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ABSTRACT

There are a variety of multivariate statistical methods for analyzing the relations
between two data sets. Two commonly used methods are canonical correlation anal-
ysis (CCA) and maximum covariance analysis (MCA) which find the projections of
the data onto coupled patterns with maximum correlation and covariance, respectively.
These projections are often used in linear prediction models. Redundancy analysis and
principal predictor analysis construct projections that maximize the explained variance
and the sum of squared correlations of regression models. This paper shows that the
above patterns methods are equivalent to different diagonalizations of the regression
between the two data sets. The different diagonalizations are computed using the sin-
gular value decomposition of the regression matrix developed using data that is suit-
ably transformed for each method. This common framework for the pattern methods
permits easy comparison of their properties. Principal component regression is shown
to be a special case of CCA-based regression. A commonly used linear prediction
model constructed from MCA patterns does not give a least-squares estimate since
correlations among MCA predictors are neglected. A variation, denoted LSE-MCA,
Is suggested that uses the same patterns but minimizes squared error. Since the differ-
ent pattern methods correspond to diagonalizations of the same regression matrix, they
all produce the same regression model when a complete set of patterns is used. Differ-
ent prediction models are obtained when when an incomplete set of patterns is used,
with each method optimizing different properties of the regression. Some key points
are illustrated in two idealized examples, and the methods are applied to statistical

downscaling of rainfall over the Northeast of Brazil.



1. Introduction

Multivariate statistical methods are used to analyze observational and model data, to make
statistical forecasts and to calibrate or correct dynamical forecasts. Some of the most commonly
used methods include principal component analysis (PCA), maximum covariance analysis (MCA)
and canonical correlation analysis (CCA) (e.g., Bretherton et al. 1992). PCA is usually applied to
a single data set, finding the projections (empirical orthogonal functions; EOFs) or components
that explain the most variance. Methods such as CCA and MCA work with two data sets, finding
projections that optimize some measure of linear association between the two data sets: CCA
selects components of each data set so as to maximize their correlation; MCA does likewise,
except maximizing covariance. A common application of these methods is the construction of
linear prediction models based on the identified, and often physically meaningful, coupled patterns.

Redundancy analysis (RDA) and principal predictor analysis (PPA) are pattern methods specif-
ically tailored for use in linear regression models and, unlike CCA and MCA, are asymmetric in
their treatment of the two data sets, identifying one data set as the predictor and the other as the
predictand. RDA selects predictor components that maximize explained variance (von Storch and
Zwiers 1999; Wang and Zwiers 2001). PPA selects predictor components that maximize the sum of
squared correlations (Thacker 1999). Another commonly used pattern regression method is prin-
cipal component regression (PCR; e.g., Yu et al. 1997) in which PCA is applied to the predictor
field and then a multiple linear regression is developed between the EOF coefficients or principal
components (PCs) and each predictand element individually.

The purpose of this paper is to elucidate the connection between methods for finding coupled
patterns and multivariate regression. A key element is the use of the singular value decomposition
(SVD) to analyze the matrix of regression coefficients. The SVD reveals the structure of the regres-
sion by finding orthogonal transformations that diagonalize the regression. The singular values are

the regression coefficients of the diagonalized regression. The regression is invariant with respect



to linear transformations of the data (as long as the predictor transformation is invertible) in the
sense that the regression matrix is transformed in the same way as the data. However, the SVD
of the regression matrix is not invariant since, after a linear transformation of the data, the trans-
formations that diagonalize the regression are generally no longer orthogonal. Therefore applying
the SVD to regression matrices developed with different transformations of the data yields distinct
diagonalizations of the regression. Furthermore, these distinct diagonalizations diagnose different
properties of the regression as measured by the singular values. For instance, previous work has
shown that when the data are expressed in the basis of its principal components, the regression
matrix reduces to the cross-covariance matrix and its SVD corresponds to CCA with the singular
values being the canonical correlations (Bretherton et al. 1992; DelSole and Chang 2003). Here
we extend this idea and show that MCA, RDA and PPA are equivalent to SVDs of the regression
developed using data that is transformed in a distinct manner for each method. The connection
between the pattern methods and multivariate regression provides a common framework that is
useful for understanding and comparing the pattern methods, as well as for computation.

The paper is organized as follows. In Section 2 we examine in a univariate regression how,
with appropriate linear transformations of the data, the regression coefficient measures correlation,
explained variance, or covariance. In Section 3 we examine the behavior of multivariate regression
when linear transformations are applied to the data. In Section 4 we analyze the multivariate
regression and obtain the coupled pattern methods as singular vectors of a transformed regression.
We discuss reduced-rank regression in Section 5. Some of the key issues are illustrated with
idealized examples in Section 6. The methods are compared in a statistical downscaling example

in Section 7. Section 8 gives a summary and conclusions.



2. Univariate linear regression

In the case of a single predictand and a single predictor, an estjmétbe predictand based

on the predictor: is given by the linear regression

y=ax 1)

where the regression coefficients

(zy) @

and(-) denotes expectation; we takeandy to be anomaly values, that is, deviations from their
respective means, and thus the regression equation contains no constant term. The regression
coefficient can be manipulated to obtain quantities such as correlation, explained variance and

covariance which measure aspects of the linear relation between predictor and predictand. Specif-

ically,
correlation_% =a % :
v/explained variance- eyl _ lal\/(22) ®3)

V(@2
covariance={yz) = a({z?).

Here “explained variance” means the variancey @xplained by the regressionot the fraction

of variance which is the square of the correlation. The difference of the variangeund the
explained variance is the error variance of the regression. Since the linear regression minimizes
squared error, it maximizes explained variance.

The regression coefficient changes in a simple way when a linear scaling is applied to the

variables. Suppose that new variables are defined by [z andy’ = my wherel andm are

scalars and # 0. The regression equation for the new variables is

§ =adda, (4)



where the new regression coefficienis related to the original regression coefficient by

=Ta (5)

Combining Egs. (3) and (5) shows that particular choice$ afhdm lead to the transformed

regression coefficient having the following interpretations:

» when both variables are normalized to have unit variante; =/+/{(x?), v = y/\/{y?),

and the regression coefficieditis the correlation betweenandy;

» whenz alone is normalized to have unit varianeé= x/+/(x?), and the magnitude of the

regression coefficient/| is the square-root of the variance explainedrby

« whenz is normalized by its variance; = z/(x?), and the regression coefficiedtis the

covariance betweenandy.

The connection between transformations of the data and the interpretation of the regression
coefficient is simple but not particularly useful in the scalar case. The univariate regression does,
however, indicate that rescaling of the data, while changing the value and interpretation of the re-
gression coefficient, does not fundamentally change the regression; the rescalings of the data are
simply applied to the least-squares estimate and the regression coefficient. This concept is gener-
alized to the multivariate case in section 3, and in section 4 we present the appropriate multivariate
generalizations of these data transformations that lead to regression coefficients that measure: cor-
relation, explained variance or covariance—the same quantities that arise in methods for finding

coupled patterns.

3. Multivariate linear regression

Suppose that the multivariate predictands linearly related to the multivariate predicter

wherex andy are anomaly fields; we use the convention thandy are column vectors. The



least-squares estimageof the predictand is given by linear regression as

y = <yXT> <XXT>_1 X, (6)

where the notatior)” and()~* denote transpose and matrix inverse, respectively. Typically the
expectations are computed from data using sample-averages. The predictor datXnsthg
matrix whosei-th column is the-th sample of the predictot; the number of rows oX is equal to

the dimension ok, and the number of columns fis equal to the number of samples. Likewise
the predictand data matriX is the matrix whose-th column is the-th sample of the predictand

y. Then

y = Ax, ()

where the least-squares regression coefficient matrix is defined=agYX") (XXT)fl.1
As in the univariate case of EqQ. (5), linear transformations of the data lead to transformation of
the regression matrix. Suppose we introduce new variablesMy andx’ = Lx whereL andM

are matrices. The regression mathikrelating the transformed variance is
A =Y XT(X'XT) = (MYXTLT)(LXXTLT) . (8)
If, additionally, L is invertible then the transformed regression matrix has the simple form
A’ =MAL, 9)

analogous to the univariate case in Eq. (5). This relation provides several pieces of useful informa-

tion. First, when the transformatidnof the predictor is invertible, the least-squares estingatéd

/

y'is
y = A'x' = MAL 'Lx = My, (20)

We use the convention that the dataimndY are normalized by/n — 1 wheren is the number of samples. This
convention simplifies the notation by makitgx”) = XX and(yx”) = YXT. The matrix of regression coefficient

is independent of.



which means that the least-squares estimate using the transformed data is just the transformation
of the original least-squares estimate. Re-scaling the data or expressing it in another basis does not
fundamentally change the regression so long as the transforntadiopredictor data is invertible.

The transformatiorL of the predictor data is not invertible whdrx = 0 for somex # 0,
which means that the transforinhas the effect of reducing the number of predictors. Reducing
the number of predictors is often desirable when the dimension of the predictor is large compared to
the number of available samples. When the number of predictors is large compared to the number
of samples, the sample covariance maXiX” is ill-conditioned or even singular, and reducing
the number of predictors regularizes the regression problem by making it have a unique solution
that is not overly sensitive to the data. The number of predictors is often reduced using principal
component analysis (PCA), which finds the components of the data that explain the most variance,
although other projections may be used as well (DelSole and Shukla 2006). Reducing the set
of predictors to some smaller number of principal components (PCs) is qaflefilteringin the
context of CCA (Bretherton et al. 1992). In contrast to the general case of singular transformations
of the predictor data, whehnis the pre-filtering transformation that maps the data onto a subset of
its PCs, the regression developed with the pre-filtered data is the same as the original regression
applied to the pre-filtered data (see the Appendix).

The goal when selecting the number of predictors is a skillful model. However, the data used
to estimate the regression coefficients are not directly useful for determining the skill of the re-
gressiort. For instance, if the dimension of the predictoexceeds the number of samples and
pre-filtering is done using the maximum number of PCs, the in-sample error is zerd/sindeX.
However, since such a regression completely fits the data, including its random components, we
expect it to suffer fronoverfittingand have poor skill on independent data. Regression models with

fewer predictors are more likely to represent the actual relationships, avoid overfitting and better

2There are in-sample estimates of the out-of-sample error such as Akaike’s information criterion (AIC) and the

Bayesian information criterion (BIC) that take into account the number of predictors (Akaike 1973; Schwarz 1978).



predict out-of-sample data. To choose the number of predictors that optimizes the out-of-sample
skill of the regression, the data can be split into two segments with the regression coefficients
estimated using one segment and the number of predictors chosen to optimize the skill in the in-
dependent segment. This procedure does, however, give an overly optimistic estimate of skill due
to selection bias (Zucchini 2000), and the skill of the selected model should ideally be estimated
on a third independent set of data. In what follows, we assume that the number of predictors has
been reduced so that the number of predictors is less than the number of samples, and the predictor
covariance is invertible.

Another important consequence of the relation in Eq. (8) follows from noting that the error
variancey’ —y’)T (y’' —y’) of the transformed variable is minimized, and thgt-y')* (y'—3y') =
(y — )" (MTM)(y — y). Therefore, not only is the sum of squared erfpr— y)"(y — ¥)
minimized, but so is the positive semi-definite quadratic function of the éyroery)” (MTM)(y —
y). Changing the weighting of the error elements does not result in an estimate that is different
from the least-squares estimate, and in fact, some of the weights can be set to zeN B
required to be invertible. For instance, choodMg= ¢! wheree; is thei-th column of the identity
matrix means that the least-squares estimate mininiizeés — y)||*> = (y; — 9:)? which is the
error of thei-th element of the predictand. Therefore regression minimizes not only the total error
variance but the error variance of each element separately. Consequently, the regression estimate
developed using all the elements of the predictand simultaneously is the same as the one developed
with individual elements of the predictand separately. However, for questions of inference, such
as testing hypotheses about the regression coefficients, the multivariate character of the problem
cannot be neglected, and correlations between parameters must be considered.

This last property of regression aids the interpretation of principal component regression (PCR).
In PCR, regressions are developed between predictor PCs and and each of the predictands individ-
ually. The above conclusion means that PCR is the same as developing the regression between all

of the predictands and the PCs simultaneously. This shows a connection with canonical correlation



analysis (CCA) since a CCA-based regression model with EOF pre-filtering of the predictor (and
no other truncation) is the same as multiple linear regression between the predictor PCs and the
predictand (Glahn 1968; DelSole and Chang 2003). Therefore PCR is the same as a CCA-based re-
gression model with EOF pre-filtering of the predictor and no other truncation such as pre-filtering

of the predictand.

4. Analysis of the regression matrix

We now show that transforming the multivariate data in ways suggested by the univariate case
allows us to interpret the regression coefficients as correlation, variance explained, standardized
explained variance, or covariance of the original data. The SVD of the transformed regression ma-
trix diagonalizes the regression and identifies projections of the data that maximize these measures.

These projection are the same that are used in methods for finding coupled patterns.

a. Correlation

In the univariate case, normalizing the predictor and predictand by their standard deviation
makes the regression coefficient equal to the correlation between predictor and predictand. The
appropriate multivariate generalization is to multiply the variables by the inverse of the matrix

square-roctof their covariance:

x' = (XXT)~1/2x
(11)
y' = (YY)~ 2y,
The appearance of the inverse of the predictand covariance indicates that it may be necessary to
pre-filter the predictand as well as the predictor. The matrix square-root is not uniquely defined,;

post-multiplication of a matrix square-root by an orthogonal matrix gives another matrix square-

root. A convenient choice for the matrix square-root of the inverse covariance is the transformation

8Z is a matrix square-root of the positive definite ma®ix ZZ” = P.
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that replaces the data with its PC time series (normalized to have unit variance)-sthahidy’ are

the normalized principal component scores. Such a transformation is sometimes edlieshing
transformation (DelSole and Tippett 2007) since the transformed data are uncorrelated and have
unit variance

X'XT =1andY'Y” = | (12)

wherel is the identity matrix. The regression matrix for predictyigrom x’ is
A =Y XT(XXT) ™ =¥ XT, (13)

sinceX’X'" = 1. The (i, j)-th element ofA’ is the correlation between thieh element ofy’ and

the j-th element ofc’, denotedy; andz’; respectively, since
A, = elNej=el YXTe; = e;TFY’(eJTX')T = (Y7} (14)

and the elements of andy’ have unit variance.

Instead of looking at the correlations between individual elementSarfidy’ we can examine
the correlation of 1-dimensional projections of the data. Projecting the transformed predictand and
predictor data onto theeight vectors: andv, respectively, gives the time-series

uly’ vIxX’
and

ulu vliv

: (15)

which from Eq. (12) have unit variance. The correlation between the time-series of the projections
is
Y VIXH)T  u"YXTv u'Av
vuTu vTy VuTuviv VuTuviv’

where we use the definition &%’ from Eq. (13). This ratio is maximized wham and v are

(16)

respectively the left and right leading singular vectorsA6f(Golub and Van Loan 1996). The

singular value decomposition (SVD) &f is defined to be

A’ = USVT (17)



whereU andV are square orthogonal matrices & a matrix with nonnegative diagonal entries
s; ordered from largest to smallest; the columndJoindV form complete, orthogonal bases for
the predictand and predictor, respectively. The singular vedoasdv; are thei-th columns of

U andV and satisfy

UZTA/VZ‘:SZ‘, izl,...,k?, (18)

wherek is the smaller of row and column dimensionsAsf Therefores; = ul A’v, is the largest
possible correlation between projections of the data. The next largest singulasyaiuel A’v,

is the largest possible correlation between projections of the data subject to the constraint that
the projections be orthogonal to the first ones, that is, the constraintifhat = viv, = 0.

This orthogonality constraint has the consequence that the associated time-series are uncorrelated
because

(YY) (ulY) =ulu, =0, and(vi X)(vi X ) =viv, =0. (19)

Likewise, subsequent singular values are the maximum correlation subject to the constraint that
the projections are orthogonal (time-series are uncorrelated) to previous ones.

The weight vectors for the untransformed variables are the columns of the m&xicasd
Q, defined so that the projection of the untransformed variables is equal to the projection of the
transformed variables

Q X =V'X'andQ]Y =U"Y’. (20)

Using Eq. (11) give®, = (YYT)~1/2U andQ, = (XXT)~1/2V. Although the weight vectors for
the transformed variables are orthogonal, the weight vectors for the untransformed variables are
not; or more precisely, they are orthogonal with respect to a different norm@ﬁ‘(CéYT)—le =
I and QI (XXT)~'Q, = I. The data can be expressedpadternsthat multiply the time-series.

The pattern vectors differ from the weight vectors since the weight vectors are not orthogonal. The

matricesP, andP,, of pattern vectors are found by solving

X=P,QX and Y=P,QlY (21)
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which givesP, = (XX%)/2V andP, = (YYT)!/2U; these patterns solve (21) in a least-squares
sense when an incomplete set of projections is used. The pattern and weight vectors are orthogonal
to each other sincB;Q, = I andP]Q, = I.

The above analysis defines the decomposition of the data into patterns whose times series
have the maximum correlation subject to the constraint that subsequent predictor and predictand
time-series be uncorrelated. This decomposition is CCA with the colum@s ¢Q,) being the
predictor (predictand) weight vectors, the column®Qf(P, ) the predictor (predictand) patterns,
and the diagonal elements ®the canonical correlations (DelSole and Chang 2003, see Appendix
of this paper for a derivation of the usual CCA equations). Using the relation befvaadA’ in

(9), the regression matrix can be simply written using the weight vectors and patterns as
A= (YYT)I2A (XXT)71/2 = (YYT)2UuSVT (XXT)~1/2 = P,SQT . (22)

The above relation shows that CCA diagonalizes the regression. Qifeg = I, AP, = P,S,

and predictor patterns are mapped to predictand patterns scaled by their correlation. The decom-
position ofA in Eq. (22) is not the usual SVD & sinceP,, andQ are not orthogonal matrices,

but can be interpreted as a SVD Afwith the usual vector norms replaced by the norms implied

by the whitening transformatiofs

b. Variance explained

In the univariate case, normalizing the predictor by its standard deviation and leaving the pre-
dictand unchanged makes the regression coefficient equal the square root of the explained variance.
The appropriate generalization to the multivariate problem is to apply the whitening transformation
to the predictor as in Eq. (11)

x' = (XXT)~1/2x (23)

4The dependence of the SVD on choice of norm is well-known in ensemble forecasting where the SVD is some-

times used to generate initial perturbations (Ehrendorfer and Tribbia 1997).
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and to leave the predictand unchanged. The regression matrix retatingly is
A =YX (24)

sinceX'X'"" = I. Proceeding as in the previous section shows thdtith¢entry of the transformed
regression matri@’ is the square root of variance explained by the regression betyeel .
The square root of the variance explained by a regression between projections using the weight

vectorsu andv of the predictand and predictor data is

u'Y(vIXHT  ufAv

vuTuvTv vuTuvTv

This ratio is maximized when andv are respectively the leading left and right singular vectors

(25)

of A’. Therefores? = (ulA’v,)? is the maximum variance explained by a single predictor. Con-
versely,(y’y) — s? is the minimum error variance of a regression that uses a single predictor. The
variance explained using the first two pairs of singular vectoss is s2, and the minimum error
variance when two predictors are usedySy) — s? — s2. The variances add since the predictor
projections are uncorrelated, a consequence! &X'’ v, = vI'v, = 0. The predictand projec-

tion time-series are correlated but the predictand weight (and pattern) vectors are orthogonal since
ul'u, = 0. This decomposition of the data is called redundancy analysis (RDA; von Storch and
Zwiers 1999; Wang and Zwiers 2001). Additional details of the weight and pattern vectors are
given in Table 1. The RDA patterns diagonalize the regression with the diagonal elements measur-
ing the square root of the variance explained by each predictor pattern. A related method is EOT2
which finds the predictor element, rather than the linear combination of predictor elements, that
explains the maximum predictand variance (van den Dool 2006). Subsequent uncorrelated EOT2
components are computed iteratively by finding the predictor element at each step that explains the

most residual variance.
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c. Explained standardized variance

If the variances of the predictands are highly disparsti@ndardizationthat is, normalizing
each predictand by its standard deviation, may be appropriate. Applying RDA to standardized
predictands finds the projections that maximize the explained standardized variance. Explicitly,

we use the transformations

x' = (XXT)~1/2x
(26)
y' = (Diag YYT)~2y
where the notatiomiag YY? means the diagonal matrix whose diagonal elements are the same
as those oY Y”'; the elements of the diagonal matiidag YY7 are the predictor variances and
y’ is'y with each element divided by its standard deviation. This transformation of the predictand

normalizes each predictand to have unit variance as in CCA, but unlike CCA, the transformed

predictands remain correlated. The transformed regression matrix is
A =Y'XT. (27)
The (i, j)-th element oA’ is the correlation betweey) andz’; since

A = elNej=el YXTe; = ,TY(@;—_FX/)T, (28)

1
This quantity is also the square-root of the fraction of the variancg ekplained byz’, that
is the square-root of the explained standardized variance. Paralleling the interpretation of CCA
and RDA, we project the transformed data onto the vectoendv. The square-root of the

standardized explained variance of the regression between the projections is

uTy/(VTxl)T B uTA/V

vuluvlv vuluvlv

Theu andv that maximize this ratio are the leading singular vectorA’of

(29)

The explained standardized variance is the sum of the explained fraction of variance for each

predictand. On the other hand, the explained fraction of variance for each predictand is the square

13



of the correlation between the prediction and the predictand. Therefore, maximizing the explained
standardized variance is the same as maximizing the sum of squared correlations between predic-
tand and prediction.
We call this decomposition of dafarincipal predictor analysigPPA) after Thacker (1999)

who focused on the predictor patterns, which he called principal predictors and characterized as
maximizing the sum of squared correlation between the predictor patterns and the predictand data.
Like CCA and RDA, the PPA predictor projections are uncorrelated because of the use of the
whitening transformation. However, the predictand projections are neither uncorrelated nor or-
thogonal. Additional details of the weight and pattern vectors are give in Table 1. PPA provides

a diagonalization of the regression with the diagonal elements measuring the square-root of the

explained standardized variance for each pattern pair.

d. Covariance

In the univariate problem, normalizing the predictor by its variance makes the regression coef-
ficient equal to covariance. To generalize to the multivariate problem we multiply the predictor by
the inverse of its covariance:

x' = (XXT)'x, (30)

and do not transformg. The regression matrix for predictingfrom x’ is
A =YXT(X'XT)"t =y¥xT. (31)

The(i, j)-th element oA’ is the covariance betwegpandz ;. The covariance between projections

of the predictand and predictor data in the directiaredv, respectively, is

TY TxT TA/
u'Y(v ): u'A'v (32)

vuTu vTv VuTu viv

14



This ratio is maximized when andv are the left and right leading singular vectorsAdf® This
decomposition of the data is maximum covariance analysis (MCA), sometimes referred to as SVD;
we use the name MCA to distinguish between the coupled pattern method based on the SVD of
the cross-covariance and the general SVD matrix procedure (von Storch and Zwiers 1999).

Writing the regression matriA using the MCA projections gives
A = USVT(XX")~!, (33)

whereUSV7 is the SVD of YXT'.6 Thei-th MCA predictand projection is uncorrelated with the
j-th MCA predictor projection foi # j since the matriXy?'YX?V only has nonzero elements on
its diagonal. However, this does not mean that a regression foitthlCA predictand projection
should only include thé-th MCA predictor projection. To show this, we express the predictor data
asX = VB, where the rows oB contain the time-series of the projection of the predictors onto
V andB is given byB = V7 X. Substituting this representation of the predictor data into Eq. (33)
gives

A = (USVT) (VBB"VT) " = US (BB”) ' V7. (34)

This form is similar to usual MCA-based linear models. However, usuBBy is replaced by

the diagonal matrix whose first, diagonal entries are the same as thosBBf, the variance of

the MCA time-series and whose remaining diagonal entries are zero (e.g., Widmann et al. 2003);
n, is the dimension of the predictand. This approximation means that correlations between MCA
modes are neglected, and the resulting estimate is not generally a least-squares estimate (LSE).

Therefore we call the method using the regression matrix in Eq.L(SEfMCAsince it uses the

5The SVD of the cross-covariance matrix also arises in the solution of the orthogonal Procrustes problem (Gower

and Dijksterhuis 2004).
SFormingYX™ is impractical and unnecessary when the predictor and predictand dimensions are large compared

to the number of samples. Instead, MCA can be applied to the covariance of the unnormalized predictor and predictand
PCs since the SVD is invariant under orthogonal transformations. The dimensions in the SVD calculation are thus

determined by the number of PCs rather than the predictor and predictand dimensions.
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projections that maximize covariance like MCA but is a least-squares estimate. Like MCA, LSE-
MCA requires no EOF pre-filtering. Widmann (2005) also noted that the usual MCA-based linear
models do not agree with CCA-based regression and multiple linear regression, even when the
predictand is a scalar. When the predictand is a scalar, the usual MCA-based linear model uses
a single SVD mode as predictor, truncating the predictor data. LSE-MCA, on the other hand,
does not truncate the data and reproduces the least-squares estimate. The usual MCA-based linear
model is the same as LSE-MCA when the predictor and predictand dimensions are the same and
BB is indeed diagonal. The matrBB” is diagonal when the MCA modéé also happen to

be EOFs of the predictor or when the predictors are uncorrelated with equal variance and the
covariance matriXX” is proportional to the identity matrix; the latter condition is true when, for
instance, the predictors are whitened variables. Feddersen et al. (1999) used MCA projections in a
least-squares estimate but with an implementation that additionally required the solution be found
by numerical optimization. MCA is similar tpartial least-square$PLS) regression (Wold et al.

1984; Boulesteix and Strimmer 2007) in that the components maximize covariance, and the first
PLS component is the same the first MCA component. However, subsequent components differ

because PLS components are uncorrelated.

5. Reduced-rank regressions

We have shown that the regression matrix can be decomposed into patterns that optimize se-
lected quantities including correlation, explained variance, explained standardized variance and
covariance. These decompositions help diagnose properties of the regression by expressing the
data in bases so that the regression matrix is diagonal. As shown in section 3, the use of different
bases does not fundamentally change the regression as long as the bases are complete and there is
no truncation of the data. Therefore all the methods are the same as multiple regression when a

complete set of patterns are used. However, the regression is changed when a partial set of patterns
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is used, effectively truncating the data used to develop the regression. Such a simplification of the
regression may be desirable since it reduces the number of predictors, and hence the number of
parameters that must be estimated from the data. We expect that regressions that use too many
predictors will have poor skill on independent data due to overfitting and sampling error.

Reducing the number of patterns used in the regression is somewhat different from pre-filtering
which reduces the number of predictors or predictands without necessarily considering joint rela-
tions between predictor and predictand. Decomposition of the regression into pairs of patterns
produces measures of the strength of the relation between the patterns; for instance, CCA gives
the correlation between the time series of the patterns. Therefore, it is reasonable to retain those
pairs of patterns that represent the strongest relations and discard the rest. Since overfitting may
exaggerate the in-sample relationship, validation of the relation on independent data is useful for
deciding which pairs of patterns to retain. Often cross-validated skill is the basis for selecting
the patterns to keep in the regression. However, as mentioned earlier in the context of EOF pre-
filtering, the cross-validated skill of the selected model will give an overly optimistic estimate of
performance on independent data.

Since the pattern pairs are found by computing the SVD of the transformed regression ma-
trix A’, restricting the patterns used in the regression is the same as repldiyga truncated
SVD, that is, the regression matlX = USV7 is replaced withA’ = USV” where the first-
diagonal elements & are the same as those $fand the rest are zero; the patterns and weights
do not change. The resulting truncated regression mAteix PySQz retainsr pairs of patterns
and has the property that it is the rankegression which optimizes the condition that the SVD
measures. In particular, depending on method, the ramigression may optimize mutual infor-

mation (CCAY, explained variance (RDA), the sum of squared correlations (PPA) or the sum of

"This a consequence of the facts that (i) mutual information of normally distributed variables is an increasing
function of correlation alone and (ii) the mutual information of a sum of independent variables is the sum of their

mutual information.
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covariance (LSE-MCA).

The patterns obtained in each method are generally different, and for a given valuthef
rank+ regression will be different for each method. Therefore, the different pattern methods pro-
duce different regressions when the regression is truncated. The motives of the user or the nature
of the problem may indicate that one pattern method is preferable over another. For instance, CCA
can select patterns with large correlation but small explained variance. In this case, RDA might
be preferable as it maximizes explained variance. Similarly, LSE-MCA, by maximizing covari-
ance, may select patterns with large variance but not necessarily high correlation. In this case,
CCA might be preferable. The optimization of mutual information makes CCA attractive from
the viewpoint of predictability since mutual information is a predictability measure with many
attractive properties (DelSole and Tippett 2007).

A final point regarding these truncated regressions is that the truncated regression is indeed
the same as the regression developed using the data projected onto the retained patterns since

essentially a diagonal regression matrix is being truncated.

6. Two idealized examples
a. MCA and LSE-MCA

We now consider a simple example that illustrates the difference between the commonly used
MCA linear model and LSE-MCA. We takeandy each to have 2 elements. Suppose ¥t =
I and the MCA modes are the columns of the identity matrix. Then from (33) the regression matrix
is simply

A = (XXT)7!. (35)

The commonly used approximation of the regression matrix is the diagonal matrix

Ayca = Diag(XXT)™!. (36)

18



We take the predictor covariance to have the form

T

cos@ —sinf| |1 O cosf —sinf
XXT = (37)

sinf  cos# 0 02| |[sinf cos#

wheref is the angle between the MCA modes and predictor EOFs, and the predictor EOFs have
variance of 1 and?. The angle) is important because MCA and LSE-MCA are the same when
the MCA modes are predictor EOFs, i.e., when= 0. Additionally, suppose the predictand

covariance has the similar structure

T

cosf) —sind 1/(0.8)2 0 cosf) —sinb
YY!' = /(08) ) (38)

sinf  cosf 0 1/(0.50)?| |sinf cosf

These choices for the covariances imply that the CCA weight vectors are the same as the EOFs
and that the canonical correlations are 0.8 and 0.5 (see A5 of the Appendix).

The error variance of the regression is

(lAx — y|*) = tr (A(xx")AT + (yy") — A(xy") — (yx")AT)

— tr (AXXTAT + YYT — A — A7)
(39)
— tr(YYT — (XXT)"")
1 1 1

- _1- =
0.82 + (0.50)? o2’

where we use the facts th¥X” = I andA = (XXT)~!. The error variance of the MCA model is

(|1AMcax — y[*) = tr (AmcaXXTAfica + YYT — Ayca — Afica)
= tr(YYT — (XXT)™) + tr (AncaXXT AL cp — (XXT)71) (40)
= (||Ax — y[|*) + tr (AmcaXXTAfica — (XXT)7) .
Therefore the error variance of the MCA linear model relative to that of the LSE-MCA regression
IS
| Amcax — y|I?) 14 tr (AmcaXXTAfica — (XXT)71)
(I1Ax —y|*) (IAx —y|*)

(41)
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This error variance is governed Byando. Figure 1 shows the error of the MCA linear model
relative to that of the LSE-MCA regression as a functiondaindo. Whené = 0, the MCA

modes are also EOFs of the predictors, and there is no difference between the methods. Increasing
6 increases the error of the MCA linear model. Whenr= 1, the methods are the same since

XX? = I and again the MCA modes are the same as the predictor EOFs. désreases, the

relative error of the MCA linear model increases.

b. CCA, LSE-MCA and RDA

We now present a simple example to illustrate some issues regarding the truncation of the
regression as discussed in section 5. We construct a 2-dimensional, diagonal example where the
correlations of the two elements are specified and examine the error of rank-1 regressions as the

variance of one of the elements is varied. In particular, suppose that

1 0
XXT =vYYT = . (42)
0 o?

The first and second elements are uncorrelated and have varianceri, aespectively, for both

x andy. Note thaiz?> may or may not exceed 1. Suppose M’ is diagonal and given by

YXT = , (43)

C1 0
A= , (44)
0 Co
and the regression error variance is
(ly — Ax|]*) = (1 = ¢f) + (1 = )™ (45)

The rank-1 CCA regression selects the part of the system with highest correlation, which is

the first element, regardless @f We now show that when the first element has little variance, the
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regression based on the leading CCA pattern does not minimize squared error. The rank-1 CCA

regression matrix is

C1 0
ASCA = . (46)

0 0.
The error variance of the rank-1 CCA regression relative to the full regression is

1—c+ o2

1-cH)+(1—c3)o?" (47)

On the other hand, LSE-MCA selects the part of the system with highest covariance. Examination
of Eq. (43) shows that for < /c;/cs, the first element has the highest covariance and the rank-1
LSE-MCA regression matrix is the same as the rank-1 CCA regression matrix. £0{/c; /cs,

the second element has highest covariance and the rank-1 LSE-MCA regression matrix is

All_SE—MCA —_ 00 ’ (48)

0 Co
and the error variance relative to the full regression is

1+ (1—c3)o?

T=)+1-a)0" “9

Comparing Eqg. (47) with (49) shows that the error variance of the rank-1 LSE-MCA regression
is larger than that of the rank-1 CCA regression wRgn, /c; < o < ¢;/c, and smaller when
o > c1/ce. This result agrees with the intuition thatifis small, we expect that the squared error
to be minimized by the rank-1 regression matrix accounting for the first element which has highest
correlation. On the other hand dfis sufficiently large, then the rank-1 regression should be based
on the second element.

Figure 2 shows the squared error of the rank-1 regressions as a functofoot; = 0.8
andc, = 0.5. There are three regimes. For< ./c;/c, ~ 1.26, the LSE-MCA and CCA
rank-1 regressions are the same. E@ < 0 < ¢/cq, the error of the LSE-MCA rank-1

regression is greater than that of the rank-1 CCA regression because the LSE-MCA is selecting
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the second element since it explains more covariance. However, the second element has lower
correlation, and the resulting regression has higher rms erroro Forc;/co = 1.6, the error

of the rank-1 CCA regression is larger than that of the rank-1 LSE-MCA regression because the
large value olr dominates the rms error. In this simple 2-dimensional example, the RDA rank-1
regression coincides with either the CCA or LSE-MCA rank-1 regressions, depending on which
one has smaller rms error. In general, RDA based regression is distinct from and has smaller rms

error than either CCA or MCA-based regressions of the same rank.

7. Example: Statistical downscaling

General circulation models (GCMs) often have relatively coarse horizontal spatial resolution.
Information about smaller scales can sometimes be extracted from the coarse-scale GCM output
by forming a regression between GCM output and observations (Widmann et al. 2003). Such a
regression can also be used to remove systematic model errors (Feddersen et al. 1999). We apply
this procedure to the ensemble mean of a 24-member set of ECHAM 4.5 (Roeckner et al. 1996) T42
ensemble simulations of March-May (1950-2000) precipitation over the Northeast of Brazil (55W-
35W,13S-1N). With T42 model resolution corresponding & x 2.8° spatial grid, the model
domain contains 63 grid points. During this time of the year, precipitation over the Northeast of
Brazil is closely related to sea surface temperature (SST), and the GCM forced with observed SST
skillfully reproduces some aspects of seasonal precipitation interannual variability. Observational
data are taken from a gridde@l §° x 0.5°) rainfall observation data set (New et al. 2000). Leave-
one-out cross-validation is used to select the level of EOF pre-filteaagvell as the number of
patterns retained in the regression; the truncations for each method are chosen to maximize the
sum over gridpoints of those cross-validated correlations greater than 0.3. Results using rms error

as a truncation metric are similar, though rms error tends to select lower dimensional models, as

8Predictor and predictand are pre-filtered in CCA. Only the predictor is pre-filtered in RDA and PPA. No pre-

filtering is used with MCA or LSE-MCA.
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has been noted generally (Browne 2000).

The correlation map for a cross-validated univariate per gridpoint regression between the grid-
ded observations and the GCM output interpolated to the observation grid is shown in Fig. 3a.
Although there is a large region with correlations greater than 0.5, the gridpoint regression is
limited by not using spatial correlation information. Figures 3b-g show the correlation maps of
regressions based on PCR, CCA, RDA, MCA, LSE-MCA and PPA patterns, respectively. All of
the spatial pattern regression methods show overall improvement compared to the gridpoint re-
gression and are fairly similar to each other. Their similarity may reflect that there seems to be
only one or two meaningful modes in the regression which are captured by all the methods. The
CCA regression uses 5 predictor EOFs and 2 predictand EOFs to form a rank-2 regression; RDA
and PPA use rank-1 regressions based on 5 and 3 predictor EOFs, respectively.

The best overall results for correlation skill are obtained with CCA. Although CCA is expected
to perform better than PCR since PCR is the special case of CCA with an untruncated predictand,
there is no particular reason to expect CCA to outperform LSE-MCA or RDA, in general. The
differences in skill are mostly insignificant, in a statistical sense. Both MCA and LSE-MCA use
the same 4 modes that maximize covariance. Although we expect LSE-MCA to perform better
than MCA since MCA neglects correlations between predictors, the impact of sampling error on
the performance of the methods is unknown. One could imagine poor estimation of the correlations
among the predictors outweighing the neglection of inter-predictor correlations. In any case, in
this example, LSE-MCA does out-perform MCA, which has the worst performance of the pattern
regression methods. The regression with the smallest cross-validated rms error is RDA. The rank-1
CCA regression (not shown) has slightly lower overall correlation than the rank-2 CCA regression,

but has lower cross-validated rms error, and in fact is lower than that of the RDA regression.
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8. Summary and conclusions

Two commonly used linear methods for finding coupled patterns in two data sets are canonical
correlation analysis (CCA) and maximum covariance analysis (MCA), which find projections of
the data having maximum correlation and covariance, respectively. Such methods are useful for
diagnosing relations between variables and constructing linear prediction models. Pattern methods
like redundancy analysis (RDA) and principal predictor analysis (PPA) were developed specifically
for use in linear prediction models and maximize explained variance and the sum of squared corre-
lations, respectively. In this paper we show that these methods diagonalize the regression and are
singular value decompositions (SVDs) of the matrix of regression coefficients for data transformed
suitably for each respective method.

The essential character of the regression does not change when linear transformations are ap-
plied to data, as long as the transformation of the predictors is invertible. One consequence of
the invariance of the regression is that regression-based prediction minimizes not only the sum
of squared errors but any positive semi-definite quadratic function of the error. This fact implies
that the regressions developed with each predictand individually will give the same predictions as
the regression developed with all the predictands simultaneously. Consequently, principal compo-
nent regression (PCR) in which regressions are developed between predictor PCs and individual
predictands gives the same prediction model as does the regression developed between the set of
predictands and the predictor PCs simultaneously, which in turn is the same as CCA with EOF
pre-filtering of the predictor and no other truncations.

Although the regression is invariant under linear transformations of the data, the meaning of
the regression coefficients changes depending on the transformation of the data. This connection
between the interpretation of the regression coefficients and transformation of the data is readily
apparent in the univariate case where differing normalizations of the data determine whether the

regression coefficient measures correlation, explained variance, or covariance. Analogous trans-
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formations in the multivariate case lead to the regression matrix having coefficients that measure
the same quantities. The whitening transformation in which the data are replaced by its normalized
PCs is the multivariate generalization of normalizing a variable by its standard deviation.

The structure of the regression matrix is revealed by the singular value decomposition (SVD),
which finds orthogonal bases so that the regression matrix is diagonal. Depending on the transfor-
mation applied to the data, the singular values measure correlation, explained variance, explained
standardized variance or covariance. The singular vectors identify the projections of the data that
optimize these quantities and correspond to the methods CCA, RDA, PPA and MCA, respectively.
The SVD of a transformed regression can also be interpreted as the SVD of the untransformed re-
gression with particular choices of norm for the predictor and predictand (Ehrendorfer and Tribbia
1997).

A common method for constructing a linear prediction model from MCA patterns does not
produce a least-squares estimate since correlations between MCA predictors are neglected. A
variation, LSE-MCA, uses the same MCA patterns which maximize covariance but minimizes
squared error. There are some special cases when MCA and LSE-MCA are the same, such as
when the predictor and predictand dimensions are the same and MCA patterns are also EOFs of
the predictor. In general, as illustrated in a 2-dimensional example, the MCA linear model will
have larger rms error than LSE-MCA. In practice, where sampling error plays a role, the MCA
linear model may potentially gain some benefit by neglecting poorly estimated correlations among
the predictors. However, in statistical downscaling GCM simulated rainfall over the northeast of
Brazil, the MCA model had slightly worse performance compared to the other pattern methods.

Since the different coupled pattern methods correspond to decompositions of the same regres-
sion matrix, they all produce the same prediction model when a complete set of patterns is used.
The choice of pattern method is important to the regression model when the SVD is truncated—that
is, when an incomplete set of patterns is used. The regression model obtained by retaining only

the firstr pairs of patterns is the rankregression that maximizes mutual information, explained
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variance, explained standardized variance, and covariance for CCA, RDA, PPA and LSE-MCA,

respectively. We illustrate in a 2-dimensional example that the RDA rank-1 regression is the rank-
1 regression that minimizes rms error while the rank-1 regressions based on CCA or MCA patterns
generally do not.

The difference between reduced-rank regressions based on the different methods depends on
the difference between the subspaces spanned by the retained patterns of each method, not dif-
ferences between individual patterns. For instance, although the fRB¥A patterns (assuming
r > 1) may be different from the first CCA patterns, if they collectively span the same sub-
space, regressions based on them will be identical. This fact may help in understanding why all
the methods produce linear models with comparable skill in the statistical downscaling example.

The derivation of the pattern methods in the regression framework makes it easy to compare
the methods and is useful for computation. A practical benefit of this approach is that an algorithm
or computational method developed for one method is easily adapted for the other methods by
transforming the data. For instance, Table 2 shows that all the methods can be expressed as MCA
applied to transformed data.

An important issue that has not been examined closely here is the role of sampling error. The
finite number of samples causes sampling error to affect all the methods, such that the underlying
covariances are imperfectly known. EOF pre-filtering is only one method for limiting the covari-
ances to information that can be robustly estimated. Ridge methods are another approach to treat

this problem (Vinod 1976; Hastie et al. 1995).
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APPENDIX

a. EOF pre-filtering

Let L = ZT whereZ is a matrix whose columns contain some but not all of the orthogonal
eigenvectors of the predictor covariar¥X”. ThenXX?Z = ZA whereA is diagonal matrix
containing the corresponding eigenvalues. The regression matrix reyaéindx’ = Lx is

A = (YXTLT)(LXXTLT) !
= (YXTZ)(Z"XXTZ)™!
(A1)
= (YXTZ)(Z7ZA) ™
=YXTZAT!.
The projectionP that projects the predictor data on to the space spanned by the colurdris of
P = ZZ". Applying the original regression to the projected data is the same as the regression with

the transformed data because
APx = AZZ"x
= (YXT)(XXT)"'2Z2"x
= (YX")ZA'Z"x (A2)

= A'Lx

b. Alternative form for CCA

The usual CCA equations for the predictand weights are obtained as follows. First, from
Eq. (17),A’/A’" = USSTU” which means thal is the matrix of eigenvectors & A’". The eigen-
values and eigenvectors AfA’" are found by solving the eigenvalue probl&fA’"u = s?u, or
in terms of the weighty, = (YY7)~1/2q,

(YYT)—I/ZAIA/T(YYT)I/qu _ Squ ) (A3)

28



Then using the definition oA’ in Eq. (13)
(YYT)—l/QA/A/T(YYT)l/Q — (YYT>—1/2lelTle/T(YYT)1/2
(Ad)
= (YYD) Ly XT (XXT)IXYT.

The eigenvalue problem in (A3) is
(YY) LY XD (XXT)!XYTq, = s°qy , (A5)

which is Eq. (14.11) of von Storch and Zwiers (1999). The usual CCA equations for the predictor

weights follow similarly fromA”” A’ = VSTSVT.
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FiG. 1. Ratio of the MCA linear model error to that of the LSE-MCA regression as a function of

o for different values of the angkebetween predictor EOFs and MCA modes (see text).
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CCA

RDA

Qy:U

Qx — (XxT)fl/ZV

Q, = (Diag YYT)~1/2U

PPA MCA
optimizes correlation explained variance sum of squared correlations  covariance
x/ x = (XXT)"12x | x' = (XXT)"1/2x x = (XXT)~1/2x x = (XXT)~x
y |y =(YYH) iy y =y y' = (Diag YY')~!/2%y y=Y
weights | Q. = (XXT)~1/2V | Q, = (XXT)~1/2v

Qx — (xxT)71/2V

Qy:U

patterns

P, = (XXT)1/2y

P,=U

P, = (XXT)!/2y

P, = (Diag YYT)'/2U

P, = (XXT)1/2v

Py=U

TABLE 1. The quantity optimized, the variable transformations, the weights, and the patterns

for CCA, RDA, PPA, and MCA. In all casesJSVT is the SVD of the transformed regression

A’ = Y’X'" and the decomposition of the original regressioAis: P, SQZ.

38




CCAX,Y] = MCA[(XXT)—l/Qx, (YYT)—1/2y]
RDAX,Y] = MCA[(XXT)~1/2X, Y]
PPAX,Y] = MCA [(XXT)_I/QX, (DiagYYT)_l/QY}

TABLE 2. CCA, RDA and PPA expressed as MCA of transformed data.
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