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Abstract

Interannual precipitation variability in Central Southwest (CSW) Asia has been associ-

ated with East Asia Jet Stream variability and Western Pacific tropical convection. However,

atmospheric general circulation models (AGCMs) forced by observed sea surface tempera-

ture (SST) poorly simulate the region’s interannual precipitation variability. The statistical-

dynamical approach uses statistical methods to correct systematic deficiencies in the response

of AGCMs to SST forcing. Statistical correction methods linking model-simulated Indo-West

Pacific precipitation and observed CSW Asia precipitation result in modest, but statistically

significant, cross-validated simulation skill in the northeast part of the domain for the pe-

riod 1951-1998. The statistical-dynamical method is also applied to recent (winter 1998-99

to 2002-03) multi-model, two-tier December-March precipitation forecasts initiated in Octo-

ber. This period includes four years (winter of 1998-99 to 2001-02) of severe drought. Tercile

probability forecasts are produced using ensemble-mean forecasts and forecast error estimates.

The statistical-dynamical forecasts show enhanced probability of below-normal precipitation

for the four drought years and capture the return to normal conditions in part of the region

during the winter of 2002-2003.

May Kabul be without gold, but not without snow.

—Traditional Afghan proverb.
∗International Research Institute for Climate Prediction Contribution Number IRI-PP/03/??.
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1. Introduction

Prediction of climate anomalies on seasonal-to-interannual time-scales is practical in regions and

seasons where predictable boundary conditions (e.g., land surface properties and sea surface tem-

perature; SST) lead to predictable changes in seasonal weather statistics (Goddard et al. 2001).

Both dynamical and statistical descriptions of the effect of SST anomalies on the climate system

have their particular shortcomings. Dynamical models, in particular atmospheric general circula-

tion models (AGCMs), though based on physical laws, are unable to resolve all spatial and tem-

poral scales, and inaccurate parameterizations of unresolved processes such as convection lead to

errors in predicting the climate response to SST anomalies. Statistical methods such as regression

predict the climate response to SST anomalies based on the historical record. However, the short-

ness and quality of the climate record limit accuracy. Stationarity of the climate system is a further

complicating issue.

Recently dynamical and statistical methods have been combined to compute the climate re-

sponse to SST forcing (Smith and Livezey 1999; Feddersen et al. 1999; Mo and Straus 2002;

Tippett et al. 2003; Widmann et al. 2003). The statistical-dynamical approach is in the spirit of

model output statistics (MOS) where systematic errors of the dynamical model are identified and

corrected (Glahn and Lowry 1972). Multivariate MOS correction identifies model patterns related

to observed patterns and then replaces model patterns with observed ones. The MOS correction

may effectively only make small shifts or rotations of model output when model deficiencies are

minor. In these cases,local model information is sufficient to perform the MOS correction. In

other cases AGCM precipitation simulation deficiencies require using other model variables, for

instance geopotential height, in the MOS correction (Landman and Goddard 2002). More severe

AGCM errors may result in a complete failure to reproduce particular components of large-scale

teleconnection patterns seen in observations. If the AGCM reproduces some part of the large-scale

SST responses, MOS corrections that complete missing features may be feasible. In these cases,
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use of spatially remote model variables and model variables other than the target variable may be

required. An example is the use of spatially remote model simulated precipitation to estimate win-

ter precipitation in the CSW Asia region (Tippett et al. 2003). The multi-model application of the

statistical-dynamical method to wintertime precipitation over the CSW Asia region, with emphasis

on forecast performance during the past five winters (1999-2003), is the subject of this paper.

Much of CSW Asia, including parts of Iran, Afghanistan, Turkmenistan, Uzbekistan, Tajik-

istan and Pakistan, has a semi-arid climate. The region lies beyond the usual reach of the Indian

Monsoon and receives most of its annual precipitation during winter and early-spring in the form

of snow along the high elevation of the region (Martyn 1992). This precipitation, associated with

eastward-propagating mid-latitude cyclones, displays considerable interannual variability. Below-

normal precipitation during four consecutive winter seasons (winter of 1998-99 to 2001-02) re-

sulted in the worst drought in fifty years and had a severe impact on agricultural production and

livestock populations (Agrawala et al. 2001; Barlow et al. 2002). An indication of the role of

SST forcing in this recent drought is found in the Hoerling and Kumar (2003) modeling study

where several AGCMs forced by observed SST reproduced features of the drought in CSW Asia.

However, AGCM simulations of the period prior to the recent drought show little skill in simulat-

ing CSW Asia seasonal precipitation anomalies, and we must rely heavily upon the observational

record to elucidate connections between CSW Asia precipitation and SST.

The classical ENSO response does not include the CSW Asia region (Ropelewski and Halpert

1987, 1989). However, there are some modest indications that ENSO has a positive relation with

DJFM precipitation in the northeastern part of the domain and a negative relation in the south-

eastern part; the correlation of DJFM precipitation with ENSO SST indices has slightly negative

values (∼ −0.2) over central Iran and positive values (∼ 0.3) in the northeastern quadrant of the

domain. Mason and Goddard (2001) found enhancement of the frequency of above-normal De-

cember through February (DJF) precipitation in Southwest Iran during the eight strongest La Niña
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events from 1951-52 to 1995-96. A similar analysis1 of all three-month seasons using the ten

strongest warm and cold events of the same period shows enhanced frequency of above-normal

DJF and January though March (JFM) precipitation in the region around the border of Afghanistan

and China during warm events and enhanced frequency of below-normal JFM precipitation in

Northern Afghanistan during cold events (Mason 2004, personal communication). Barlow et al.

(2002) linked the La Nĩna episode of 1998-2002 with the severe drought in CSW Asia and found

a stronger relation between CSW Asia precipitation and ENSO when ENSO events were stratified

according to the strength of their Western Pacific anomalies; ENSO events having stronger Western

Pacific SST anomalies were associated with precipitation patterns similar to those observed during

the recent drought period. This suggests that the CSW Asia region is affected by not simply the

ENSO phase but by details of the basin-wide SST anomaly pattern. This is not unexpected since

modeling studies have found the atmospheric circulation to be sensitive to the location of tropi-

cal heating (Sardeshmukh and Hoskins 1988; Ting and Sardeshmukh 1993; Hoerling and Kumar

2002; Barsugli and Sardeshmukh 2002).

An observational study by Lau and Boyle (1987) noted different circulation responses to West-

ern Pacific/Maritime Continent (95° to 135°E) and central Pacific (175°E to 140°W) OLR anoma-

lies, finding that Maritime Continent OLR anomalies had more association with the circulation

over Asia than did OLR anomalies in the central Pacific. A dominant feature of the wintertime cir-

culation over Asia is the upper-tropospheric westerly jet stream over subtropical east Asia and the

western Pacific, referred to as the East Asia Jet Stream (EAJS). Using composite analysis, Lau and

Boyle (1987) found that enhanced EAJS strength was associated with enhanced Maritime Con-

tinent convection. Maritime Continent convection influences the EAJS through the local Hadley

circulation (Chang and Lau 1982; Chang and Lum 1985; Lau and Boyle 1987). Enhanced Mar-

itime Continent convection leads to upper level divergence and southerly flow into the subtropical

1Data available at
http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.Analyses/.ENSO-RP/.datasetdocumentation.html
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Northern Hemisphere. The resulting westerly flow near the EAJS exit region, due to Coriolis ef-

fect, intensifies the EAJS. Strength of the EAJS correlates positively with precipitation anomalies

in the Maritime Continent and western Pacific regions but appears uncorrelated with ENSO (Yang

et al. 2002). CSW Asian precipitation is negatively correlated with the strength of EAJS (Tippett

et al. 2003). A possible explanation for the association between EAJS strength and CSW Asia

precipitation is that the dominant mode of variability of observed (Reanalysis) upper-level winds

indicates EAJS strengthening is accompanied by a southward shift of the jet maximum and north-

easterly flow anomalies over the CSW Asia region (Tippett et al. 2003). The negative correlation

between EAJS strength and CSW Asia precipitation reflects the association between anomalous

southwesterly flow over the region and enhanced upslope precipitation.

Tippett et al. (2003) found in the ECHAM 4.5 AGCM that poor simulation of EAJS variability

precluded using upper-level AGCM winds as a predictor for CSW Asia precipitation. This defi-

ciency may be a factor in the generally poor AGCM simulation of CSW Asia precipitation. How-

ever, statistical corrections using ECHAM 4.5 precipitation in the Western Pacific/Maritime Con-

tinent region did give statistically significant simulation skill (Tippett et al. 2003). In the present

work we apply this method to the ECHAM 4.5 AGCM and four additional AGCMs and make

retrospective statistical-dynamical forecasts based on operational two-tier IRI AGCM forecasts

of December-March (DJFM) precipitation anomalies for the five years (1999-2003); the AGCM

forecasts use SST predicted the preceding October. Historical simulation skill is used to estimate

forecast uncertainty and produce tercile probability forecasts.

2. Data and methods

a. Observations

DJFM CSW Asia climatological precipitation and its variability, shown in Fig. 1, are closely re-

lated to the elevation of the region. This data are taken from the extended New et al. (2000) gridded
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(a) (b)

(c)

Figure 1. (a) Climatological and (b) root-mean-square anomaly of the DJFM precipitation
1951-1998 (0.5◦ × 0.5◦ resolution). (c) Elevation of region in meters. The first contour is at

500m; the contour interval is 1000m.

dataset of monthly precipitation for the period of 1950 to 1998, and a version of this data interpo-

lated to a T42 grid is used to compute skill and statistical corrections. Climatological precipitation

follows the principal mountain ranges of the region: the Zagros, Himalaya, Karakorum, and Hindu

Kush. Two geographical regions with large climatological precipitation and variability are seen

in Fig. 1. One accompanies the Zagros mountain range along the Southwest border of Iran with

Iraq and the Persian Gulf. Another region of precipitation variability is found where the borders

of Afghanistan, Pakistan and Tajikistan meet in the Hindu Kush mountain range. The correlation

between box averages over the SW (45◦E – 56.25◦E, 26.5◦N – 35◦N) and NE (67.5◦E – 73◦E,

35◦N – 45.5◦N) regions is 0.34, suggesting only a weak statistical relation between the precipi-
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Model Resolution Start End Ens. Size
NCEP/MRF9 T42 DJFM 1966 DJFM 1998 10
CCM3 T42 DJFM 1951 DJFM 1998 10
ECHAM4.5 T42 DJFM 1951 DJFM 1998 24
COLA T63 DJFM 1951 DJFM 1997 10
NSIPP-1 2.5◦ × 2◦ DJFM 1951 DJFM 1998 9

TABLE 1. AGCM simulation periods and ensemble sizes used to compute simulation skill and
corrections.

tation variability of the two regions over the entire period (Tippett et al. 2003); both regions did

experience drought during 1970-71 and 1999-2002. The correlation of regional precipitation with

ENSO indices has marginal statistical significance with slightly negative values in the SW region

and positive values in the NE region.

The CAMS-OPI precipitation dataset, which includes satellite observations, shows qualitative

features of precipitation during the period 1999-2003 in Fig. 2 (Janowiak and Xie 1999). Below-

normal precipitation began in DJFM 1999 and continued through 2001. The drought weakened

in some northern areas in 2002, and there was a return to normal conditions in northern areas in

2003. However, there are relatively few reporting stations in the region during this period, and the

precipitation estimate relies heavily on satellite data, limiting forecast verification to qualitative

aspects. News reports and humanitarian aid information support these general features, including

the enhanced wet conditions in the northern part of the regions during DJFM 2003 where flooding

occurred. Station data available during the drought period and with sufficiently long records to

compute 30-year (1961-1990) climatologies are shown in Fig. 3. The station data shows above-

normal precipitation in DJFM 1998 followed by 3 years of below-normal precipitation. Station

precipitation amounts were close to normal in DJFM 2002 and above normal in DJFM 2003.
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(a) (b)

(c) (d)

(e)

Figure 2. CAMS-OPI anomalies (mm/day) for DJFM (a) 1999, (b) 2000, (c) 2001, (d) 2002 and
(e) 2003.
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Figure 3. Fraction of normal DJFM precipitation at three stations: Naryn (Central Kyrgyzstan;
76E,41.43N), Chardzhev (Turkmenistan; 63.6E, 39.1N) and Ashgabat Keshi (Southern

Turkmenistan; 58.33E,37.97N) for the period DJFM 1998-2003.

b. Model simulations and forecasts

We now examine simulation skill of the AGCMs used to make seasonal forecasts at the IRI:

NCEP/MRF9, ECHAM4.5, COLA, CCM3.2, and NSIPP-1 (Livezey et al. 1996; Roeckner et al.

1996; Kinter et al. 1997; Hack et al. 1998; Bacmeister et al. 2000, respectively). Simulation skill is

estimated from long ensemble integrations forced by observed SST. Spatial resolution, simulation

period and ensemble size for each model are shown in Table 1. Spatial maps of temporal anomaly

correlation of ensemble-mean model simulation and observation (not shown) indicate little simu-

lation skill in the CSW Asia region with few correlations exceeding 0.3. These correlation values

are substantially less than the perfect model skill (the expected correlation between an ensemble

member and the ensemble mean) which is almost everywhere greater than 0.3 and has domain-

averaged values ranging from 0.38 to 0.51 for the various models. The anomaly correlation skill

(Fig 4(a)) of a multi-model average is mostly larger than that of the individual models. Table 2

shows the number of grid points whose correlation exceeds 0.3 and their average correlation for

the individual models.

In the IRI two-tier real-time seasonal forecasts and Net Assessment forecasts, SST conditions
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(a) (b)

Figure 4. Anomaly correlation of DJFM observed precipitation with precipitation simulated by
the (a) uncorrected multi-model average and (b) the corrected multi-model average

for the forecast period are first predicted, and then the predicted SST conditions are used as bound-

ary conditions for a set of AGCM integrations (Mason et al. 1999; Goddard et al. 2003). SST

predictions are made using a dynamical prediction for the tropical Pacific and a statistical pre-

diction for the Tropical Atlantic and Indian oceans, with damped persistence in the mid-latitudes

(Mason et al. 1999). For the forecasts considered here, the AGCMs are forced with observed SST

until the end of September and with forecast SST for the period Oct-Mar. Forecast DJFM seasonal

anomalies are computed with respect to the time-mean of the given AGCM’s simulations over the

period 1969 to 1998. The AGCM ensemble sizes are the same as those listed in Table 1. The

availability of the AGCMs in forecast mode varies during the period with only the NCEP, CCM3

and ECHAM 4.5 models are available for the entire period; the ECHAM 4.5 model forecasts for

1999-2001 were not available in real-time. The NSIPP-1 and COLA forecasts were available for

DJFM 2002 and 2003.

c. Correction Method

Statistical correction methods have been used to correct model simulated precipitation anomalies

(Smith and Livezey 1999; Feddersen et al. 1999) and seasonal forecasts (Mo and Straus 2002).
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Model Points withr > 0.3 Averager at points withr > 0.3
Uncorrected Corrected Uncorrected Corrected

NCEP 3 pts. 25 pts. 0.35 0.4
CCM3 17 pts. 26 pts. 0.39 0.36
ECHAM4.5 6 pts. 22 pts. 0.32 0.38
COLA T63 3 pts. 27 pts. 0.33 0.38
NSIPP-1 8 pts. 26 pts. 0.35 0.38
Multi-model 12 pts. 28 pts. 0.36 0.38
SST - 20 pts. - 0.37

TABLE 2. Number of grid points where the simulation anomaly correlationr exceeds 0.3 and the
average anomaly correlation at those points.

The fundamental idea of these methods is a multivariate (pattern) regression between model fields

and observed anomaly fields. Prior to employing such a multivariate regression, separate principal

component analyses (PCA) of model fields and observations (“pre-filtering”) are applied to reduce

the number of degrees of freedom and decrease the effects of sampling error. Canonical correlation

analysis (CCA) is the multivariate regression method used to identify model fields most highly

correlated with observed precipitation anomaly patterns (Barnett and Preisendorfer 1987). The set

of CCA correspondences between model and observation patterns is then used to predict observed

precipitation anomalies from model outputs.

Previous work showed a relation between observed (Reanalysis) variations of the EAJS and

observed CSW Asia precipitation with the observed 200 mb wind field being a good predictor

of simultaneous observed CSW Asia precipitation (Tippett et al. 2003). However, examination

of the ECHAM 4.5 and NSIPP-1 simulated wind fields shows different interannual variability

than that of observed winds and little relation with observed CSW Asia precipitation; the AGCM

simulated winds are more highly correlated with ENSO than are observed (Reanalysis) winds.

Wind fields from the other AGCMs were not available. Since Western Pacific upper atmospheric

heating is related to EAJS variability it is reasonable that it might be directly related to CSW Asia

precipitation. Therefore the statistical correction is made using ensemble-mean model precipitation
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(a) (b)

(c)

Figure 5. The (a) observation CCA homogeneous covariance pattern (mm/day), (b) model pattern
(dashed line) and observation (solid line) time-series, and (c) model CCA homogeneous

covariance pattern for the NSIPP-1 AGCM (mm/day; contour interval is 0.5).

in the region 100°E to 130°W and 20°S to 20°N as the predictor; no effort was made to optimize the

predictor domain, and the same domain was used for all AGCMs. Figure 5 shows the observation

and AGM patterns and time-series of the first CCA mode for the NSIPP-1 AGCM; the patterns

and time-series are calculated without cross-validation. Positive precipitation anomalies in CSW

Asia are associated with an AGCM precipitation pattern showing a eastward shift of precipitation

along the equator. The correlation of the observation and model pattern time-series with the NINO

3.4 index are 0.4 and 0.68 respectively; the correlation of the AGCM and observation time-series

is 0.67. Patterns and time-series for the other models are similar.

To estimate the cross-validated skill of the CCA model, three consecutive years are selected and
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Model AGCM EOFs Obs. EOFs CCA modes
NCEP 5 3 1
CCM3 3 2 1
ECHAM4.5 2 3 1
COLA T63 2 3 2
NSIPP-1 3 5 1

TABLE 3. Number of AGCM and observation EOFs and number of CCA modes used to
construct the statistical corrections.

omitted from the calculation of the climatology, anomalies and CCA prediction model (Michaelsen

1987). The CCA model is then used to predict the observed anomaly for the middle withheld year,

and the full-field is formed by adding the climatology. A Monte Carlo estimate of the statistical

significance of the correlations is made by ranking the correlations of 50,000 random permuta-

tions in time of the observed data fields with correctly ordered observation fields (Livezey and

Chen 1983). EOF and CCA truncations (Table 3) were chosen to maximize the sum of the cross-

validated correlations exceeding 0.3 in the simulation skill estimates. The relatively low-dimension

of the statistical correction lessens the risk of the CCA over-fitting the data. The cross-validated

anomaly correlation of the multi-model average of corrected simulations (Fig. 4(b)) is very simi-

lar in spatial extent and magnitude to that of the individual models. Only correlations above the

95% significance level are plotted; also not plotted are negative correlations resulting from the

negative bias associated with cross-validation in areas without skill (Barnston and van den Dool

1993). Correction skill is limited to the northern part of the region from Turkmenistan west through

Uzbekistan, northern Afghanistan and Pakistan, Tajikistan and Kyrgyzstan. The number of grid

points whose correlation exceeds 0.3, and their average correlation, are given in Table 2.

d. Estimation of tercile probabilities

Probabilistic seasonal forecasts provide a means of quantifying and communicating forecast un-

certainty and ideally should consist of the probability distribution function (pdf) of future climate
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Model Average RPSS (%)
Uncorrected Corrected

NCEP 0.26 1.22
CCM3 0.31 1.1
ECHAM4.5 0.61 0.92
COLA T63 0.38 1.3
NSIPP-1 0.37 1.3

TABLE 4. Domain-averaged RPSS (%) of the ensemble mean simulations and their corrections.

conditions given the present climate state. Then the probability of a particular event, for instance,

the probability of precipitation exceeding a given amount, can be computed. Here our goal is a

tercile probability forecast, that is, the probabilities of the observed precipitation falling into the

equally likely below-normal, normal and above-normal categories.

Ensembles of AGCM forecasts can be used directly to make a simple nonparametric estimate of

tercile probabilities by calculating the fraction of ensemble members falling into each of the tercile

categories. However, model error and small ensemble size limit the direct use of the ensemble

distribution (Rajagopalan et al. 2002; Kharin and Zwiers 2003). Here we use the historical record

directly to estimate forecast uncertainty and assume normally distributed forecast error. Details

are shown in the Appendix. A deficiency of our implementation is that forecast uncertainty is

estimated from AGCM simulations forced with observed SST and does not include the contribution

from SST forecast error to the precipitation forecast uncertainty. The effect of SST forecast error

could be quantified from analysis of hindcasts of ensembles of AGCMs forced with imperfect SST

comparable to that used in the two-tier system. In Tippett et al. (2003) the statistical correction

was developed from a set of hindcasts using the ECHAM 4.5 AGCM forced by persisted SST

anomalies. However, such hindcasts are computationally expensive and unavailable for most of

the models here. Therefore we expect some underestimation of forecast uncertainty.

Tercile probabilities are computed for the ensemble-mean simulations and their corrections,

and domain-averaged ranked probability skill scores (RPSSs) are shown in Table 4. The RPSS is
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a skill metric for forecasts of categorical probabilities (Epstein 1969). A RPSS of 100% is only

obtained by consistently forecasting the observed category with probability 100%; a climatological

forecast with equally likely tercile categories receives a score of 0%. The spatial distribution (not

shown) of RPSS is similar to that of anomaly correlation. The RPSS of the parametric probabilities

based on uncorrected ensemble-mean simulations is mostly zero; the RPSS is mostly negative

when the fraction of ensemble members in each category is used to compute tercile probabilities.

The domain-averaged RPSS of the parametric probabilities based on corrected ensemble-mean

simulations is higher with values ranging from 2% to 10% in skillful areas.

3. Forecast Results

We now examine retrospective probability forecasts for DJFM 1999 through 2003, comparing

probability forecasts obtained using the AGCM forecast precipitation over CSW Asia and those

obtained using statistical-dynamical forecasts based on ensemble-mean model precipitation over

the Western Pacific. The forecast period is independent of the period used to compute the model

corrections. The AGCMs are forced with SST that is forecast in the October preceding the DJFM

season as described in Section 2b.

During the drought years, La Niña conditions prevailed. These cool conditions were also to

some extent present but with weaker amplitude in the forecast SST. In DJFM 1999 and DJFM

2000, the forecast SST was too cool near South American coast and did not capture the observed

westward extension of cool conditions; however, warm SST in the Maritime Continent region was

correctly forecast. The worst error existed in the SST forecast for DJFM 2001 which failed to

capture either the cool conditions in the Central Pacific or the warm conditions in the Maritime

Continent region. Tercile probabilities from the uncorrected AGCM output (Fig. 6a,c,e) show

enhanced likelihood of above-normal precipitation along the southwest border of Iran and in the

region northeast of Afghanistan for all three of the drought years. In contrast, the corrected tercile
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6. Forecast probabilities (in percent) obtained from AGCM output of above-normal
categories for DJFM (a) 1999, (b) 2000, (c) 2001, (d) 2002, and (e) 2003.
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forecasts (Fig. 6b,d,f) show enhanced likelihood of below-normal precipitation in the region where

there is skill, though in DJFM 2001 the shift toward below-normal is weaker than in the previous

two forecasts, perhaps due to the weakness of the SST forcing.

Warm SST anomalies in the central western Pacific, Maritime Continent and Indian Ocean were

observed in DJFM 2002. However, only very modest warm anomalies in the Central and Western

Pacific were forecast. All AGCMs indicated wet anomalies in CSW Asia except the COLA model

which showed negative precipitation anomalies in the northern part of the domain. The uncorrected

AGCM tercile probabilities indicate enhanced likelihood of above-normal precipitation (Fig. 6g).

However, the patterns and even sign of the precipitation anomalies in the individual corrected

AGCMs varied considerably, perhaps as a result of the weakness of the SST forcing. The resulting

tercile forecast reflects the lack of consensus and shows a slight shift to dry conditions in most of

the region with a slight shift toward wet in the northeast of Afghanistan and Tajikistan (Fig. 6h).

While drought continued in many regions, drought conditions began to ease in March and April in

the northeast, consistent with the station data shown in Fig. 3.

Warm SST anomalies were observed in DJFM 2003 across the Central Pacific (a weak to mod-

erate El Nĩno was beginning to decay), through the Maritime Continent and into the Indian Ocean.

Forecast SST captured only the warm Pacific SST. AGCM forecast anomalies and tercile proba-

bilities indicated wet conditions, much as they did during the drought (Fig. 6i). The statistical-

dynamical forecasts are uniformly wet across models, and the tercile probabilities are shifted to

the above-normal category (Fig. 6j). Above-normal precipitation was observed in the northern half

of the region.

4. Summary and Conclusions

Statistical-dynamical seasonal forecasts use statistical methods to correct systematic deficiencies

in the response of atmospheric general circulation models (AGCMs) to predicted sea surface tem-
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perature (SST). The statistical correction is constructed here using canonical correlation analysis

(CCA) between AGCM simulations forced by observed SST and the corresponding observations.

This CCA is then applied to AGCM forecasts forced by predicted SST in a two-tier prediction

system, outside of the training period. Simulation performance provides an estimate of forecast

uncertainty that can be used to construct a parametric forecast probability density function and

compute categorical probabilities.

We applied this method to winter (Dec-Mar; DJFM) precipitation in Central Southwest (CSW)

Asia. Observational studies relate the region’s precipitation to tropical SST forcing with some

success. Cold events are associated with modest enhanced frequencies of below-normal precip-

itation in the northeastern part of the region and above-normal precipitation in the southwestern

part. There are some indications that details of the Pacific SST beyond the ENSO phase have a

role in the climate of the region (Barlow et al. 2002). However, AGCMs forced with observed sea

surface temperatures simulate poorly the region’s interannual variability. Observational evidence

suggests that the CSW Asia response pattern is part of a large-scale pattern that includes the East

Asia Jet Stream and ocean-atmosphere processes around the Maritime Continent. AGCMs do sim-

ulate precipitation variability in the Maritime Continent region reasonably well, and we base the

statistical correction on ensemble-mean model precipitation over the Maritime Continent region.

This approach was previously used for the ECHAM 4.5 AGCM using observed and persisted SST

(Tippett et al. 2003). Here we have applied the method to ECHAM 4.5 and four additional AGCMs

presently used at IRI for seasonal forecasting. We find that the correction of simulations forced by

observed SST results in significant cross-validated skill in the northeastern part of the domain.

We also applied the statistical-dynamical method to two-tier AGCM forecasts of the DJFM

season made during the period 1999-2003; the AGCMs are forced with SST forecasts made the

previous October. This period is independent of that used for developing the correction statistics

and includes a severe multi-year (1999-2002) drought. Tercile probability forecasts were con-
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Figure 7. As in Fig. 4 but for the CCA-predicted precipitation using only simultaneous (DJFM)
Pacific SST.

structed using simulation skill to estimate forecast uncertainty. While the SST forecasts had errors,

they usually had the correct anomaly sign in much of the critical region in the western tropical

Pacific. In spite of these SST errors, the statistical-dynamical forecasts capture some of the gen-

eral features of the 1999-2003 period. The statistical-dynamical forecast probabilities show en-

hanced likelihood of below-normal precipitation during the drought years and enhanced likelihood

of above-normal precipitation for DJFM 2003 when the northern part of the region experienced

normal and above-normal precipitation, including flooding.

The statistical nature of this approach leads to the question of whether there is benefit to using

AGCMs or whether a purely statistical forecast using only the forecast SST would perform as

well. We believe that statistical-dynamical approaches are potentially superior to purely statistical

ones since AGCMs have the potential to produce nonlinear responses to SST forcing. However,

here nonlinear effects seem small since the estimated skill (Fig. 7; Table 2) of a purely statistical

CCA scheme using simultaneous (DJFM) observed SST as a predictor is only slightly less than

that of the corrected AGCMs. Despite a small skill difference, however, we can conclude that the

statistical-dynamical method permits AGCMs to achieve skill levels comparable with, if not better

than, purely statistical methods. Additionally, since the detailed characteristics of each AGCM are
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different, using a multi-model approach improves the robustness of the forecast.
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APPENDIX

Estimating tercile probabilities

In this appendix we describe a method to convert single deterministic forecasts into forecasts of

below-normal, normal and above-normal tercile probabilities. Here the single deterministic fore-

casts are either ensemble-mean forecasts or MOS corrected ensemble-mean forecasts. Pan and

den Dool (1998) used contingency tables based on historical forecast verification data to forecast

tercile probabilities. In their method a deterministic forecast for a single category is replaced with

the conditional (given the category forecast) frequency of the various categories over the historical

record. However, this method does not distinguish between cases in the same category and tends

to be unreliable without large samples. Mason and Mimmack (2002) converted multilinear regres-

sion forecasts into category probabilities using prediction intervals. The approach followed here is

similar and is equivalent to estimating forecast uncertainty by the standard error of a regression fit,

neglecting the effect of sample size.

When the correlationr between an observed anomalyO and a forecast anomalyF is positive,

r can be used to define a positive linear regression coefficientα = r
√
〈F 2〉/〈O2〉, where the angle
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brackets denote a time-average, so that

O = α(F + E) , (1)

where the forecast errorE is assumed independent of the forecastF and stationary. Using (1), the

correlationr can be expressed as

r =
〈OF 〉√
〈O2〉〈F 2〉

=
〈α(F + E)F 〉√
〈α2(F + E)2〉〈F 2〉

=
〈F 2〉√

〈F 2 + E2〉〈F 2〉
=

σF√
σ2

E + σ2
F

, (2)

whereσ2
F ≡ 〈F 2〉 is the forecast variance,σ2

E ≡ 〈E2〉 is the forecast error variance, and the

assumption that the forecast and forecast error are independent implies〈FE〉 = 0. The correlation

r is determined by the relative sizes of the forecast and forecast error variance. Conversely given

the correlation and forecast variance, the forecast error variance is found from (2) to be

σ2
E =

(
1

r2
− 1

)
σ2

F . (3)

If we further assume that the forecast errorE is Gaussian thenO is Gaussian with meanαF

and varianceα2σ2
E, and the climatological pdf is Gaussian with mean zero and varianceα2(σ2

F +

σ2
E). The tercile probabilities associated with a forecast anomalyF are found by integrating the

observation pdf between the climatological terciles. A direct calculation gives

P (B|F ) =
1√
2π

∫ −xb

−∞
e

(x−F )2

2σ2
E dx =

1

2
erf

(
−xb − F√

2σE

)
,

P (A|F ) =
1√
2π

∫ ∞

xb

e
(x−F )2

2σ2
E dx =

1

2
erf

(
xb − F√

2σE

)
,

P (N |F ) = 1− P (B|F )− P (A|F ) ,

(4)

whereP (B|F ), P (N |F ), andP (A|F ) are respectively the probabilities of the below-normal, nor-

mal and above-normal categories given the forecast,erf(·) is the error function and the tercilexb

of the climatological pdf is approximatelyxb ≈ 0.43
√

σ2
F + σ2

E. The category probabilities are

independent of the regression coefficientα. In summary, (4) along with the specification of the

forecastF , the historical forecast varianceσ2
F and the correlationr completely determines the
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forecast tercile probabilities where there is a positive correlation between forecasts and observa-

tions. Forecasts with non-positive correlations are effectively taken to have error varianceσ2
E that

is unbounded (consistent withr → 0 in (3)) leading to forecast tercile probabilities with climato-

logical values. Equally likely probabilities of the categories are always forecast where there is no

forecast skill.

The correlationr and forecast varianceσ2
F are computed at each gridpoint for uncorrected

simulations and for the leave-three-out cross-validated statistical-dynamical simulations. The error

varianceσ2
E at each gridpoint is then obtained from (3) and the tercile probabilities from (4).

Probabilities from different AGCMs are averaged. This averaging treats the probability forecasts

as being equally likely and has the undesirable effect of diluting the impact of apparently more

skillful AGCMs.

REFERENCES

Agrawala, S., M. Barlow, H. Cullen, and B. Lyon, 2001: The Drought and Humanitarian

Crisis in Central and Southwest Asia: A Climate Perspective. Technical report, IRI, Pal-

isades, NY. Available online at:

http://iri.columbia.edu/outreach/publication/irireport/SWAsia/index.html.

Bacmeister, J., P. Pegion, S. Schubert, and M. Suarez, 2000: Atlas of seasonal means simulated by

the NSIPP 1 atmospheric GCM. Technical Report NASA/TM-2000-104505, NASA. Vol. 17.

Barlow, M., H. Cullen, and B. Lyon, 2002: Drought in central and southwest Asia: La Niña, the

warm pool, and Indian ocean precipitation.J. Climate, 15, 697–700.

Barnett, T. P., and R. Preisendorfer, 1987: Origins and levels of monthly and seasonal forecast skill

for United States surface air temperatures determined by canonical correlation analysis.Mon.

Wea. Rev., 115, 1825–1850.

22



Barnston, A. G., and H. M. van den Dool, 1993: A degeneracy in cross-validated skill in

regression-based forecasts.J. Climate, 6, 963–977.

Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST

anomalies throughout the Indo-Pacific basin.J. Climate, 15, 3427–3442.

Chang, C.-P., and K. Lau, 1982: Short-term planetary-scale interactions over the Tropics and

Midlatitudes during northern winter. Part I: Contrasts between active and inactive periods.Mon.

Wea. Rev., 110, 933–946.

Chang, C.-P., and K. Lum, 1985: Tropical-midlatitude interactions over Asia and the western

Pacific ocean during the 1983/84 northern winter.Mon. Wea. Rev., 113, 1345–1358.

Epstein, E. S., 1969: A scoring system for probability forecasts of ranked categories.J. Appl.

Meteor., 8, 985–987.

Feddersen, H., A. Navarra, and M. N. Ward, 1999: Reduction of model systematic error by statis-

tical correction for dynamical seasonal predictions.J. Climate, 12, 1974–1989.

Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective

weather forecasting.J. Appl. Meteor., 11, 1203–1211.

Goddard, L., S. J. Mason, S. E. Zebiak, C. F. Ropelewski, R. Basher, and M. A. Cane, 2001:

Current approaches to seasonal-to-interannual climate prediction.Int. J. Climatol., 21, 1111–

1152.

——, A. G. Barnston, and S. Mason, 2003: Evaluation of the IRI’s ”Net Assessment” seasonal

climate forecasts: 1997-2001.Bull. Amer. Meteor. Soc., 84, 1761–1781.

Hack, J., J. Kiehl, and J. Hurrell, 1998: The hydrologic and thermodynamic characteristics of the

NCAR CCM3. J. Climate, 11, 1179–1206.

23



Hoerling, M., and A. Kumar, 2003: The perfect ocean for drought.Science, 299, 691–694.

——, and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing.J.

Climate, 15, 2184–2203.

Janowiak, J., and P. Xie, 1999: CAMS-OPI: A global satellite-rain gauge merged product for

real-time precipitation monitoring applications.J. Climate, 12, 3335–3342.

Ji, M., D. W. Behringer, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction

and implications for ocean initialization. Part II: The coupled model.J. Climate, 126, 1022–

1034.

Kharin, V. V., and F. W. Zwiers, 2003: Improved seasonal probability forecasts.J. Clim., 16,

1684–1701.

Kinter, J., D. DeWitt, P. Dirmeyer, M. Fennessy, B. Kirtman, L. Marx, E. Schneider, J. Shukla,

and D. Straus, 1997: The COLA atmosphere-biosphere general circulation model Volume: 1

Formulation. Technical Report 51, COLA, Calverton, MD.

Landman, W. A., and L. Goddard, 2002: Statistical recalibration of GCM forecasts over Southern

Africa using model output statistics.J. Climate, 15, 2038–2055.

Lau, K. M., and J. S. Boyle, 1987: Tropical and extratropical forcing of the large-scale circulation:

A diagnostic study.Mon. Wea. Rev., 115, 400–428.

Livezey, R. E., and W. Chen, 1983: Statistical field significance and its determination by Monte

Carlo techniques.Mon Wea. Rev., 111, 46–59.

——, M. Masutani, and M. Ji, 1996: SST-forced seasonal simulation and prediction skill for

versions of the NCEP/MRF model.Bull. Amer. Meteor. Soc., 77, 507–517.

Martyn, D., 1992:Climates of the world. Elsevier. 436 pp.

24



Mason, S. J., and L. Goddard, 2001: Probabilistic precipitation anomalies associated with ENSO.

Bull. Amer. Met. Soc., 82, 619–638.

——, and M. M. Mimmack, 2002: Comparison of some statistical methods of probabilistic fore-

casting of ENSO.Mon. Wea. Rev., 15, 8–29.

——, L. Goddard, N. E. Graham, E. Yulaeva, L. Sun, and P. A. Arkin, 1999: The IRI seasonal

climate prediction system and the 1997/98 El Niño. Bull. Amer. Meteor. Soc., 80, 1853–1873.

Michaelsen, J., 1987: Cross-validation in statistical climate forecast models.J. Climate Appl.

Meteor., 26, 1589–1600.

Mo, R., and D. M. Straus, 2002: Statistical-dynamical seasonal prediction based on principal

component regression of GCM ensemble integrations.Mon. Wea. Rev, 130, 2167–2187.

New, M. G., M. Hulme, and P. D. Jones, 2000: Representing 20th century space-time climate

variability. II: Development of 1901-1996 monthly terrestrial climate fields.J. Climate, 13,

2217–2238.

Pan, J., and H. V. den Dool, 1998: Extended-range probability forecasts based on dynamical model

output.Wea. Forecasting, 13, 983–996.

Rajagopalan, B., U. Lall, and S. E. Zebiak, 2002: Categorical climate forecasts through regulariza-

tion and optimal combination of multiple GCM ensembles.Mon. Wea. Rev., 130, 1792–1811.

Repelli, C., and P. Nobre, 2004: Statistical prediction of sea surface temperature over the tropical

Atlantic. Int. J. Climatol., 24, 45 – 55.

Roeckner, E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Dümenil, M. Esch, M. Gior-

getta, U. Schlese, and U. Schulzweida, 1996: The atmospheric general circulation model

ECHAM-4: Model description and simulation of present-day climate. Technical Report 218,

Max-Planck Institute for Meteorology, Hamburg, Germany. 90 pp.

25



Ropelewski, C., and M. Halpert, 1987: Global and regional scale precipitation patterns associated

with the El Niño/Southern Oscillation.Mon. Wea. Rev., 115, 1606–1626.

——, and ——, 1989: Precipitation patterns associated with the high index phase of the Southern

Oscillation.J. Clim., 2, 268–284.

Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady

idealized tropical divergence.J. Atmos. Sci., 45, 1228–1251.

Smith, T. M., and R. E. Livezey, 1999: GCM systematic error correction and specification of

the seasonal mean Pacific-North America region atmosphere from global SSTs.J. Clim, 12,

273–288.

Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equato-

rial diabatic heating anomalies.J. Atmos. Sci., 50, 907–918.

Tippett, M. K., M. Barlow, and B. Lyon, 2003: Statistical correction of Central Southwest Asia

winter precipitation simulations.Int. J. Climatology, 23, 1421–1433.

Widmann, M., C. Bretherton, and E. P. Salathé, Jr, 2003: Statistical precipitation downscaling

over the Northwestern United States using numerically simulated precipitation as a predictor.J.

Climate, 16, 799–816.

Yang, S., K.-M. Lau, and K.-M. Kim, 2002: Variations of the East Asian jet stream and Asian-

Pacific-American winter climate anomalies.J. Climate, 15, 306–325.

26


