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Abstract

An ensemble of general circulation model (GCM) integrations forced by observed sea sur-

face temperature (SST) represents the climate response to SST forcing as well as internal

variability or “noise.” Signal-to-noise analysis is used to identify the most reproducible GCM

patterns of African summer precipitation related to the SST forcing. Two of these potentially

predictable components are associated with the precipitation of the Guinea Coast and Sahel re-

gions and correlate well with observations. The GCM predictable component associated with

Sahel rainfall reproduces observed variability on both interannual and decadal time-scales.
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1. Introduction

African rainfall during northern hemisphere summer presents variability on interannual and decadal

time-scales with the Sahel region experiencing dramatic long-term changes in precipitation and

substantial societal impacts in recent decades (Nicholson 1980). Land surface condition changes

(Xue and Shukla 1993) and global sea surface temperature variations (SST; Folland et al. 1986)

have been proposed as factors contributing to decreasing rainfall and multi-year drought in the

Sahel.

Atmospheric general circulation models (GCMs) provide a useful tool for investigating the

atmosphere-ocean and land-atmosphere interactions that influence African rainfall and for better

understanding past climate and future climate scenarios. The weight given to the results of model-

based studies depends on the realism of the model used and the fidelity of its representation of

physical processes. Results that hold across a variety of models are desirable given the imper-

fection of the models, and an apparent disparity among results from different GCMs in the Sahel

region is one of the motivations for this study. Recent modeling studies examining the impact of

SST on Sahelian rainfall found that many GCMs forced by observed sea surface temperature (SST)

are able to reproduce aspects of the low-frequency variability, but only a single GCM reproduced

the interannual component (Giannini et al. 2003; Moron et al. 2003; Bader and Latif 2003; Lu and

Delworth 2005).

Some studies have investigated the ability of GCMs to reproduce rainfall indices based on spa-

tial averages (Moron et al. 2003). Here , instead, we decompose the GCM output into modes that

either maximize variance or potential predictability, and compare their time-series with observa-

tions. This approach of separating the model output into modes, some of which may represent ob-
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servations more skillfully than others, has the potential to treat systematic GCM errors by retaining

skillful modes and discarding unskillful ones. Empirical orthogonal function (EOF) analysis finds

the modes that maximize variance. Signal-to-noise (S/N) analysis finds the modes that maximize

perfect model potential predictability.

A single GCM simulation forced by prescribed SST contains both the GCM response to the

SST boundary condition as well as chaotic internal variability unrelated to the boundary conditions.

Averaging an ensemble of GCM integrations forced with identical SST conditions reduces the

magnitude of those components associated with internal variability and isolates the SST-forced

GCM response, and previous analysis of African summer rainfall has focused on properties of the

ensemble mean. Analysis of the ensemble mean is sufficient to determine the dominant (maximum

variance) modes of SST-forced variability. However, if the goal is to assess the predictability of

the single observed realization which necessarily contains contributions from SST forcing and

internal variability, the analysis needs to account for internal variability. Signal-to-noise analysis

uses the ensemble mean as well as the deviations of the ensemble members from the ensemble

mean to identify the modes that are most reproducible or predictable given the SST forcing, that is

the predictable components of the SST-forced GCM simulation (Hasselmann 1979, 1997; Venzke

et al. 1999; Schneider and Griffies 1999; Barreiro et al. 2002; DelSole 2004). The goal of this

work is to identify the predictable components of African summer precipitation in a GCM forced

with observed SST, and to characterize their relation with observed precipitation on decadal and

interannual time-scales.

In this study, we focus specifically on the role of SST forcing on rainfall during July - Septem-

ber in the region 2N to 20N and 20W to 35E. Subtropical African rainfall variability in northern
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hemisphere summer can be separated into two modes, one associated with the Gulf of Guinea

region and the other with the Sahel region. Rainfall in the Gulf of Guinea region is associated

with nearby Atlantic SST, and Sahel rainfall is associated with Indo-Pacific SST. The mecha-

nisms effecting the two regions appear distinct (Giannini et al. 2003; Gu and Adler 2004; Giannini

et al. 2005). In addition to identifying the predictable components of the GCM, our goals include

quantifying the relation of the predictable components with observed rainfall variability and SST.

However, patterns found by predictable component analysis, like EOF analysis, are designed to

satisfy statistical criteria and need not isolate a single dynamical mechanism.

Understanding the influence of SST on African rainfall on seasonal time-scales also has impli-

cations for seasonal forecasting where SST forcing is the primary source of predictability (Goddard

et al. 2001). Although the present work is limited to GCM simulations forced by observed SST,

the results provide an estimate of potential predictability and identify the GCM components that

maximize potential predictability.

The paper is organized as follows: section 2 lists the data and methods used, focusing on the

S/N analysis; section 3 presents the predictable components of the GCM simulation; section 4 has

a summary and conclusions.

2. Data and Methods

The analysis uses July-September seasonal averages from the 55-year period 1950 to 2004. GCM-

simulated precipitation is taken from a 24 member ensemble of ECHAM 4.5 GCM integrations

with T42 resolution and forced with observed SST (Roeckner et al. 1996). We define the Africa

boreal summer monsoon region as 2N to 20N and 20W to 35E, containing 176 GCM grid points.
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Rainfall observations are taken from station records of the NOAA Global Historical Climate Net-

work (GHCN; Vose et al. 1992) in the box from 0 to 20N and 20W to 40E. There are 41 stations

with complete data records for the period 1950-2004 (locations shown with results in Fig. 1d). Ad-

ditional analysis uses the Hulme precipitation data set, based on gauge data gridded at 2.5◦ latitude

by 3.75◦ longitude resolution for the 49-year period 1950-1998 (Hulme 1992). SST anomalies are

computed from the ERSST data set version 2 from the period 1950-2004 (Smith and Reynolds

2004).

We use empirical orthogonal functions (EOFs) to identify modes of variability in the observa-

tions and in the ensemble mean. EOF analysis is a widely used method of identifying the patterns

that explain the maximum variance (Kutzbach 1970). EOFs are ordered by the variance they

explain and have orthogonal spatial patterns and uncorrelated time-series. EOF analysis of the

observed station precipitation anomalies identifies the anomaly patterns that appear, in an average

sense, most often in the historical record.

Signal-to-noise (S/N) maximizing EOFs identify the most reproducible patterns or predictable

components in systems with internal variability (Hasselmann 1979, 1997; Venzke et al. 1999; Bar-

reiro et al. 2002). Here we focus on the interpretation of S/N EOF analysis as providing a “perfect

model” characterization of predictability based only on the behavior of the GCM; observations are

not used in the S/N EOF analysis. The perfect model assumption, used in many studies of pre-

dictability, is that the observed climate can be represented as a particular integration of the GCM

(Kumar and Hoerling 1995; Rowell 1998; Sardeshmukh et al. 2000). This is a strong assump-

tion on the model’s ability to represent both the response to SST forcing and internal variability

unrelated to SST forcing. Perfect model skill is evaluated from an ensemble of simulations by com-
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puting the expected skill of an arbitrarily chosen ensemble member with the ensemble mean. For a

sufficiently large ensemble, the ensemble mean contains only the predictable SST-forced response,

while a single ensemble member contains both the SST-forced response and unpredictable internal

variability. When anomaly correlation is the skill metric, the ratio of the SST-forced ensemble-

mean response to internal variability determines the perfect model correlation rperfect (Kleeman

and Moore 1999; Sardeshmukh et al. 2000),

rperfect =
S/N

√

1 + S2/N2
, (1)

where S2/N2 is the ratio of the ensemble mean variance to the variance of the deviation of the

ensemble members about the ensemble mean. The perfect model skill can be computed using grid-

point values or time-series associated with spatial patterns. Often, the perfect model skill surpasses

the skill of the ensemble mean when real observations are used, suggesting poor representation of

the SST forced signal, an underestimate of internal variability or observational error.

S/N EOF analysis identifies the patterns whose time-series maximize the S/N ratio, and hence,

by (1) maximize perfect model correlation; other measures of predictability including mutual infor-

mation, relative entropy and predictive information are maximized as well (Schneider and Griffies

1999; DelSole 2004). Sometimes S/N analysis has been employed in preference to EOF analysis

when the ensemble size is relatively small, and the ensemble mean still contains internal variabil-

ity (Venzke et al. 1999; Barreiro et al. 2002). However, filtering of internal variability from the

ensemble mean is not our primary motivation for using S/N analysis. Rather, our goal is to identify

the components of the ensemble mean simulation that are most highly correlated with observations

under the perfect model assumption; these components are the most reproducible given the SST.

For this purpose, the value of S/N analysis is not the reduction of internal variability in the ensem-
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ble mean, but the accounting for internal variability in observations as approximated by a single

ensemble member. The S/N analysis is the perfect model version of model output statistics (MOS)

based on canonical correlation analysis which finds the patterns in model output and observations

whose time-series are most highly correlated.

S/N EOFs differ from usual EOFs because they maximize different criteria and hence charac-

terize different properties of the SST-forced GCM simulation. Since S/N analysis is less commonly

used than EOF analysis, we illustrate some of the qualitative differences and similarities between

EOF and S/N analysis with a simple system consisting of two scalar components [x, y]; x and y

measure anomalies and have zero mean. We assume that the observations [xo, yo] (a single ensem-

ble member under the perfect model assumption) contain a forced signal [xs, ys] (estimated by the

ensemble mean) and a random, mean-zero, unpredictable noise component [xn, yn] uncorrelated

with the signal, that is

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; (2)

the ensemble size is sufficiently large that there is no dependence on ensemble size. Suppose that

the two signal components xs and ys are uncorrelated in time, as is the case when xs and ys are EOF

time-series. Then, the 2 × 2 covariance matrix used to compute the EOFs of the two-component

system is diagonal, and the EOFs are simply the x and y components where the ordering of the

EOFs depends on relative sizes of the variances 〈x2

s
〉 and 〈y2

s
〉; the notation 〈·〉 denotes expectation

and is computed by time averaging.

When the two noise components xn and yn are also uncorrelated, the two components of the

system are uncoupled, the noise covariance matrix is diagonal, and the EOFs and S/N EOFs only

differ in their ordering. The ordering of the EOFs can be different from that of the S/N EOFs, which

8



depends on the relative sizes of the signal-to-noise ratios 〈x2

s
〉/〈x2

n
〉 and 〈y2

s
〉/〈y2

n
〉 rather than the

size of the variances. The signal-to-noise ratios determine the correlation of the observations with

the ensemble mean, since, for example, for x,

correlation(xs, xo) ≡
〈xoxs〉

√

〈x2
s
〉〈x2

o
〉

=
〈x2

s
〉

√

〈x2
s
〉〈x2

s
+ x2

n
〉

=

√

〈〈x2
s
〉/〈x2

n
〉

√

1 + 〈x2
s
〉/〈x2

n
〉
. (3)

On the other hand, when the noise components xn and yn are correlated, the EOFs and S/N

EOFs are generally different. The S/N EOFs are the linear combinations of x and y that maximize

the S/N ratio or equivalently the correlation between observations and the signal. A simple case to

analyze is when the two noise components are identical and xn = yn. The EOF analysis and the

predictability of the EOFs is unchanged. However, S/N analysis identifies the component x − y

which is perfectly predictable, that is, the observed component xo − yo is perfectly correlated with

the signal xs−ys. The presence of a perfectly predictable component is due to the noise covariance

matrix being singular and having an eigenvalue equal to zero. Another simple case is when xs and

ys have equal variance, and the S/N EOFs are determined completely by the structure of the internal

variability. In this case, the S/N EOFs are the eigenvectors of the internal variability covariance

matrix ordered from smallest noise variance to largest, and the leading S/N EOF is parallel to the

eigenvector associated with the smallest eigenvalue of the internal variability covariance matrix;

that is, it is the direction in phase-space with minimal projection onto the internal variability.

Generally, EOFs and S/N EOFs are not simply related. However, one would expect that leading

EOFs that project weakly onto internal variability would have similar structure to S/N EOFs since

they already maximize SST-forced variance (signal) and their projection onto internal variability

(noise) is small. Conversely, EOFs that project strongly onto internal variability are less likely to

have similar structure to S/N EOFs. A notable difference between EOF and S/N EOF analysis is
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that a linear change of variable, such as normalizing each grid point value by its standard deviation,

changes EOF patterns and time-series but does not change the S/N values or time-series since

there is a cancellation in the computation of the ratio of forced to internal variability. In fact, S/N

EOF analysis is identical to EOF analysis when the data is transformed by a linear “prewhitening

operator” which makes the internal variability spatially uncorrelated (Venzke et al. 1999; Schneider

and Griffies 1999).

Here the GCM internal variability or “noise” is estimated from the deviation of the 24 ensemble

members from the ensemble mean. The internal variability covariance matrix is nonsingular since

the sample size (1320 = 24 member × 55 years) exceeds the number (176) of degrees of freedom.

Projecting the internal variability covariance matrix onto a limited number of eigenmodes does not

significantly impact the results.

In the following, low- and high-frequency components of time series are defined as the 21-year

running-average and the deviation from that average respectively; fewer years are used at the ends

of the time-series. Correlations greater than the 99% level Student t-test values (0.31 and 0.33 for

correlations based on 55 and 49 years of data respectively) are considered significant.

3. Results

We compute EOFs of the station observations and the ensemble mean GCM precipitation, as well

as S/N EOFs of the GCM precipitation. The spatial patterns and time series of the first four S/N

EOFs, as well as their correlation with observed SST anomalies and Hulme precipitation, are

shown in Figs.1-4; Figs. 1 and 3, show the S/N EOFs related to Guinea coast and Sahel rainfall,

respectively, and include the corresponding observation EOF and time-series, as well as the spatial
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patterns of related EOFs.

a. Comparison with station observation EOFs

The first two station data EOFs describe respectively Sahel (Fig. 3d) and Guinea Coast (Fig. 1d)

rainfall and represent 32.2% and 15.8% of the total variance. The ordering of the station EOFs

likely reflects the nonuniform spatial distribution of station locations, though GCM EOFs (not

shown) have the same ordering when only land points are used in the computation. Correlating

the time-series of the stations data EOFs with those of the GCM EOFs gives a sense of the corre-

spondences between GCM and observed modes of variability, and Table 1 shows the correlations

of the two station data EOF time series with those of GCM EOFs. The first (Sahel) EOF of the

station data correlates with the second and sixth GCM EOFs which explain 27.7% and 1.6% re-

spectively of the total variance. While the second GCM EOF shows broad positive precipitation

anomalies across the Sahel region, the sixth GCM EOF shows positive and negative precipitation

anomalies. Performing multiple linear regression between the time-series of the second and sixth

GCM EOFs and that of the first station data EOF gives a time-series whose correlation with the

station EOF is 0.72. The second (Guinea Coast) EOF of the station data correlates well with both

the first and third GCM EOFs which explain 43.1% and 13.4% respectively of the total variance.

Using multiple linear regression with the first and third GCM EOF time-series gives a time-series

whose correlation with the time-series of the second (Guinea Coast) EOF of the station data is

0.73. There are no significant correlations between the Sahel and Guinea Coast station data EOFs

and untabulated higher order GCM EOFs.

We now compare the time-series of the stations data EOFs with those of the GCM S/N EOFs to
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determine the correspondence between observed modes of variability and the predictable compo-

nents of the GCM. The percentage of variance (Table 2, top) explained by the first four S/N EOFs

decreases with mode number and has values comparable to those of the ensemble mean EOFs,

although the S/N analysis does not use variance alone as a selection criteria. Table 2 shows the

correlations of the first two EOFs of station data with the first four S/N EOFs of the ensemble mean

precipitation. The first S/N EOF is associated with Guinea Coast rainfall and its time-series is well-

correlated (0.68) with the second EOF of the station data. This correlation is slightly less than that

(0.73) obtained by using multiple regression to combine the first and third GCM EOF time-series.

The second S/N EOF does not correlate significantly with station data EOFs; the strongest correla-

tion (0.28) is with the Guinea Coast station data EOF. The third S/N EOF is associated with Sahel

rainfall and the correlation of its time-series with that of the first station EOF is 0.78, compared to

0.61 obtained from the second GCM EOF and 0.72 when the multiple regression combination of

the second and sixth GCM EOF time-series is used. The correlation level with the second GCM

EOF is consistent with Giannini et al. (2003) who found a correlation of 0.73 between a GCM EOF

and a Sahel-region station data EOF using a different period and GCM. Later we decompose the

Sahel time-series into high and low frequency components to determine their relative contributions

to simulation skill.

b. Perfect model skill

The S/N analysis identifies those modes that explain the maximum variance while projecting min-

imally on internal variability. The ratio of ensemble mean variance to internal variance is 6.97,

3.21, 2.74, and 2.13 respectively for the first four S/N EOFs. The calculation of these values is the
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most sensitive part of the analysis to the specification of the internal variability covariance matrix;

projecting the internal variability covariance matrix onto a limited number of leading EOFs leads

to lower S/N ratio values. The S/N ratio is related to the perfect model correlation by Eq. 1, and

Table 3 shows the perfect model correlation of the EOF and S/N EOF time-series. The perfect

model correlation levels appear to over-estimate real skill. The perfect model correlation of the

first four EOFs is mostly less than that of the S/N EOFs, and EOFs are not ordered by their perfect

model skill. The perfect model correlation skill (0.6) of the second EOF associated with Sahel

precipitation is less than that of the first and third EOFs, indicating that this EOF pattern projects

more onto the internal variability than do the other leading EOFs. Another indication of the GCM

uncertainty associated with Sahel EOF is the high degree of similarity between the spatial pattern

of the Sahel EOF and the first EOF of the internal variability–the pattern correlation (uncentered)

is 0.93. The projection of the Guinea coast GCM EOF onto the internal variability is considerably

less (0.22); Giannini et al. (2005) also noted the relatively higher level of internal variability in

the Sahel EOF in another GCM. The relation between the Sahel EOF and the dominant internal

variability suggests that the Sahel mode has potential to benefit from the S/N analysis.

c. Spatial structures

We now examine the predictable components and their correspondence with observations in more

detail. The spatial pattern of the first S/N EOF (Fig. 1c) resembles the station pattern (Fig. 1d) with

a maximum south of 10N and modest negative precipitation anomalies to the north, consistent

with the correlation of its time-series with Hume precipitation (Fig. 1f). The S/N pattern has

similar structure to the first GCM EOF with the precipitation maximum slightly shifted south and
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more indication of negative precipitation anomalies to the north. The correlation of the first S/N

EOF associated with Guinea Coast rainfall with SST shows strongest correlations in the Atlantic

(Fig. 1e). The time-series (Fig. 1e) shows interannual variability and no apparent trends.

The second S/N EOF spatial pattern shows a localized negative precipitation anomaly off of the

coasts of Guinea, Guinea Bissau and Senegal (Fig. 2a). While the model is confident of its ability

to predict this mode of variability, the lack of significant correlation with station observation EOFs

makes it unclear whether this mode reflects a physical mechanism in nature or is a systematic error

of the GCM or its forcing. The time series (Fig. 2b) and spatial structure is similar (time-series

correlation of 0.82) to those of the third GCM EOF which is related to rainfall in the Guinea Coast

region. Correlation with Hume estimates of precipitation shows little correlation in the region, and

slightly positive, though insignificant, correlations where the GCM precipitation is negative. The

second S/N EOF is modestly correlated with local SST anomalies (Fig. 2d), with negative rainfall

anomalies being associated with below normal SST. Interestingly, the correlation of the Sahel

station data EOF time-series with SST anomalies in the index box covering 7N to 13N and 25W

to 15W is -0.55, meaning that below-normal Sahel precipitation is associated with above-normal

SST. If reduced Sahel rainfall (clear skies) leads to enhanced SST, the GCM might be erroneously

responding with locally enhanced rainfall. This suggests a weakness in the 2-tier prediction system

that has been discussed elsewhere (Krishna Kumar et al. 2005).

The third S/N EOF has broad structure across the Sahel region and resembles the first EOF

of the station data and the second GCM EOF. Correlations with SST are the strongest in Pacific

and Indian oceans. However, the presence of decadal variability and serial correlation in the time-

series reduces the effective number of degrees of freedom and complicates the interpretation of
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the significance of these correlations. Correlation of the third S/N EOF time series with the NINO

3.4 index is -0.56; the correlation of the first station data EOF with NINO 3.4 is -0.48. The

correlation of the second GCM EOF with NINO 3.4 (-0.3) is not significant; the correlation of

the multiple regression combination of the second and sixth GCM EOFs with NINO 3.4 is -0.41.

Since the fraction of variance explained by the sixth GCM EOF is small (1.6%), its contribution

to the precipitation field is small, and so this result is not inconsistent with those of Moron et al.

(2003) who looked at simulations of a Sahel rainfall index in four GCMs and found insignificant

correlations with ENSO in three models and a significant correlation of the wrong sign in the

fourth. Related to our discussion of the second S/N EOF, we note the negative correlation between

the Sahel S/N EOF time-series (positive Sahel precipitation anomalies) and SST just off the Guinea

coast (Fig. 3g).

The fourth S/N EOF is not significantly correlated with the station EOFs, and the Hume data

shows little correlation with observed precipitation over land. The CAMS-OPI precipitation dataset

(Janowiak and Xie 1999), which begins in 1979 and includes satellite observations does indicate

some positive correlations (not shown), mostly over ocean in the Gulf of Guinea region. The time-

series shows both decadal and interannual variability. The correlation with SST anomaly suggests

an association with North Tropical Atlantic, tropical Pacific and Indian ocean SST.

d. Low- and high-frequency components of the Sahelian predictable component

We now look in more detail at the low- and high-frequency components of the time-series associ-

ated with Sahelian rainfall. The low-frequency component of the time-series of the first EOF of the

station data shows a clear drying signal from 1950 through about 1990 (Fig. 5a) which is reason-

15



ably well captured both by the low-frequency components of the multiple regression combination

of the second and sixth GCM EOFs and by the third S/N EOF. Correlation of the low-frequency

component of the S/N EOF time-series with SST anomaly (Fig. 5c) shows negative correlations,

with the strongest being in the Indian ocean, consistent with Giannini et al. (2003) but also en-

compassing the tropical Atlantic. The correlation between the high-frequency components of the

second GCM EOF and the first station EOF (Fig. 5b) is not significant (0.25); correlation between

the high-frequency components of the multiple linear regression combination of the second and

sixth GCM EOFs and the first station EOF (Fig. 5b) is 0.48. Correlation of the high frequency

components of the first EOF of the station data and of the third S/N EOF time-series is 0.63. This

level of correlation between the high-frequency components is consistent with that (0.52) found

by Giannini et al. (2003) using a different GCM and period. This correlation appears robust over

the historical record. Moron et al. (2003) found the modest skill of GCMs in simulating high fre-

quency variability of a Sahel index declined in the dry period. Due to the low variance and spatial

structure of the sixth EOF, we would expect rather different results for the EOF based analysis if

we analyzed an index based on a spatial average. The time-series of the high-frequency component

correlates with SST anomalies in the ENSO region extending into the Pacific warm pool region.

The correlation of the high-frequency component of the S/N EOF with NINO 3.4 is -0.58; the

correlation of the high-frequency component of the first station data EOF with NINO 3.4 is -0.57.

4. Summary and Discussion

Ensembles of general circulation model (GCM) integrations forced by observed sea surface tem-

perature (SST) provide a useful tool to investigate the relation between African climate and SST
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forcing. Any particular ensemble member contains the response to SST forcing as well as internal

variability or “noise.” The “perfect model” assumption supposes that the statistics of observa-

tions are indistinguishable from those of an ensemble member. In this setting, the predictable

components are the components that maximize the correlation between the ensemble mean and

observations and are the most reproducible patterns of the SST-forced GCM simulation. Here we

have used signal-to-noise analysis to identify the predictable components, or S/N EOFs, of African

summer precipitation in a GCM forced by observed SST.

Observed precipitation was represented by the first two EOFs of station data in the region,

corresponding to Sahel and Guinea Coast rainfall, respectively. Two of the GCM predictable com-

ponents are associated with the precipitation of the Guinea Coast and Sahel regions and correlate

well with the station data EOF time-series. The GCM predictable component associated with

Guinea Coast precipitation has the largest S/N ratio and its time-series correlates strongly with

tropical Atlantic SST. The GCM predictable component associated with Sahel rainfall reproduces

observed variability on both interannual and decadal time-scales; the high frequency component

shows a linear relation with ENSO.

Comparable reproduction of the station data EOF time-series was obtained by using multiple

linear regression between combinations of the GCM EOFs and the station data EOF time-series.

In the Sahel case, the station data EOF time-series correlated with a primary EOF having an easily

recognizable spatial structure and with another EOF explaining relatively little variance whose

spatial structure was less obviously related to the region. Overall, GCM EOF modes 1,2,3 and 6

correlated with the Guinea Coast and Sahel station data EOFs. Although time series of GCM EOF

mode 6 represents interannual time-scale variability in the Sahel, its low variance (1.6%) means
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that it contributes little to the ensemble mean. The lack of correlation between GCM EOF modes

4 and 5 with observations, and the low variance of mode 6 suggest that systematic GCM error is

causing some meaningful responses to SST forcing to be overwhelmed by less-skillful responses.

The ability of the GCM EOF time-series to reproduce observed time-series suggest that MOS

methods could be used to calibrate GCM output to observations (Feddersen et al. 1999; Landman

and Goddard 2002; Mo and Straus 2002; Tippett et al. 2005), using either GCM EOFs or S/N EOFs

as predictors; DelSole and Shukla (2005) found predictable components to be better predictor than

EOFs of wintertime North America surface temperature.

The spatial patterns of the S/N EOFs resemble those of the GCM EOFs. Interestingly, the S/N

analysis combined modes that EOF analysis separated. While multiple linear regression combined

the GCM time-series to represent well the observed time-series, the S/N analysis is somewhat

more objective in the sense that it does not use the observations. Also, the S/N analysis identified a

mode that may be an example of a problem with the 2-tier SST forcing strategy where the ocean is

assumed to force the atmosphere (Krishna Kumar et al. 2005). In the second S/N EOF, an observed

positive SST anomaly associated with decreased Sahel rainfall led to local positive precipitation

anomalies which are not seen in observations.

This analysis has practical implications for seasonal forecasting where most of the potential

predictability is related to SST forcing. Other studies have documented the difficultly with which

GCMs simulate interannual variability of rainfall in the Sahel (Moron et al. 2003). First, the results

here suggest that more of the interannual rainfall variability than had been supposed is related to

SST-forcing, and that GCMs can simulate that variability. Second, since the comparison with

observations shows that simulation skill is enhanced by focusing on S/N EOFs, there is potential

18



to improve seasonal forecasts by basing them on the behavior of the most predictable components

of the GCM rather than the ensemble mean. This potential is illustrated in Fig. 6 which shows the

correlation skill of the high frequency components of the GCM ensemble mean and its projection

onto the first four S/N EOFs. Most of the high-frequency simulation skill of the ensemble mean

is limited to the Guinea Coast region while projection shows skill in the Sahel region; projection

onto EOFs did not improve skill. Additionally, the S/N method should be useful in diagnosing

physical mechanisms, since it makes a clearer separation between the SST-forced climate response

and internal variability. Finally, as one goal is to obtain results across different GCMs, we mention

that encouraging results regarding the SST-forced variability of Sahel rainfall are obtained with

other GCMs being used at IRI (Barnston et al. 2003).
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Figure 1. Guinea coast predictable components. Spatial patterns of GCM EOF modes (a) 1 and
(b) 3. (c) Normalized S/N EOF pattern 1. (d) Station EOF 2. (e) Time-series of station EOF 2

(black), multiple regression combination of ensemble mean EOFs 1 and 3 (blue) and S/N EOF 1.
(f) Correlation of S/N EOF 1 time series with Hume precipitation anomalies (number in grid box
is the correlation multiplied by 10) and (g) SST anomaly (contours at [0.5,0.7]); only significant
correlations are shaded. Green (brown) shades represent positive (negative) anomalies, and red

(blue) shades represent positive (negative) correlations.
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Figure 2. (a) Normalized S/N EOF pattern 2. (b) Time-series of S/N EOF 2. (c) Correlation of
S/N EOF 2 time series with (c) Hume anomalies and (number in grid box is the correlation level

multiplied by 10) (d) SST anomaly; only significant correlations are shaded.
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Figure 3. As in Fig. 1 but for S/N EOF 3, station EOF 1 and GCM EOFs 2 and 6. SST correlation
contour at -0.5.
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Figure 4. As in Fig. 2 but for S/N EOF 4. SST correlation contour at -0.5.
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Figure 5. The (a) low-frequency and (b) high-frequency components of the first (Sahel) EOF of
station data (black), the multiple linear regression combination of the second and sixth GCM

EOFs (blue) and the second S/N EOF (green). The correlation of the high-frequency components
of the multiple linear regression combination of the second and sixth GCM EOFs and of the third

S/N EOF with observed is 0.48 and 0.63 respectively. The correlation of the (c) low-frequency
and (d) high-frequency components of the second S/N EOF with SST (contours at [-0.7,-0.5]).
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Figure 6. Correlation between the high frequency components of the Hulme dataset precipitation
and (a) the GCM ensemble mean and (b) its projection onto the first four S/N EOFs. The number

in the grid box is the correlation level multiplied by 10.
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GCM1 (43.1) GCM2 (27.7) GCM3 (13.4) GCM4 (5.8) GCM5 (2.4) GCM6 (1.6)

SD1 (32.2) -0.10 0.61 0.29 0.02 0.0 0.39
SD2 (15.8) 0.52 -0.17 0.51 -0.2 0.0 0.06

TABLE 1. Correlation of station data (SD) EOF time series and GCM EOF time series. Numbers
in parenthesis are the percentage of total variance.
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S/N 1 (38.1) S/N (13.9) 2 S/N 3 (10.9) S/N 4 (8.9)

SD1 -0.22 0.22 0.78 0.17
SD2 0.68 0.28 0.06 -0.15

TABLE 2. Correlation of station EOF time series and S/N EOF time series. Numbers in
parenthesis are the percent of total variance explained by the S/N EOF.
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mode 1 2 3 4
EOF 0.85 0.6 0.71 0.56
S/N EOF 0.94 0.87 0.86 0.82

TABLE 3. Perfect model correlation skill of EOF and S/N EOF time-series.
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