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ABSTRACT

The cross-validated hindcast skills of various multi-model ensemble combination

strategies are compared for probabilistic predictions of monthly SST anomalies in the

ENSO-related NINO3.4 region of the tropical Pacific Ocean. Forecast data from seven

individual models of the DEMETER project are used, spanning the 22-year period of

1980-2001. Skill of the probabilistic forecasts is measured using the ranked probabil-

ity skill score and rate of return, the latter being an information theory-based measure.

Although skill is generally low during boreal summer compared to other times of the

year, the advantage of the model forecasts over historical frequencies is greatest at

this time. Multi-model ensemble predictions, even those using simple combination

methods, generally have higher skill than single model predictions, and this advantage

is greater than that expected due to increase in ensemble size. Overall, slightly better

performance was obtained using combination methods based on individual model skill

compared to methods based on the complete joint behavior of the models. This finding

is attributed to the comparatively large expected sampling error in the estimation of the

relations between model errors based on the short history. A practical conclusion is

that, unless some models have grossly low skill relative to the others, and until the

history is much longer than 2 to 3 decades, equal, independent or constrained joint

weighting are reasonable courses.
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1. Introduction

The El Niño-Southern Oscillation (ENSO) phenomenon has global impacts on climate and

society (Ropelewski and Halpert 1996; Glantz 2001; Mason and Goddard 2001), and the ability to

predict it has provided a conceptual and practical basis for seasonal climate forecasting. Despite

improvements in prediction models and observing systems, ENSO forecasts remain uncertain.

Forecast uncertainty is due to model and observation error, as well as the intrinsic chaotic nature of

the atmosphere. Therefore, forecast information is necessarily probabilistic and the most complete

description of a forecast is its probability distribution. Ideally, an ENSO forecast distribution is

the probability of the future ENSO state given the current observed state; that is, a conditional

probability (DelSole and Tippett 2007). In practice, there are differences between such an ideal

forecast distribution and the forecast distribution estimated from a numerical prediction model.

Past model performance data can sometimes be used to improve model output. For instance,

model output statistics (MOS; in its simplest form, a regression between forecast and verifying

observations) has long been used to correct biases and systematic errors in deterministic forecasts

(Glahn and Lowry 1972). The same types of error affect ensemble forecasts and are manifest

as errors in the central tendency of the forecast distribution. Additionally, there can be errors in

the distribution of the forecast about the central tendency. For instance, not accounting for all

sources of uncertainty results in an ensemble that has too little spread. Recently “ensemble MOS”

methods have been developed to correct the entire forecast distribution (Wilks 2006; Wilks and

Hamill 2007).

Another important development in forecasting is the use of multiple prediction models (Kr-

ishnamurti et al. 1999). Dynamical monthly climate predictions using state-of-the art coupled
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ocean-atmosphere general circulation models (CGCMs) are currently produced at a number of

meteorological global prediction centers worldwide. Many of the coupled models differ in their

representation of physical processes, in their numerical schemes, or in their use of observations to

construct initial conditions. Therefore, different models have differing biases in their reproduction

of interannual variability, as well as in their forecasts of oceanic and atmospheric climate (Shukla

et al. 2000). Numerous studies have demonstrated that multi-model forecasts are generally more

skillful than single-model forecasts (Krishnamurti et al. 1999; Kharin and Zwiers 2002; Palmer

et al. 2004; Kug et al. 2007). Conceptually, three reasons for the enhanced skill of multi-model

forecasts are: (i) differing biases may cancel, (ii) the ensemble size is increased so that sampling er-

ror is reduced, and (iii) while the multi-model ensemble may have less skill than the “best” model

for a particular forecast, it may not be possible to identify the “best” model a priori (Hagedorn

et al. 2005). The simplest multi-model forecast procedure pools the models and ensembles and

estimates the forecast distribution from the multi-model ensemble. More sophisticated methods

weight models according to their performance. Using multiple linear regression, Krishnamurti

et al. (1999) combined seasonal atmospheric climate (and also weather) forecasts from different

models into an optimal multi-model ensemble forecast.

This paper describes the use of ensemble MOS and multi-model combination methods for pro-

ducing probabilistic ENSO forecasts. We focus on SST anomaly predictions for the NINO3.4

region in the tropical Pacific in view of its demonstrated representativeness of the ENSO phe-

nomenon (Barnston et al. 1997). Our goal is to determine, and explain to the extent possible, the

effects of different multi-model prediction weighting techniques (including equal weighting) on

the skill of probabilistic monthly ENSO forecasts. The forecasts take the form of probabilities of

whether the monthly NINO3.4 index will lie in the upper, lower or middle two quartiles, corre-
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sponding to warm, cold or neutral conditions, respectively. Ensembles of retrospective coupled

ocean-atmosphere hindcasts using 7 CGCMs are used. Descriptions of the retrospective hindcast

data are given in section 2. The two probabilistic hindcast verification measures, one global and

the other local in probability space, are described in section 3, and the different ensemble MOS

and multi-model techniques used to estimate the forecast probabilities are discussed in section 4.

Skill results are presented in section 5, and a summary and some conclusions are given in section

6.

2. Data

Forecasts are taken from the DEMETER project (Palmer et al. 2004). The DEMETER project

consists of global coupled model seasonal hindcasts from seven coupled models developed by:

European Centre for Research and Advanced Training in Scientific Computation (CERFACS), Isti-

tuto Nazionale di Geofisica e Vulcanologia (INGV), European Centre for Medium-Range Weather

Forecasts (ECMWF), Laboratoire d’Océanographie Dynamique et de Climatologie (LODYC),

Max-Planck-Institut (MPI) and Météo-France, the UK Met Office (UKMO). Our analyses are

based on the DEMETER forecasts that were started on 1 February, 1 May, 1 August and 1 Novem-

ber, over the common period of 1980-2001, and extend to six months after their start. We consider

monthly averages. We refer to the monthly average that contains the start date as the zero-lead fore-

cast, and thus the longest lead forecast is the 5-month lead forecast. We consider forecasts with

leads 1 through 5. All models are represented by 9-member ensembles for a total of 63 forecasts

for each of the four start times per year for five lead times.

We use as the observations the “extended” NINO3.4 index computed from Kaplan et al. (1998)
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until Oct 1981 and from NCEP OIv2 (Reynolds et al. 2002) projected onto the EOFs of Kaplan

from Nov 1981 on. Warm, cold and neutral ENSO months are defined as months in which the

NINO3.4 index falls in the upper quartile, lower quartile, or middle two quartiles, respectively, of

our 22-year base period. Quartile boundaries are calculated on a monthly basis so that the ENSO

definitions vary through the calendar year as shown in Fig. 1a. Thus, larger anomalies are required

to satisfy the ENSO definition during the later parts of the calendar year when the year-to-year

variability is larger. This definition of ENSO events differs from ones such as that of NOAA, in

which there is a constant anomaly threshold throughout the seasonal cycle (Kousky and Higgins

2007), or such as both NOAA and IRI where sustained SST anomalies over some multi-month

period are required. Figure 1b shows the time series of standardized NINO3.4 anomalies and

ENSO category.

3. Skill measures

a. Ranked probability skill score

The ranked probability score (RPS) is a measure of the sum of squared differences between

the cumulative forecast probabilities and the cumulative observed probabilities for corresponding,

progressively increasing category rank. RPS measures forecast reliability and resolution (Murphy

1973), and is a global score in probability space in the sense that it depends on the entire forecast

distribution. The RPS of the 3-category probability forecast [P (cold), P (neutral), P (warm)] is

RPS = (P (cold) − O(cold))2 + (P (cold) + P (neutral) − O(cold) − O(neutral))2

= (P (cold) − O(cold))2 + (P (warm) − O(warm))2 ,

(1)
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where the observation “probability” O(cold) is one when the observation is in the lowest quartile

category and zero otherwise; likewise, O(warm) and O(neutral) are when one when the observa-

tion is in the corresponding category and zero otherwise. RPS is oriented such that low scores

indicate high forecast quality. The ranked probability skill score (RPSS; Epstein 1969) is

RPSS = 1 −
RPS

RPSref
(2)

where RPSref is the RPS of a simple reference forecast such as the equal-odds climatological

forecast C = [0.25, 0.50, 0.25] or a persistence-based forecast. Positive RPSS indicates a forecast

with greater skill than the climatology. In evaluating forecast quality, we average the RPSS of

individual predictions using the climatological frequency forecast C as the reference forecast.

Another simple benchmark forecast that we will evaluate is the conditional climatology, that

is, the the historical frequency-based probabilities of each category given the category of the pre-

ceding month. This kind of reference forecast was used in Mason and Mimmack (2002), in which

it was called the ”damped persistence strategy” in order to distinguish it from an outright forecast

of persistence (with probability of 100%) of the ENSO state existing at the time of the forecast.

For instance, for a February forecast the conditional climatology would be the frequency of each

ENSO category conditioned on the state in January. The historical frequencies are computed using

the independent period 1900 - 1979.

b. Ignorance and rate of return

Ignorance is a likelihood skill score with connections to information theory (Good 1952; Roul-

ston and Smith 2002). Unlike RPSS, ignorance is a local measure and only depends on the forecast

probability of observed outcome. Its expected value for a single forecast is the relative entropy be-
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tween the forecast and climatological distributions, and its average (over predictions) is the mutual

information between forecast and observations under the perfect model assumption (DelSole 2004;

DelSole and Tippett 2007).1 The ignorance Ig (measured in bits) of an individual forecast is

Ig = − log2 P (observed category) , (3)

where log2 is the base-2 logarithm and P (observed category) is the forecast probability assigned

to the observed category. This skill measure infinitely harshly grades incorrect deterministic fore-

casts, i.e., forecasts of zero probability of events that occur. The reduction of ignorance compared

to a climatological forecast is Ig− Igclimo where

Igclimo = − log2 C(observed category) . (4)

Because of its connection with relative entropy, ignorance can be converted into a rate of return on

an investment or wager. Imagine a gambler with knowledge of a forecast who wagers on the future

state of ENSO. When the odds are taken from climatology, the gambler can profit from the forecast

information. If the odds are fair, in the sense of the probabilities adding to one, the average rate of

return ROR (in %/wager) for the gambler is

ROR = 100 × (2〈Ig〉−〈Igclimo〉 − 1) , (5)

where the angle brackets denote expectation over a set of forecasts. The skill measure ROR is

equivalent to the expected ignorance but is expressed in more familiar units. The compound (ge-

ometric mean) rate of return is used to amalgamate ROR values for different forecast starts and

leads.
1In a Gaussian perfect model setting with a forecast whose correlation with observations is r, the mutual informa-

tion is − log(1 − r
2).
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4. Estimation of probabilities from ensembles

The methods used here to estimate ENSO probabilities from forecast ensembles can be divided

into 3 classes. In the first class are methods that only use forecast model output – observations are

not used. We call methods in this class uncalibrated methods. Uncalibrated methods assume that

the ensemble mean and ensemble statistics are correct. However, past model performance may

indicate deficiencies in these quantities as well as strategies for improving forecast probabilities.

Methods that use observations and take into account model performance are classified according to

whether models are compared with each other. Methods which use equal weighting or individual

model performance, independent of the behavior of other models are called independent calibra-

tion methods, whereas methods in which the contribution of a model to the forecast probabilities

depends on the behavior of the other models are called joint calibration methods. We now describe

the methods in these three classes. A summary list of the methods is given in Table 1.

a. Uncalibrated methods

A simple nonparametric method of estimating ENSO probabilities from a forecast ensemble is

to count the number of ensemble members in the cold, neutral and warm categories. Systematic

model errors are corrected by using the forecast model’s climatology to compute quartile bound-

aries. Quartile boundaries are computed in a cross-validated fashion so that the current forecast is

not included but all other ones are. The category definition varies with start date and lead-time.

Further, because of the cross-validation design, the category definition varies slightly even within

one start date and lead time, depending on which year is being held out as the target of the forecast.

Probabilities of one or zero occur when all or none of the ensemble members fall into one
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category. Such deterministic forecasts are undesirable as they tend to reflect the small ensemble

size rather than complete certainty, and can cause problems when likelihood skill measures like

ignorance are used. Therefore we use the following ad hoc formula to compute the probability of

a category:

P (category) =
# of ensemble members in that category + 1/3

total number of ensemble members + 1
. (6)

In the case of 63-member ensembles, with which we will often be dealing here, the minimum

probability for a category is 0.5% and the maximum probability is 99.0%.

Errors in the climatological mean and variance of a single forecast model are corrected by

using quartile definitions based on the model’s own forecast history. However, when a multi-model

ensemble containing many models is formed, only the systematic errors of the entire ensemble are

corrected by this procedure. We refer to this minimally adjusted ensemble as simply the multi-

model ensemble (MM). A more refined correction scheme is to form the multi-model ensemble

with the anomalies of each model with respect to its own climatology. We refer to this as the

multi-model ensemble with bias correction (MM-bc). A further refinement is accomplished by

forming the multi-model ensemble with the normalized anomalies of each model, thus removing

any systematic differences between the ensemble variances of individual models. We refer to

this option as the multi-model with variance and bias correction (MM-vc). In all three correction

schemes, the bias and/or variance used to correct a particular forecast are computed without using

that forecast–i.e,. cross-validation is always used.

We use the following two schemes to investigate the extent to which forecast probabilities can

be parameterized by the multi-model ensemble mean alone. These methods address the question of

the relative importance for predictability of changes in forecast mean and of the distribution about
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that mean. Kleeman (2002) examined this issue in several simple models including a stochastically

forced coupled ocean-atmosphere model used to predict ENSO, finding that changes in the ensem-

ble mean provided most of the prediction utility. Similar results have been seen in other climate

problems (Kleeman 2002; Tippett et al. 2004, 2007; Tang et al. 2007). In the context of extended

range weather forecasts, Hamill et al. (2004) found ensemble spread not to be a useful predictor in

constructing probability forecasts.

In the first scheme (MM-c), the forecast distribution is taken to be a constant distribution about

a varying mean. The forecast distribution is formed from the ensemble spreads from all years

centered about the current ensemble mean. The constructed ensemble has more members than the

actual ensemble by a factor of 22 and so sampling error is reduced. This constructed ensemble has

a distribution about the ensemble mean that varies with start month and lead but not with forecast

year.

Another way of constructing probabilities that are parameterized by the ensemble mean is to

form a generalized linear regression (GLR) between the the ensemble mean and the direct model

output probabilities, in particular those from the MM-bc method. We call this method MM-glr.

This regression constructs a parametric connection between the ensemble mean and model fore-

cast ENSO probabilities–no observations are used. When the probit model is used in the GLR, as is

here the case, the procedure is related to fitting a Gaussian when the distribution is indeed Gaussian

but sometimes performs better than Gaussian fitting for data that does not have a Gaussian distri-

bution (Tippett et al. 2007). This method should not be confused with the commonly used method

of developing a GLR between the ensemble mean and observations which serves to calibrate the

model with observations (Hamill et al. 2004). Rather the GLR used in the MM-glr method param-

eterizes the ensemble probabilities in terms of the ensemble mean but does not correct the model.
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Such a regression can serve to reduce the sampling variance of the counting probability estimate

due to finite ensemble size (Tippett et al. 2007).

b. Independent calibration

The simplest independent calibration method used here is to assume that the bias-corrected

multi-model ensemble mean is the best estimate of the forecast mean and then to estimate the

forecast distribution about it from past performance rather than from the ensemble distribution.

Using a Gaussian distribution to model forecast uncertainty gives the method that we call MM-g.

We fit the Gaussian distribution to past performance in a way that accounts for any systematic

amplitude errors and bias (see Appendix A). In the MM-g method, the forecast distribution is

Gaussian with variance that is constant from one forecast to another. Non-homogeneous Gaussian

regression (ngr) offers a more general framework with the forecast variance changing from one

forecast to another (Gneiting et al. 2005; Wilks 2006). In the ngr method, the forecast variance is

equal to a constant plus a term that is proportional to the ensemble variance. The parameters of the

ngr model are found by optimizing the continuous ranked probability score (CRPS) which requires

minimizing the absolute forecast error (Gneiting et al. 2005). The constant variance parameters

from MM-g are used to initialize the numerical optimization procedure used to minimize the CRPS.

Regressing the ensemble mean of each model with observations and then taking the averages

of the separate regressions is a way of assigning different weights to each forecast model without

directly comparing the models. This method is equivalent to multiple linear regression with the

assumption that the models errors are uncorrelated. Probabilities are assigned using a Gaussian

distribution to model the uncertainty of the averaged regressions. We call this method grsep.
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The independent calibration methods above give an entire (Gaussian) forecast distribution from

which the probabilities of exceeding any particular threshold can be computed. Two independent

calibration methods that give only the categorical probabilities are glro and MM-bow. In glro,

generalized regressions are developed separately between the ensemble means of each model and

the binary variables for the observed occurrence of each category. Then the resulting probabilities

are averaged. Similarly, in MM-bow weights for the ensemble probabilities of each model and the

climatological probabilities are found to optimize the log-likelihood of the observations which is

proportional to the average ignorance (Rajagopalan et al. 2002). Then the resulting probabilities

are averaged similar to Robertson et al. (2004).

c. Joint calibration

The most familiar joint calibration method is superensembling where optimal weights are found

for the ensemble means by multiple linear regression (Krishnamurti et al. 1999). Superensembling

is a special case of the more general method of forecast assimilation (Stephenson et al. 2005).

A forecast probability distribution can be computed using a Gaussian distribution to model the

uncertainty of the superensemble mean. We call this method gr. Applying methods where the

model weights are estimated simultaneously from historical data is potentially difficult in the case

of the DEMETER data because the number of models is relatively large compared to the common

history period. For instance, the robust estimation of regression coefficients may be difficult. The

same potential difficulty applies to the Bayesian optimal weighting (bow) method where optimal

weights (relative to climatology) are simultaneously found for the probabilities of each model

(Rajagopalan et al. 2002). In the case of Gaussian regression, the number of predictors can be
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reduced, and hence the number of parameters to be estimated, using CCA or SVD (Yun et al.

2003). Here we use CCA with two modes (cca).

DelSole (2007) introduced a Bayesian regression framework where prior beliefs about the

model weights can be used in the estimation of regression parameters. The ridge regression with

multi-model mean constraint (rrmm) method uses as its prior the belief that the multi-model mean

is the best solution. This is the same as finding the coefficients that minimize the sum of squared

error plus a penalty term that grows as the coefficients become different from 1/(number of mod-

els), which is 1/7 in our case. The weight given to the penalty term determines the character of the

regression coefficient. When infinite weight is given to the penalty term, the model weights are all

the same, and rrmm is identical to MM-g. When no weight is given to the penalty term, the model

weights are those given by multiple regression, and rrmm is the same as gr. Another method, ridge

regression with multi-model mean regression (rrmmr) uses as its prior the belief that the models

should be given approximately the same weight and penalizes coefficients that are unequal but does

not penalize their difference from 1/(number of models). Like rrmm, when infinite weight is given

to the penalty term, rrmmr is the same as MM-g (the multi-model mean is essentially regressed

with observations) and when no weight is given to the penalty term, rrmmr is the same as gr. For

both the rrmm and rrmmr methods, the parameter determining the relative weight of the penalty

term is computed using a second level of cross-validation.
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5. Results

a. Uncalibrated methods

A set of skill results arranged by start date and lead is shown in Fig. 2 for uncalibrated schemes,

that is, ones that do not use any skill assessment calibration with respect to the observations.

Average RPSS and compound average ROR values over all starts and leads are given in Table 1.

Removing the mean bias from each model almost always improves skill, and often by substantial

margins for both the RPSS and ROR skill measures (MM-bc versus MM). This result is consistent

with Peng et al. (2002). Making the inter-ensemble variances of each model identical (MM-vc)

tends to slightly further increase RPSS and ROR skills, although the effect is not consistently

positive. Two schemes that use only the ensemble means to construct the probability distribution

statistically (MM-c and MM-glr) have skill very close to that of MM-vc, but generally do not

exceed it. We therefore consider the MM-vc as the benchmark among the ensembling methods

to be tested below, as it represents a most general and basic calibration of the models’ individual

biases in mean and interannual variability, while retaining the individual ensemble distributions

with their year-to-year variations of spreads and shapes.

Figure 2 indicates that much of the useful forecast skill can be attributed to variations in the

ensemble mean rather than variations in higher order statistics, as MM-c and MM-glr skill tends

to be only very slightly lower than MM-vc. This timing is consistent with the conclusions of other

recent studies of other forecast variables (Kharin and Zwiers 2003; Hamill et al. 2004; Tippett et al.

2007; Tang et al. 2007). Examination of individual forecasts reveals that the slight shortcoming

in MM-c for November starts is due mainly to the single year 1983, when, initialized with cold

conditions, all the forecasts were for cold, but the observation was in the neutral category. The
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MM-vc forecast had slightly weaker probabilities for the cold category and so was penalized less.

The greatest benefit of the dynamical predictions compared to the conditional climatology

frequency forecast occurs for forecasts starting in May. This makes sense in view of the fact

that May is the time of the northern spring ENSO predictability barrier – a time when warm or

cold ENSO episodes are roughly equally likely to be dissipating (having matured several months

earlier) versus growing toward a maturity to occur later that calendar year. The frequency forecast

incorporates both possibilities indiscriminately from the entirety of the data history, while the

dynamical models have opportunity to respond to initial conditions that may help identify the

direction of change in the ENSO condition (e.g. from sub-surface tropical Pacific sea temperature

structure). On the other extreme, the lead-1 forecasts starting in February have slightly less skill

than the frequency forecasts as measured by RPSS. This could relate to the fact that it is a time of

year when existing ENSO episodes are in a process of weakening toward neutral, a tendency that

can be captured by the simple frequency forecasts.

Figure 3 shows skills for MM-vc compared with skill for each constituent single model. With

just a few exceptions, multi-model skill is superior to the skill of a single model. One reasonably

might ask whether the higher skill of MM-vc is due merely to the increased ensemble size. This

question can only be answered definitively by comparing simple model and multi-model ensem-

bles of the same size. However, theoretical estimates for the improvement of RPSS as ensemble

size is increased can be used to judge whether the superior skill of the multi-model ensemble is

comparable to that expected by increasing the ensemble size of a single model. The average RPSS

for the individual models over all starts and leads is 0.47 (0.50 excluding MPI). Generalizing the

results of Richardson (2001) and Tippett et al. (2007), the RPSS of a perfectly reliable forecast
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system depends on ensemble size N according to (see Appendix B for details)

〈RPSS(N)〉 =
(N + 1)〈RPSS(∞)〉 − 1

N
. (7)

Setting 〈RPSS(9)〉 = 0.5, gives 〈RPSS(∞)〉 = 0.55, and 〈RPSS(63)〉 = 0.54. On the other hand,

the average RPSS of MM-vc is 0.60. Therefore the increase in skill of the multi-model ensemble

is not consistent with an increase in skill due to increase in ensemble size alone. Hagedorn et al.

(2005) demonstrated that while increasing the ensemble size of a single model did increase skill,

the multi-model ensemble retained a slight advantage over the single model ensemble.

b. Independent calibration

Skill measures arranged by start date and lead are given in Fig. 4 for the independent calibration

methods. Average RPSS and compound ROR are given in Table 1. For the most part, the indepen-

dent calibration methods have comparable skill with grsep having the best overall performance,

with its ROR slightly exceeding that of MM-vc. However, the glro method has significantly poorer

skill than the other methods. The poor skill obtained when using a generalized linear regression

between the ensemble mean and the occurrence of a category is due the method erroneously giving

too strong probabilities. This behavior appears to be an effect of the small sample size and the fact

that the predictands used to develop the model are zero or one. Moreover, in some cases the numer-

ical method for estimating the glro parameters does not converge. In contrast, the predictands in

MM-glr method are the MM-bc probabilities which are not so extreme and the model is “easier” to

fit and tends to give milder probability shifts. Because the glro probabilities sometimes approach

zero or one, when they are wrong, the ROR harshly scores them. The MM-bow method suffers

from similar problems and has somewhat poor skill compared to the other independent calibration
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methods.

c. Joint calibration

We next explore the potential to improve skill scores further by joint calibration. Skill measures

arranged by start date and lead are given in Fig. 5 for the joint calibration methods. Average RPSS

and compound ROR are given in Table 1. The joint calibration methods have mostly comparable

skills with only occasional improvement on that of MM-vc especially in the November starts. The

methods gr and bow have poorer overall skill than the other methods, especially when measured by

the ROR. The multiple regression method gr has substantially poorer skill outside of the November

starts. The result that gr skill is poor when the skill level is low and is good when the skill level

is high (November starts) is is consistent with the usual estimate of the variance of the regression

coefficient that depends on sample size and skill level. Apparently, the period of data (22 years)

is not long enough to fit the regression coefficients reliably when 7 predictors are used. When

forecasts are made on cases within the training sample (i.e., when cross-validation is not used),

results (not shown) using multiple linear regression are excellent, and usually exceed those of

MM-vc. This indicates overfitting to the short sample data. Similar behavior was seen by Kang

and Yoo (2006) who, using an idealized climate models and deterministic skill scores, noted that

the superensemble method lead to overfitting that was more severe when skill is low.

One way to avoid overfitting is to reduce the number of predictors and hence the number of

parameters that need to be estimated. In the cca method we reduced the number of predictors by

using two CCA modes as predictors. The cca method had the best overall performance of the

jointly calibrated methods. Comparable performance was achieved by the Bayesian regression
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methods which also are designed to avoid overfitting. Penalizing the regression for deviating from

the MM-g reduces the tendency to overfit. The choice of the weight given to the penalty is chosen

in a second level of cross-validation. This parameter does not seem to be robustly estimated since,

if it were, rrmm would always be better than MM-g (it is not) as MM-g is a special case of rrmm

when the weight given to the penalty term is infinite. In fact, when the weight is determined using

all the data, rrmm is better than MM-g. The Bayesian regression method that penalizes unequal

weights, rrmmr, is slightly better over all than MM-g. It is consistently better than MM-g if the

penalty weight is chosen using all the data. These problems suggest a fundamental problem with

the rrmm and rrmmr methodologies since they are not able to use the data to determine when the

differences between the models in the historical record are insufficient to weight one more than

another (DelSole 2007).

Thus, while skill results for some of the methods are relatively resistant to overfitting (grsep,

rrmm, rrmmr, cca) and can be considered representative of expected skill on truly independent

(e.g. future) data, a disappointment is that they are generally not generally superior to the skill of

the optimum version of equal weighting for the models used in this study despite apparent skill

differences among the models (Fig. 3).

6. Summary and conclusions

This study assesses the skill of probabilistic ENSO forecasts and examines the benefits of

ensemble MOS and multi-model combination methods using recent coupled model SST forecast

histories of monthly NINO3.4 tropical Pacific SST categories. Warm, neutral, and cold categories

are defined using the upper, middle two, and lower, quartile categories, respectively. Forecast
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data from the seven coupled models of the DEMETER project are used, with start dates spanning

the period 1980-2001. Forecast skill is accessed using ranked probability skill score (RPSS) and

rate of return (ROR); ROR is a skill measure which attaches an investment value to the forecast

information and has the same ranking as the ignorance or log-likelihood skill score (Roulston and

Smith 2002).

Three classes of multi-model ensemble MOS methods for producing forecast categorical prob-

abilities are examined: uncalibrated, independent calibration and joint calibration. Uncalibrated

methods only use model output, and do not use observations or model performance. Independent

calibration methods use observations and model performance to calibrate each model separately.

Joint calibration methods use each model’s performance as well as relations between the perfor-

mance of models.

In uncalibrated methods, two model data pre-processing steps are performed: (1) removing the

climatology of each model; and (2) normalizing the anomalies to have the same variance. These

calibrations to the individual models are shown to increase skills when multi-model ensembling

with equal model weighting is used as a baseline condition. Such multi-model ensembles are

found to have higher skills than those from the individual models given the same calibrations, with

only occasional exceptions. The dependence of RPSS on ensemble size is known for a perfectly

reliable model (Tippett et al. 2007). This dependence shows that the advantage in skill of the multi-

model ensembles over the single-model average skill is larger than that expected due to the larger

size of the multi-model ensemble. Other studies have directly shown that the skill improvement

of the multi-model ensemble is greater than that achieved by increasing the ensemble size of a

single model (Hagedorn et al. 2005). Therefore the advantage of the multi-model ensemble over

small single model ensemble is consistent with both increased ensemble size and reduced model
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error. Forecast distributions constructed from the multi-model ensemble mean alone had nearly

as much skill as ones constructed from the forecast ensemble, indicating that much of the useful

forecast information is contained in the mean of the forecast distribution. Interestingly, while

ENSO predictive skill is generally low during boreal summer compared to other times of the year,

the advantage of the model forecasts over forecasts based on historical frequencies is greatest at

this time.

Overall, independent calibration performed better than joint calibration for both the RPSS and

for the ROR score unless steps were take to avoid overfitting. The reason for this seems to be the

shortness of the length of the historical record (22) relative to the number of models (7). Joint

calibration estimates seven parameters simultaneously from the data while independent calibration

estimates a single parameter at a time from the data. Even in the case of univariate linear regres-

sion, skill can be degraded when the sample size is small, particularly when the skill level is low

(Tippett et al. 2005). Reducing the number of predictors or incorporating prior information about

the weights were effective ways to prevent overfitting. On the other hand, joint calibration methods

that did not restrict the weights had poorer skill than independent methods.

The conclusion and recommendation is that little or nothing is gained, and something could be

lost, in attempting to use the most general joint calibration schemes for 7 models contributing to

multi-model ensembles based on 20 to 25 years of model history. Rather, independent calibration,

as well as joint calibration with overfitting prevention measures, can be used without skill sacri-

fice when forecasting outside of the training sample. It is assumed that when one or more models

have skills that are clearly out of line with the others in a general and obvious ways, they should

simply be removed from the ensembling exercise. However, unless the difference in skill is suf-

ficiently large, removing the “worse” model may have the unintended consequence of degrading
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skill (Kharin and Zwiers 2002; Kug et al. 2007). While some of the models used in this study

appeared to have generally somewhat higher skills than others, none had unusually low skill.
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APPENDIX A

A Gaussian model for forecast probabilities

To model forecast uncertainty using a Gaussian distribution, we first compute the correlation r

between the mean forecast and observations. The correlation corresponds to a signal-to-noise ratio

S given by

S =
r2

1 − r2
,

which is the ratio of the signal variance σ2
S to the noise variance σ2

N . Therefore the noise vari-

ance is given by σ2
N = σ2

S/S where we use the variance of previous mean forecasts as the signal

variance. The mean of the forecast distribution is the mean forecast and its variance is σ2
N . Cate-

gory boundaries are computed using the climatological distribution whose mean is the long-term

average forecast and whose variance is the sum of the signal and noise variances.
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APPENDIX B

Dependence of RPSS on ensemble size

Richardson (2001) showed that the Brier score (BS) of a reliable forecast system depends on

ensemble size N according to

〈BS(N)〉 =

(

1 +
1

N

)

〈BS(∞)〉 , (B1)

where 〈·〉 denotes expectation over realizations of the observations. Tippett et al. (2007) general-

ized this result to RPS of reliable forecasts of tercile category probabilities. Remarkably, we show

below that the same relation holds independent of the number of categories.

The RPS of a m-category forecast is

RPS =
m

∑

i=1

[

i
∑

j=1

Pj − Oj

]2

, (B2)

where Pi is the probability assigned to the i-th category and Oi is one when the observation falls

into the i-th category and zero otherwise. Assuming that the forecast is reliable means that the

forecast probability is indeed the probability that an observation will fall into the i-th category.

This assumption of reliability allows us to computed the expected value of the RPS as

〈RPS〉 =
m

∑

l=1

Pl

m
∑

i=1

[

i
∑

j=1

Pj − δjl

]2

, (B3)

where the Kronecker delta δij is defined to be one when i = j and zero otherwise. Direct manipu-
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lation of this expression gives

〈RPS〉 =
m

∑

l=1

Pl

m
∑

i=1

[

i
∑

j=1

Pj − δjl

] [

i
∑

k=1

Pk − δkl

]

=
m

∑

l=1

m
∑

i=1

i
∑

j=1

i
∑

k=1

Pl(Pj − δjl)(Pk − δkl)

=
m

∑

l=1

m
∑

i=1

i
∑

j=1

i
∑

k=1

Pl(PjPk − δklPj − δjlPk + δjlδkl)

=
m

∑

i=1

i
∑

j=1

i
∑

k=1

PjPk − PkPj − PjPk + δjkPj

=
m

∑

i=1

i
∑

j=1

i
∑

k=1

δjkPj − PjPk

=
m

∑

i=1

i
∑

k=1

Pk −

[

i
∑

k=1

Pk

]2

=
m

∑

i=1

Ci(1 − Ci)

(B4)

where the cumulative probability is defined by

Ci ≡
i

∑

k=1

Pk . (B5)

If the forecast probabilities come from an N -member ensemble, the forecast probability of the

i-th category is Pi + εi where εi is the error in the forecast of the i-th category due to sampling

variability. The expected RPS of the N -member ensemble is

〈RPS(N)〉 =
m

∑

l=1

Pl

m
∑

i=1

[

i
∑

j=1

Pj + εj − δjl

]2

. (B6)

The reliability of the forecast system means that the errors are unbiased, 〈εi〉 = 0 and that only

quadratic error terms appear in 〈RPS(N)〉. In particular, a direct calculation gives

〈RPS(N)〉 = 〈RPS〉 +
m

∑

i=1

i
∑

j=1

i
∑

k=1

〈εjεk〉 . (B7)
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Simplification gives

〈RPS(N)〉 = 〈RPS〉 +
m

∑

i=1

〈[

i
∑

j=1

εj

] [

i
∑

k=1

εk

]〉

= 〈RPS〉 +
1

N

m
∑

i=1

Ci(1 − Ci) =

(

1 +
1

N

)

〈RPS〉 ,

(B8)

where we use the fact that the cumulative probabilities estimated from the ensemble are binomially

distributed. Equation (7) follows directly.

The result in (B8) can be interpreted as expressing the fact that the RPS of an N -member

ensemble is the sum of the sampling variability of the observation and the ensemble. Equation (B8)

can be used, assuming reliability, to estimate the infinite-ensemble skill given the finite-ensemble

skill, similar to the debiased RPSS of Weigel et al. (2007). Although Weigel et al. (2007) use a

different set of assumptions, their debiased RPSS agrees to leading order with the result here.
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FIG. 2. (a) RPSS and (b) ROR for uncalibrated methods, i.e., ones that do not calibrate with

respect to the observations. ”Freq” refers to the conditional climatology reference forecast.
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FIG. 3. As in Fig. 2 but for MM-vc, freq. and individual models.
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FIG. 4. As in Fig. 2 but for independently calibrated methods.
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Uncalibrated Compute probabilities from: ROR RPSS

MM-vc standardized anomalies relative to each model’s climatology 72.8 0.603

MM-bc anomalies relative to each model’s climatology 71.5 0.599

MM-c multi-model mean plus constant historical ensemble 71.4 0.599

MM-glr GLR using multi-model mean as predictor 69.1 0.587

MM multi-model ensemble 50.2 0.497

Independent

calibration ROR RPSS

grsep average separate regressions 75.9 0.6

MM-g ensemble mean anomalies plus Gaussian 73.8 0.595

ngr Non-homogeneous Gaussian regression 70.3 0.59

MM-bow Bayesian optimal weighting of climatology and model means 61.1 0.563

glro GLR between ensemble mean anomalies and observations -64.9 0.412

Joint

calibration ROR RPSS

cca Two-mode CCA 75 0.601

rrmmr Bayesian regression with unequal weights penalized 74.3 0.595

rrmm Bayesian regression with weights different from 1/7 penalized 73.5 0.59

bow Bayesian optimal weighting of each model probability 60.3 0.55

gr Regression with all models 40.5 0.475

TABLE 1. List of the methods and their key properties. Compound averaged ROR and average

RPSS computed from all starts and leads. Methods in each class are listed in order of compound

averaged ROR. 39


