF pre-filtering is only one method for limiting the covari-

ances to information that can be robustly estimated. Ridge methods are another approach to treat

this problem (Vinod 1976; Hastie et al. 1995).
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APPENDIX

a. EOF pre-filtering

Let L = ZT whereZ is a matrix whose columns contain some but not all of the orthogonal

eigenvectors of the predictor covarianceXXT . ThenXXTZ = ZΛ whereΛ is diagonal matrix

containing the corresponding eigenvalues. The regression matrix relatingy andx′ = Lx is

A′ = (YXTLT )(LXXTLT )−1

= (YXTZ)(ZTXXTZ)−1

= (YXTZ)(ZTZΛ)−1

= YXTZΛ−1 .

(A1)

The projectionP that projects the predictor data on to the space spanned by the columns ofZ is

P = ZZT . Applying the original regression to the projected data is the same as the regression with

the transformed data because

APx = AZZTx

= (YXT )(XXT )−1ZZTx

= (YXT )ZΛ−1ZTx

= A′Lx

= A′x′ .

(A2)

b. Alternative form for CCA

The usual CCA equations for the predictand weights are obtained as follows. First, from

Eq. (17),A′A′T = USSTUT which means thatU is the matrix of eigenvectors ofA′A′T . The eigen-

values and eigenvectors ofA′A′T are found by solving the eigenvalue problemA′A′Tu = s2u, or

in terms of the weightqy = (YYT )−1/2u,

(YYT )−1/2A′A′T (YYT )1/2qy = s2qy . (A3)
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Then using the definition ofA′ in Eq. (13)

(YYT )−1/2A′A′T (YYT )1/2 = (YYT )−1/2Y′X′TX′Y′T (YYT )1/2

= (YYT )−1YXT (XXT )−1XYT .

(A4)

The eigenvalue problem in (A3) is

(YYT )−1YXT (XXT )−1XYTqy = s2qy , (A5)

which is Eq. (14.11) of von Storch and Zwiers (1999). The usual CCA equations for the predictor

weights follow similarly fromA′TA′ = VSTSVT .
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Kiadó, Budapest, 267–281.

Boulesteix, A.-L. and K. Strimmer, 2007: Partial least squares: a versatile tool for the analysis of

high-dimensional genomic data.Brief. Bioinform., 8, 32–44.

Bretherton, C. S., C. Smith, and J. M. Wallance, 1992: An intercomparison of methods for finding

coupled patterns in climate data.J. Climate, 5, 541–560.

Browne, M. W., 2000: Cross-validation methods.J. Math. Psychol., 44, 108–132.

DelSole, T. and P. Chang, 2003: Predictable component analysis, canonical correlation analysis,

and autoregressive models.J. Atmos. Sci., 60, 409–416.

DelSole, T. and J. Shukla, 2006: Specification of wintertime North America surface temperature.

J. Climate, 19, 2691–2716.

DelSole, T. and M. K. Tippett, 2007: Predictability: Recent insights from information theory.Rev.

Geophys., doi:10.1029/2006RG000202.

Ehrendorfer, M. and J. Tribbia, 1997: Optimal prediction of forecast error covariances through

singular vectors.J. Atmos. Sci., 54, 286–313.

Feddersen, H., A. Navarra, and M. N. Ward, 1999: Reduction of model systematic error by statis-

tical correction for dynamical seasonal predictions.J. Climate, 12, 1974–1989.

Glahn, H. R., 1968: Canonical correlation and its relationship to discriminant analysis and multiple

regression.J. Atmos. Sci., 25, 23–31.

30



Golub, G. H. and C. F. Van Loan, 1996:Matrix Computations. Third ed., The Johns Hopkins

University Press, Baltimore, 694 pp.

Gower, J. C. and G. B. Dijksterhuis, 2004:Procrustes Problems. Oxford University Press, Oxford,

248p.

Hastie, T., A. Buja, and R. Tibshirani, 1995: Penalized discriminant analysis.Ann. Statist., 23,

73–102.

New, M. G., M. Hulme, and P. D. Jones, 2000: Representing 20th century space-time climate vari-

ability. II: Development of 1901-1996 monthly terrestrial climate fields.J. Climate, 13, 2217–

2238.

Roeckner, E., et al., 1996: The atmospheric general circulation model ECHAM-4: Model descrip-

tion and simulation of present-day climate. Tech. Rep. 218, Max-Planck Institute for Meteorol-

ogy, Hamburg, Germany. 90 pp.

Schwarz, G., 1978: Estimating the dimension of a model.Annals of Statistics, 6, 461–464.

Thacker, W. C., 1999: Principal predictors.Int. J. Climatol., 19, 821–834.

van den Dool, H., 2006:Empirical Methods in Short-Term Climate Prediction. Oxford University

Press, 240p.

Vinod, H. D., 1976: Canonical ridge and econometrics of joint production.J. Econometrics, 4,

147–166.

von Storch, H. and F. W. Zwiers, 1999:Statistical Analysis in Climate Research. Cambridge Uni-

versity Press, West Nyack, NY, USA, 494 pp.

Wang, X. L. and F. Zwiers, 2001: Using redundancy analysis to improve dynamical seasonal mean

500 hPa geopotential forecasts.Int. J. Climatol., 21, 637–654.

31



Widmann, M., 2005: One-dimensional CCA and SVD, and their relationship to regression maps.

J. Climate, 18, 2785–2792.
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FIG. 1. Ratio of the MCA linear model error to that of the LSE-MCA regression as a function of

σ for different values of the angleθ between predictor EOFs and MCA modes (see text).

34



FIG. 2. Error of the rank-1 regression relative to that of the full regression as a function ofσ for

c1 = 0.8 andc2 = 0.5. Curves are offset for legibility.
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FIG. 3. Cross-validated correlation between corrected simulation and observed precipitation for

(a) gridpoint regression, (b) PCR, (c) CCA, (d) RDA, (e) MCA, (f) LSE-MCA, and (g) PPA.

Truncation (predictor EOFs, predictand EOFs, regression patterns), gridpoint sum of correlations

greater than 0.3 and rms error are shown.
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CCA RDA PPA MCA

optimizes correlation explained variance sum of squared correlations covariance

x′ x′ = (XXT )−1/2x x′ = (XXT )−1/2x x′ = (XXT )−1/2x x′ = (XXT )−1x

y′ y′ = (YYT )−1/2y y′ = y y′ = (Diag YYT )−1/2y y = y′

weights Qx = (XXT )−1/2V Qx = (XXT )−1/2V Qx = (XXT )−1/2V Qx = (XXT )−1/2V

Qy = (YYT )−1/2U Qy = U Qy = (Diag YYT )−1/2U Qy = U

patterns Px = (XXT )1/2V Px = (XXT )1/2V Px = (XXT )1/2V Px = (XXT )1/2V

Py = (YYT )1/2U Py = U Py = (Diag YYT )1/2U Py = U

TABLE 1. The quantity optimized, the variable transformations, the weights, and the patterns

for CCA, RDA, PPA, and MCA. In all cases,USVT is the SVD of the transformed regression

A′ = Y′X′T and the decomposition of the original regression isA = PySQT
x .
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CCA[X,Y] = MCA
[
(XXT )−1/2X, (YYT )−1/2Y

]

RDA[X,Y] = MCA
[
(XXT )−1/2X, Y

]

PPA[X,Y] = MCA
[
(XXT )−1/2X, (Diag YYT )−1/2Y

]

TABLE 2. CCA, RDA and PPA expressed as MCA of transformed data.
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