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Abstract
Forecasting regional crop yields and aggregate production is of interest to grain markets and drought policy response. We

demonstrate a method for using GCM-based seasonal rainfall forecasts with a wheat simulation model for forecasting district

and state aggregate yields in Queensland, Australia, and compare it with predictions based on climatology alone, phases of the El

Niño-Southern Oscillation (ENSO), and Southern Oscillation Index (SOI) phases. We predicted yields by linear regression of

simulated yields, transformed to correct departures from normality, against GCM predictors optimized by a linear transforma-

tion. Regression residuals provided estimates of the forecast distribution. Cross-validation of predictor selection and regression

ensured conservative assessment of prediction accuracy. Statistical transformation of GCM output improved average gridded

rainfall predictions and expanded the area over northeast Australia with significant predictability. Yield forecasts made 1 May,

prior to planting, accounted for a significant portion of the variability of simulated yields averaged across the state (r = 0.518) and

in most wheat-producing districts (r̄ = 0.497, area-weighted average among districts). Correlations were higher with observed

detrended yields for the state (r = 0.706) and districts (r̄ = 0.543). Uncertainty of predicted yields diminished with successive

monthly updates. Correlations of district-scale predictions with detrended observed yields showed greater heterogeneity in space

and less consistency in time than correlations with simulated yields. For every forecast date, the GCM predicted state average

yields simulated with observed weather more accurately than the other methods. The most accurate predictions of detrended

observed state average yields came from the GCM for May, July and August, and from ENSO phases in June. The advantage of

the GCM-based forecasts was greatest at the longest lead time. The improvement of accuracy at a long lead time has the potential

to benefit the grain marketing industry by supporting proactive bulk handling and trading.
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1. Introduction

Australia is a major exporter of wheat and coarse

grains. Wheat production alone is worth in excess of

AUS$ 3400 million annually on average (ABARE,

2002), but this varies as a result of one of the most

variable climates in the world (Russell, 1988). Large

year-to-year fluctuations in yields (and production) are

of major concern to marketing agencies that sell this

grain on a volatile world market. Financial hardship

for producers due to recurring drought led to a national

drought policy that provides financial assistance in

‘‘exceptional drought circumstances’’ (White et al.,

1998). To address the concerns of commodity markets

and drought relief programs, several grain exporting

countries, including Australia, have developed opera-

tional methods to forecast regional crop yields and

aggregate production (Motha and Heddinghaus, 1986;

Stephens, 1988; Walker, 1989; Genovese and Terres,

1999; ABARE, 2004).

The El Niño-Southern Oscillation (ENSO)

accounts for a substantial portion of the year-to-year

variability of rainfall (McBride and Nicholls, 1983;

Stone and Auliciems, 1992) and crop yields in

northeastern Australia (Rimmington and Nicholls,

1993; Potgieter et al., 2002). Stone et al. (1996)

developed a system for probabilistic prediction of

rainfall at a seasonal lead time based on five discrete

categories or ‘‘phases’’ (i.e., positive, rapidly rising,

negative, rapidly falling and neutral) of the Southern

Oscillation Index (SOI). The set of past years falling

within a given category serve as equally probable

analogs for predicting a distribution of rainfall

outcomes conditioned on the observed SOI phase.

The Queensland Department of Primary Industries

has developed an operational wheat forecasting

model, using a simple agro-climatic model (Stephens

et al., 1989) linked with a seasonal climate forecasts

based on SOI phases (http://www.dpi.qld.gov.au/

fieldcrops). For each wheat-producing district in

Australia, wheat yield predictions are generated

through the growing season, and updated each month

based on actual weather up to the forecast date and

future weather scenarios sampled from historic

analogs with the SOI phase observed at the forecast

date (Potgieter et al., 2003). Advance information on

likely production and its geographical distribution is

useful to bulk handling and marketing agencies that
manage storage and transport logistics and export

sales in the recently deregulated marketing environ-

ment, and to government in relation to policy

interventions triggered by the degree of exceptional

drought circumstances (Hammer et al., 2001).

Statistical seasonal climate forecasts based on

historic analogs have successfully supported agricul-

tural applications in several contexts around the world

(e.g., Hammer et al., 2001; De Jager and Potgieter,

1998). Yet the prospects for improving such forecasts

are somewhat constrained since the accuracy of

statistical models is primarily limited by the length

and quality of the historical observational record, and

by assumptions such as the stationarity of the climate

system. Dynamic climate models, on the other hand,

are based on physical laws, but are unable to resolved

all temporal and spatial scales. Enhanced descriptions

of physical processes in dynamical model offer the

potential for future improvements in climate predic-

tion (Cane, 2001; Goddard et al., 2001).

Although there is growing interest in linking

seasonal forecasts based on dynamic general circula-

tion models (GCMs) with biological simulation

models to improve predictability of crop response,

the difference in the spatial and temporal scales of

GCMs and crop models complicates the task.

Appropriate methodology for linking GCM output

with crop models needs to be addressed before any

gain in forecast quality can be realized (Meinke and

Stone, in press; Hansen and Indeje, 2004). In this

paper, we describe a method for combining GCM-

based seasonal rainfall forecasts with a wheat

simulation model for probabilistic regional yield

forecasting, and demonstrate its application at a

district scale in Queensland, Australia. We compare

the GCM-based wheat forecasting system with

predictions based on climatology alone, perfect

knowledge of phases of the El Niño-Southern

Oscillation (ENSO), and forecasts based on SOI

phases.
2. Methods

We applied the following procedure to produce and

evaluate GCM-based regional wheat yield forecasts.

Using historic district rainfall data, for each district

and forecast date, we simulated wheat yields with

http://www.dpi.qld.gov.au/fieldcrops
http://www.dpi.qld.gov.au/fieldcrops
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every combination of observed antecedent rainfall up

to the forecast date, and rainfall from the forecast date

through harvest. A linear optimizing transformation of

GCM seasonal forecast output fields provided

predictor time-series. We transformed simulated

yields to correct any departure from normality. For

a given district, forecast date and year, we predicted

yields by linear regression of transformed yields

simulated with observed weather, as a function of

GCM predictors, from all other years. We derived a

probability distribution around each forecast, still in

transformed space, from the distribution of regression

residuals. Applying the inverse of the normalizing

transformation produced the final forecast and its

distribution. Consistent use of cross-validation for

GCM predictor selection and yield prediction ensured

conservative assessment of prediction accuracy.

Details follow.

2.1. Wheat yield simulation

Stephens et al. (1989) developed a stress index

model, STIN, for yield forecasting by joining the

dynamic tipping-bucket soil water balance model

implemented in the CERES models (Ritchie, 1972,

1998) to the FAO crop monitoring method (Frere and

Popov, 1979). STIN calculates a stress index, SI, as

cumulative function of water demand and plant-

extractable soil water simulated dynamically, using

daily rainfall, and average weekly temperatures and

solar irradiance required to calculate potential

evapotranspiration. SI is sensitive to soil hydrological

properties, and to changing crop water requirements as

a function of phenology. The model treats phenology

and its influence on water requirements (French and

Schultz, 1984) as a fixed function of sowing date.

Developing the current operational forecasting

system involved optimizing STIN to forecast wheat

yields at a district scale (Stephens, 1995; Hammer et

al., 1996). The model uses daily weather series

averaged among available long-term stations within

each district, weighted by areas of Thiessen polygons

around each station. Soil parameters used for the soil

water balance are from the single dominant soil series

in each district. The soil water balance is particularly

sensitive to available water holding capacity (AWHC).

Aggregation error results when average or represen-

tative inputs (i.e., soil properties, weather, cultivar
traits, management) are used to simulate crop yields at

a spatial scale that encompasses heterogeneity of those

inputs. To correct for aggregation error within each

district, AWHC was calibrated to minimize error in

predicted district aggregate yields (Hansen and Jones,

2000), using 19 years of available observed yields

(1975–1993, Australian Bureau of Statistics). Final

yields are estimated as linear regression functions of

SI and year, accounting for a linear trend associated

with changing technology. The direction and magni-

tude of the trend varied among districts. For state

average yields, it was near zero (slope = �0.0007) and

non-significant. Aggregated to the state level, correla-

tions between observed and simulated wheat yields

over the same period ranged from r = 0.87 to 0.95

among Australia’s wheat-producing states (Potgieter

et al., 2002).

For each district and forecast date (1 May, 1 June, 1

July or 1 August), STIN simulated 34 cropping

seasons from 1968 to 2001, with year 2001 technology

trends applied to all yield simulations. On 1 October of

the year prior to harvest, STIN was initialized with an

empty soil profile and then simulated with observed

weather data up to the forecast date. After the forecast

date, STIN was simulated through harvest (October–

November, depending on location) with weather data

from one of the 34 years. Using all available years of

weather data after the forecast date for each cropping

season results in a 34 � 34 matrix of simulated yields.

The element yij of the crop yield matrix corresponds to

the simulated crop yield obtained by driving STIN

with antecedent weather data from year i up to the

forecast date, and with within-season weather data

from year j after the forecast date. The diagonal

elements yii are yields simulated with year i weather

through harvest, and represent crop model estimates of

yields in the absence of climate uncertainty.

2.2. GCM predictor selection

We used output fields of the atmospheric general

circulation model (GCM), ECHAM 4.5 (Roeckner et

al., 1996; Goddard and Mason, 2002), run at

approximately 280 km � 280 km resolution in a

seasonal hindcast mode. A 12-member ensemble of

GCM model runs was forced with observed sea

surface temperature (SST) boundary conditions up to

the forecast start time. Persisted SSTs, obtained by
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Fig. 1. Map of EOF loading pattern from MOS transformation.
adding SST anomalies observed during the month

prior to the forecast to the historic SST climatology

during each month of the forecast period, provided

conservative predictions of SSTs to drive the GCM

through the forecast period. For a given forecast year

and date, each GCM ensemble member used the same

SST boundary conditions, but different atmospheric

initial conditions.

When selecting predictors based on GCM output

fields, we took precautions to avoid model selection

bias and over-fitting. We restricted our search to GCM

precipitation in the region surrounding Queensland,

140.6258E to 157.58E and 32.18S to 15.38S. Selection

bias occurs when the same data are used to select

predictors and estimate predictive ability, in which

case the selected predictors appear to provide more

predictive ability than they actually do (Zucchini,

2000). Although our goal was to find effective GCM-

based predictors of wheat yields, we selected

predictors based on observed seasonal rainfall rather

than wheat yield to avoid selection bias. Predictor

selection was based on seasonally-averaged rainfall

data from the extended gridded data set of monthly

precipitation (New et al., 2000) for 1968–2001. This

data set, based on station observations interpolated to a

0.58 latitude by 0.58 longitude grid, was interpolated to

the grid resolution of the GCM.

To select predictors for use in subsequent

analyses, we first performed principle component

analysis (PCA) on the GCM forecast precipitation

(mean of the 12 GCM runs) and observed gridded

precipitation, both normalized by their variance at

each grid cell. Once the two data sets were

decomposed into principle component (PC) time-

series, canonical correlation analysis (CCA) identi-

fied the linear combinations of model and observed

PC time-series that were most highly correlated. We

avoided over fitting by selecting the number of useful

PCs and CCA modes based on cross-validated

estimates of predictive ability. At each iteration of

a Monte Carlo cross-validation procedure, 20

randomly-selected years were used to computed

PCs and CCA modes and predict observed pre-

cipitation from GCM forecast precipitation for the

remaining 14 independent years (Shao, 1993). Two

hundred iterations of this method selected the first

PC of GCM precipitation as the best predictor. Fig. 1

shows its spatial loading pattern. Applying this
statistical correction expanded the portion of north-

eastern Australia with significant correlations

between predicted and observed gridded rainfall

(Fig. 2). Correlations between predicted and

observed rainfall increased in the majority of

GCM grid cells overlapping Queensland.

2.3. District rainfall and wheat yield prediction

We applied the same procedure to predict both

district rainfall and district wheat yields. Ordinary

least squares linear regression assumes that residuals

are sequentially independent, normally distributed,

and homoscedastic (i.e., constant in variance).

Diagnostics of a subset of data showed some

significant departures from normality by the Shapiro

and Wilk (1965) test. Distributions of yields simulated

with a given set of antecedent rainfall and within-

season rainfall sampled from all other years yields

tended to be somewhat positively skewed, with mean

g1 ranging from 0.36 (antecedent rainfall through

April) to 0.54 (antecedent rainfall through July)

averaged across all districts and target years. Observed

district rainfall generally showed stronger positive

skewness (g1 = 1.05, mean of May–August, all

districts). The GCM-based predictors did not show

significant departures from normality. The proportion

of simulated series with skewness significantly

different from zero (p < 0.05) ranged from 9.5%
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Fig. 2. Correlation between ECHAM 4.5 hindcast and gridded rainfall over Queensland (a) without and (b) with statistical transformation.
(antecedent rainfall through April) to 33.5% (ante-

cedent rainfall through July).

We applied a Box and Cox (1964) transformation to

each predictand time series to correct any departures

from normality. The procedure finds the optimal

transformation to normality within the family of

power transformations:

y0 ¼
ln y; l ¼ 0
yl � 1

l
; l 6¼ 0

8<
: (1)

by selecting the value of l that maximizes the log-

likelihood function,

L ¼ � n � 1

2
ln S2

y0 þ ðl� 1Þ n � 1

n

Xn

i¼1

ln y: (2)

Here y is an observation of a predictor (district rain

or simulated yield), and y is its transformed value. In

the case of simulated yields yij, we applied the

transformation and subsequent regression to yields

simulated with rainfall observed up to the forecast date

in the given hindcast year i, and rainfall from the

forecast date through harvest from each of the other

years j in the 1968–2001 study period. Since the Box–

Cox transformation is optimized independently for

each sample distribution, it accommodates differences

in predictand distributions among districts or forecast

periods. In the case of rainfall, we applied the

transformation to the distribution of years omitting

the hindcast year. Fig. 3 illustrates the effect of the
Box–Cox transformation on the distributions of

rainfall and detrended yields observed at one district

(Tara).

Hindcasts (i.e., forecasts for past periods) of y were

obtained as a function of optimized GCM predictors x

by cross-validated least-squares linear regression. As

described earlier, GCM predictor selection was cross-

validated. For each prediction ŷi (yield or rainfall), we

first estimated ŷ0 by linear regression from predictor xi

= xij, j = 1, . . ., n, j 6¼ i and transformed predictand y0i =

yij, j = 1, . . ., n, j 6¼ i, then applied the inverse Box–Cox

power transformation:

ŷi ¼
exp ŷ0i; l ¼ 0

ðŷ0iðlþ 1Þð1=lÞ l 6¼ 0

�
(3)

For the purpose of comparison, we also derived

yield hindcasts based on the historical climatological

distribution, and on categorical predictors (ENSO and

SOI phases) associated with the El Niño-Southern

Oscillation (ENSO). The cross-validated prediction of

wheat yield in year i, belonging to a given predictor

category (e.g., ENSO phase) k, is simply the mean of

yields simulated with year i antecedent rainfall, and

within-season rainfall from all other years within the

category:

ŷi ¼ ðmk � 1Þ�1
Xmk

j ¼ 1
j2Fk;j 6¼ i

yij; (4)

where m is the number of years within the set of years
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Fig. 3. Normal probability plots of (a, b) simulated yields and (c, d) observed rainfall (a, c) before and (b, d) after a Box–Cox transformation,

Tara district.
Fk belonging to predictor category k. This is analogous

to the method that we used for cross-validated pre-

diction by regression from GCM predictors.

ENSO phases are based on 
0.4 8C anomalies of

5-month running averages of the NINO3.4 sea

surface temperature index for at-least 6 months

(Trenberth, 1997). The 1968–2001 study period

includes 12 El Niño (1968, 69, 72, 76, 77, 82, 86, 87,

90, 91, 94 and 97) and 11 La Niña (1970, 71, 73, 74,

75, 84, 88, 95, 98, 99 and 2000) years. SOI phases are

based on the SOI—standardized difference between

Darwin and Tahiti surface air pressure—categorized

by principal components analysis followed by cluster

analysis into five phases: positive, rapidly rising,

negative, rapidly falling, and near zero or neutral

(Stone and Auliciems, 1992; available online at

http://www.sci.usq.edu.au/staff/dunn/Datasets/appli-

cations/climatology/soiphases.html). Following Pot-

gieter et al. (2002), to avoid categories with

inadequate sample size we combined the positive

and rapidly rising phases, and the negative and

rapidly falling phases based on prior experience with

wheat yield distributions among SOI phases.

Combining SOI phases in this manner generally

improved goodness of fit of cross-validated predic-
tions with simulated and detrended observed yields.

To simplify presentation of comparative results

among forecast systems, we aggregated predicted,

simulated, and detrended observed district wheat

yields into Queensland state averages, weighted by

recent estimates of the area under wheat in each

district.

2.4. Wheat forecast distributions

For a continuous predictor (e.g., GCM output), the

distribution of cross-validated regression residuals

centered on the expected value of a given forecast

provides a first approximation of the distribution of

possible outcomes associated with that forecast.

Antecedent rainfall influences the distribution of

yields associated with the uncertainty of within-

season weather, and must therefore be held constant.

For forecast year i, the appropriate forecast distribu-

tion can be estimated from the empirical distribution

of regression residuals, eij ¼ yij � ŷij, j 6¼ i, centered

on ŷi, where ŷij is the regression prediction of

simulated yield for within-season weather year j, but

antecedent weather from hindcast year i. Because the

regression model is developed for transformed

http://www.sci.usq.edu.au/staff/dunn/Datasets/applications/climatology/soiphases.html
http://www.sci.usq.edu.au/staff/dunn/Datasets/applications/climatology/soiphases.html
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predictands y, we obtained forecast percentiles from

the distribution of residuals, e0ij ¼ y0ij � ŷ0ij, j 6¼ i,

derived in transformed space, shifted by ŷ0i, then back-

transformed (Eq. (3)).

For yield forecasts based on climatology or analog

years based on categorical predictors (e.g., ENSO

phases), the forecast distribution is typically estimated
Fig. 4. Correlation between Queensland district wheat yields simulated wit

May; (b) 1 June; (c) 1 July; and (d) 1 August, 1968–2001, adjusted to 2
as the distribution of results simulated with initial and

antecedent conditions observed in the forecast year, and

within-season weather sampled from other years within

the predictor category. We employed this method for

hindcasts based on climatology, ENSO phases and SOI

phases. It is analogous to the use of regression residuals

applied to GCM-based yield forecasts.
h observed daily weather and GCM-based wheat yield hindcasts (a) 1

001 technology trend.
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2.5. Analyses

We employed standard descriptive measures of

goodness-of-fit to evaluate the accuracy of wheat yield

predictions. Root-mean-squared error of prediction:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1

Xn

i¼1

ðŷi � yiÞ2

s
(4)

represents overall error weighted by the square of

deviations, where n is number of years i, y and ŷ

are observed and predicted values. Mean absolute

error:

MAE ¼ n�1
Xn

i¼1

jŷi � yij (5)

also represents overall error, but is less sensitive than

RMSE to errors in large predicted departures from the

mean, and is therefore considered a more robust

measure of accuracy. We also consider Pearson’s

coefficient of linear correlation, r, and mean bias error:

MBE ¼ n�1
Xn

i¼1

ðŷi � yiÞ: (6)

We evaluated the accuracy of wheat yield predic-

tions both against yields simulated with observed daily

weather to estimate error associated with climate

prediction and the climate-crop model linkage, and

against available (1975–1993) observed yields. To

simplify presentation, we evaluated observed, simu-

lated and predicted district wheat yields aggregated

into Queensland state averages weighted by the area

under wheat in each district.
Table 1

Correlations of GCM-based wheat yield hindcasts with yields observed and

aggregated to state average yields and area-weighted mean of correlation

Forecast date State average yield

Simulated Observe

1968–2001 1975–1993 1975–1

1 May 0.518 0.588 0.706

1 June 0.510 0.476 0.579

1 July 0.600 0.640 0.781

1 August 0.862 0.862 0.810

Simulated 0.863
3. Results and discussion

3.1. GCM-based wheat yield prediction

Fig. 4 shows the correlation between wheat yields

predicted using the GCM and yields simulated

with observed daily weather for each district.

Evaluation against simulated yields captures random

error (i.e., not correctable by linear calibration)

associated with the seasonal climate forecast system

and its link with the wheat simulation model. It

does not incorporate crop model error. Forecasts

made 1 May account for a significant portion of

variability of simulated yields in most wheat-

producing districts (Fig. 4a), even though planting

has not yet started by that date in most of the

state. Uncertainty of predicted district yields

diminished with successive monthly updates

(Fig. 4b–d, Table 1) as an increasing proportion of

integrated water stress is due to rainfall that is

observed rather than predicted. Correlations showed

the greatest increase with the 1 August update.

Simulated anthesis is complete in most districts

by this time, and rainfall during the most critical

growth stage for yield determination is now

observed rather than predicted (Nix and Fitzpatrick,

1969).

Correlations of predictions with detrended

observed yields (Fig. 5) showed less homogeneity

in space and less consistency in time relative to

correlations with simulated yields (Fig. 4). Correla-

tions between predictions and observations

decreased from 1 May to 1 June, then increased

with subsequent updates (Table 1). The increase in

forecast accuracy from July to August was much less
simulated with observed weather, adjusted to 2001 technology trend,

s among districts

Mean correlation among districts

d Simulated Observed

993 1968–2001 1975–1993 1975–1993

0.497 0.537 0.543

0.535 0.484 0.486

0.633 0.636 0.669

0.863 0.857 0.713

0.762
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Fig. 5. Correlation between observed Queensland district wheat yields and GCM-based wheat yield hindcasts (a) 1 May; (b) 1 June; (c) 1 July;

and (d) 1 August, 1975–1993, adjusted to 2001 technology trend.
pronounced for observed than for simulated yields

(Fig. 6). This is likely due to the heterogeneity of

phenology of actual wheat associated with varied

planting dates, cultivars and local temperatures that

the simulations do not account for. The reason for the

apparent drop in GCM-based prediction accuracy of

observed yields from 1 May to 1 June is not as clear.

However, because it also appears for simulated

yields for the 1975–1993 period when observed

yields are available, but not for the entire 1968–2001
period used to fit the regressions, we speculate that it

may be an artifact of the subsample of years for

which observed data are available.

As expected (e.g., Hammer et al., 1996; Hansen and

Jones, 2000), prediction accuracy was generally better

at the state scale than at the smaller district scale.

Although the wheat simulation model accounted for

about 75% of the variance of detrended state average

wheat yields, correlations for individual districts were

generally lower, accounting for an average of 58% of
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Fig. 6. RMSE of hindcasts of (a) simulated (1968–2001) and (b) observed (1975–1991) Queensland average wheat yields, adjusted to 2001

technology trend, as a function of forecast date.
the variance (i.e., r2, Table 1), weighted by the area

under wheat in each district. When aggregated to the

state level, correlations with hindcasts were higher for

detrended observed yields than for simulated yields
Table 2

Goodness of fit statistics for Queensland average wheat yield predictions b

with observed weather (1968–2001), adjusted to 2001 technology trend

Scenario Simulated (1968–2001)

RMSE

(Mg ha�1)

MAE

(Mg ha�1)

MBE

(Mg ha�1)

Simulated

1 May

GCM-based 0.333 0.268 �0.029

ENSO phases 0.351 0.287 0.011

Marh–April SOI phases 0.386 0.309 0.013

Climatology 0.378 0.301 0.009

1 June

GCM-based 0.336 0.250 �0.033

ENSO phases 0.347 0.282 0.005

April–May SOI phases 0.361 0.292 0.004

Climatology 0.383 0.312 0.005

1 July

GCM-based 0.315 0.240 �0.041

ENSO phases 0.337 0.267 0.005

May–June SOI phases 0.336 0.270 0.011

Climatology 0.359 0.288 0.009

1 August

GCM-based 0.196 0.156 �0.016

ENSO phases 0.211 0.169 0.010

June–July SOI phases 0.231 0.183 0.009

Climatology 0.229 0.190 0.011
for the May–July forecast dates, even when consider-

ing only the 1975–1993 period for which observations

were available (Table 1). This was contrary to

expectation, as predictions of simulated yields reflect
y alternate methods vs. yields observed (1975–1993) and simulated

Observed (1975–1993)

r RMSE

(Mg ha�1)

MAE

(Mg ha�1)

MBE

(Mg ha�1)

r

0.242 0.209 �0.002 0.863

0.518 0.368 0.296 �0.092 0.706

0.435 0.415 0.342 �0.053 0.542

0.208 0.440 0.378 �0.036 0.403

0.200 0.460 0.403 �0.025 0.314

0.510 0.398 0.343 �0.079 0.579

0.454 0.387 0.315 �0.067 0.673

0.408 0.390 0.331 0.016 0.586

0.155 0.445 0.385 �0.025 0.410

0.600 0.331 0.287 �0.089 0.780

0.500 0.346 0.289 �0.058 0.769

0.501 0.361 0.296 �0.058 0.694

0.374 0.398 0.340 �0.021 0.651

0.862 0.292 0.260 �0.010 0.810

0.844 0.305 0.266 �0.007 0.800

0.804 0.333 0.278 0.018 0.736

0.844 0.327 0.287 0.023 0.800
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only the uncertainty of rainfall while predictions of

observed yields also incorporate crop model error.

However, overall prediction error (Fig. 6, Table 2) was

greater for observed than for simulated yields,

reflecting the greater systematic error (i.e., MBE) in

predicting observed yields. Correlations with predic-

tions were more similar for simulated and observed

yields when considering the area-weighted average

correlation among districts (Table 1).
Fig. 7. Correlation between Queensland district rainfall totals and GCM

September predicted 1 June; (c) July–September predicted 1 July; and (d
Although the spatial distributions of predictability

of rainfall (Fig. 7) and simulated yields (Fig. 4) are

not identical, they do show some similarities. May

yield forecasts show highest correlations in a region

in the central and north-central part of the Queens-

land wheat belt, and insignificant correlations in the

far northwest and a few districts in the east-central

region (Fig. 4a). Rainfall hindcast correlations in

May and June (Fig. 7a and c) are also weak in the
-based hindcasts (a) June–September predicted 1 May; (b) June–

) August–September predicted 1 August 1968–2001.
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Fig. 8. Time series of observed Queensland average wheat yields

and percentiles of GCM-based hindcast distributions (a) 1 May; (b)

1 June; (c) 1 July; and (d) 1 August 1968–2001, adjusted to 2001

technology trend.
northwest and in the same east-central region. A

region of relatively high correlations in the central

and north-central region apparent for the July and

August forecasts (Fig. 7c and d) roughly coincides

with the region with relative high correlations for

May forecasts of simulated yields. It is more difficult

to relate the spatial distribution of rainfall hindcast

correlations to yield hindcast correlations with

detrended observed yields (Fig. 5) without under-

standing how yield determinants other than water

stress vary across the region. Correlations between

predictions and observations are substantially higher

for yields than for rainfall.

3.2. Comparison of wheat prediction methods

Table 2 summarizes results of district yield

hindcasts aggregated to the state level, based on

the GCM, ENSO phases, SOI phases and climatol-

ogy. For every forecast period, the GCM-based

method gave better results than the other methods for

state average yields simulated with observed

weather. Mean bias (MBE) was generally low

(<10% of RMSE), but greatest and consistently

negative for GCM-based forecasts, and greater for

detrended observed than for simulated yields. Bias

tended to be greater for detrended observed yields.

Yield hindcasts generally under-predicted observed

yields because mean yields (both observed and

simulated) during the 1975–1993 period for which

observations are available were slightly higher

(27 kg ha�1) than for the entire 1968–2001 period

used to fit the prediction models. When evaluated

against observed state average yields, the best

predictions resulted from the GCM in May, July

and August, and ENSO phases in June. The

advantage of the GCM over SOI phases was greatest

at the longest lead time, prior to planting (Table 2).

As the season progresses, the impact of remaining

climatic uncertainty on yield diminishes. By 1

August, observed antecedent rainfall accounts for

most of the uncertainty of yields, and climate

forecasts provide little additional information

beyond climatology. Although we included clima-

tology as a naive forecast system, it does provide

some predictability even before planting due to the

influence of antecedent soil moisture, and the high
water-holding capacity of soils in the Queensland

wheat belt.

ENSO phases, as we use them, are not a true

forecast system, as they cannot generally be known

with certainty until about the end of the wheat

growing season. The state of ENSO is somewhat

predictable at a lead time relevant to crop forecast-

ing. A coupled ocean-atmosphere model that has

provided operational SST forecasts since 1998, has

demonstrated a high degree of predictability of the

NINO3.4 SST index, used to classify ENSO years in
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our study, at one and four months lead time (Goddard

et al., 2003). SOI phases at the time of the forecast

are one method to anticipate the likely state of ENSO

later in the year. However, since ENSO events tend to

develop between April and June, predictions based

on either SOI phases or the coupled model during

this time of the year tend to be more uncertain than

later in the year. For the 1968–2001 period for which

ECHAM predictors were available, the GCM

generally provided the most accurate wheat yield

forecasts, particularly at long lead times. Longer

time series of predictors available for ENSO or SOI

phases than for the GCM can potentially improve

forecasts, assuming stationarity of rainfall and

ENSO teleconnections. We therefore cannot con-

clude from our analyses that the GCM will give
Fig. 9. Queensland average observed wheat yield, and yield hindcast per

harvest), adjusted to 2001 technology trend, for an illustrative El Niño,

climatology. The centerline (–.–.–) shows the median simulated yield (1.
better predictions than operational wheat forecasts

based on SOI phases.

3.3. Wheat yield forecast distributions

Appropriate use of operational yield forecasts

requires a clear understanding of the uncertainty

associated with a given forecast. Fig. 8 shows

percentiles of the distribution of each year’s GCM-

based Queensland wheat yield hindcast for each

forecast period, along with observed, detrended

yields. Although the procedure for estimating

forecast distributions applies to each district, we

show Queensland averages for simplicity of pre-

sentation. The forecast distribution’s shape and

dispersion changes from year to year due to (a)
centiles as a function of forecast date (1 May through the time of

La Niña and neutral year, based on the GCM, ENSO phases and

49 Mg ha�1).
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the influence of differing antecedent rainfall; and (b)

the cross-validation procedure that omits within-

season rainfall for a given hindcast year from

estimation of that year’s distribution. The forecast

distributions tend to narrow and the magnitude of

predicted shifts from the long-term mean

(1.51 Mg ha�1) increase with successive updates as

the season progresses (Fig. 8).

For an illustrative El Niño, La Niña and neutral

year, Fig. 9 shows how the forecast distribution

changes through the season for yield forecasts based

on the GCM, ENSO phases and climatology. In 1988,

a La Niña year, the dispersion (e.g., the dark shaded

inter-quartile distance) about each updated forecast

median was higher for the ENSO phase than for the

climatology-based forecast (Fig. 9), even though the

correlations are greater and prediction errors lower

for forecasts based on ENSO phases than for

climatology-based forecasts for each forecast date

(Table 2). The uncertainty of simulated wheat yields

appears to be greater in La Niña years than in El Niño

or neutral years (Fig. 10). For the illustrative neutral

year (1989, Fig. 9), inter-quartile distances were

smaller for ENSO phase-based forecasts than for

GCM-based forecasts for the 1 May, 1 July and 1

August forecast dates. This suggests that the
Fig. 10. Box plots showing 0, 25, 50, 75 and 100th percentiles of

Queensland average wheat yields simulated with observed daily

rainfall adjusted to 2001 technology trend, for all years (1975–1993)

and by ENSO phase.
uncertainty of wheat yield forecasts may be

substantially higher than climatology suggests in

La Niña years, and that advance knowledge of

neutral ENSO conditions may reduce the uncertainty

of predicted wheat yields more than GCM forecasts.

However, variances of wheat yields did not differ

significantly among ENSO phases (p > 0.4) by the

Levene (1960) and Brown and Forsythe (1974) tests.
4. Conclusions

In this study we demonstrated a regression

approach for connecting GCM outputs with a crop

simulation model for probabilistic prediction of

district-scale wheat yields in Queensland, Australia.

The GCM-based approach showed greater accuracy

than obtained from perfect knowledge of ENSO

phases or the SOI phase system, particularly at the

longest lead time. We cannot conclude from this study

that the GCM based system will give better predictions

than the current operational wheat yield forecast based

on the SOI phase system (due primarily to differences

in the number of years of available predictor data for

the two systems). Yet, the GCM-based system’s ability

to improve forecast accuracy during the pre-planting

period (end of April) when ENSO seems to be less

predictable, is encouraging. Improving the accuracy of

forecasts issued prior to planting may substantially

increase their value to farmers who may use crop

forecast information for land allocation or forward

price contract decisions. Further research is necessary

to see if the lead time of forecasts can be increased

even further. The proposed methodology is only one of

several proposed approaches for connecting GCMs

with biophysical models (e.g., Hansen and Indeje,

2004). Exploration of other approaches (e.g., dynamic

downscaling of GCM outputs, stochastic weather

generation, Markov methods based on synoptic

weather types, analog approaches) are beyond the

scope of this study.

The higher apparent predictability of yields than

rainfall is contrary to the argument that predictability

of crop response to rainfall must be less than that of

seasonal rainfall totals, due to accumulation of the

error in predicting local seasonal rainfall from climate

predictors and the error in predicting yields from

seasonal rainfall. This argument overlooks two
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considerations. First, yields respond to additional

information beyond seasonal rainfall—observed ante-

cedent rainfall in this case—that contributes to

predictability. In Queensland’s wheat belt, the amount

of rainfall during the spring–summer fallow period,

and hence the amount of water stored in the soil profile

at planting, can exert greater influence than within-

season rainfall on final yields (Meinke and Hochman,

2000). This is why climatology-based forecasts show

some predictability of yields (Table 2). Second, we

predict yields as a function of seasonal climate

predictors, and not as a function of local seasonal

rainfall totals. By bypassing rainfall as an intermediate

prediction, we reduce the accumulation of errors, and

potentially incorporate relevant information about the

distribution of rainfall within the season or other

relevant meteorological variables that are embedded

in seasonal climatic predictors (i.e., the GCM and its

SST boundary forcing), but that are lost when

converting them into seasonal rainfall totals.

The question of whether apparent differences in the

variability of yields in the different ENSO phases is a

consequence of differing strengths of teleconnections,

an artifact of the positive skewness of the yield

distribution, or an effect of small sample size is still

open to debate. It relates to the question of whether

forecast distributions based on residuals about a

continuous prediction system provide information that

is different from distributions arising from categorical

predictors and historic analogs. Answering the latter

question would require considering other interrelated

components of forecast quality such as reliability (i.e.,

the consistency, through time, between forecast

distributions and the distributions of outcomes condi-

tioned on the forecasts), resolution (i.e., the distribution

shift from climatology) and sharpness (i.e., the

dispersion of the forecast distribution). Characterizing

and verifying these aspects of forecast quality beyond

accuracy would enhance the assimilation of GCM-

based probabilistic forecasts within the operational

commodity-forecasting environment (Potgieter et al.,

2003). However, methodology for assessing the quality

of cumulative forecast distributions about continuous

forecasts is not as well developed as for categorical

probabilistic forecasts. Questions about the consistency

and interpretation of forecast probabilities derived from

categorical versus continuous predictors are a relevant

topic of future research.
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