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Abstract

Central Southwest (CSW) Asia recently experienced four years (winter of 1998-99 to

2001-02) of severe drought. Interannual precipitation variability in the region has been associ-

ated with East Asia Jet Stream variability and Western Pacific tropical convection. However,

atmospheric general circulation models (AGCMs) forced by observed sea surface tempera-

ture (SST) poorly simulate the region’s interannual precipitation variability. The statistical-

dynamical approach uses statistical methods to correct systematic deficiencies in the response

of AGCMs to SST forcing. Statistical correction methods linking model-simulated Western Pa-

cific precipitation and observed CSW Asia precipitation result in modest, but statistically sig-

nificant, cross-validated simulation skill over the period 1951-1998. The statistical-dynamical

method is also applied to recent (winter 1998-99 to 2002-03) multi-model, two-tier December-

March precipitation forecasts initiated in October. Tercile probability forecasts are produced

using the ensemble mean forecasts and forecast error estimates. The statistical-dynamical fore-

casts show enhanced probability of below normal precipitation for the four drought years and

capture the return to normal conditions in part of the region during the winter of 2002-2003.

May Kabul be without gold, but not without snow.

—Traditional Afghan proverb.

∗International Research Institute for Climate Prediction Contribution Number IRI-PP/03/??.
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1. Introduction

Prediction of climate anomalies on seasonal-to-interannual time-scales is practical in regions and

seasons where predictable boundary conditions (e.g., land surface properties and sea surface tem-

perature; SST) lead to predictable changes in seasonal weather statistics (Goddard et al. 2001).

Temperature and precipitation anomalies directly affect society and are of particular interest. The

outstanding example of predictable boundary conditions are SST anomalies associated with ENSO,

and many areas of the world exhibit significant temperature and precipitation responses to these

SST anomalies (Ropelewski and Halpert 1987; Mason and Goddard 2001).

A variety of methods are used to make seasonal forecasts. In the one-tier approach, coupled

atmosphere-ocean models predict future boundary conditions and climate anomalies from present

conditions. In the two-tier approach, SST is first predicted and that predicted SST is the basis for

predicting climate anomalies. The prediction of Central Southwest (CSW) Asia winter precipita-

tion anomalies given SST predictions is the general subject of this paper.

Dynamical and statistical methods can be used to describe the effect of SST on the climate sys-

tem. However, both approaches have shortcomings. Dynamical models, in particular atmospheric

general circulation models (AGCMs), are based on physical laws of nature but are unable to re-

solve all spatial and temporal-scales. Inaccurate AGCM parameterizations of unresolved processes

such as convection lead to errors in predicting the climate response to SST anomalies. Statistical

methods such as regression predict the climate response to SST anomalies based on the historical

record. However, the shortness and quality of the climate record limit accuracy, and stationarity of

the climate is a further complicating issue.

Recently dynamical and statistical methods have been combined to compute the climate re-

sponse to SST forcing (Smith and Livezey 1999; Feddersen et al. 1999; Mo and Straus 2002;

Tippett et al. 2003; Widmann et al. 2003). The statistical-dynamical approach is in the spirit of
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model output statistics (MOS) where systematic errors of the dynamical model are identified and

corrected. Multivariate MOS correction involves identifying model patterns that are related to

observed patterns and replacing model patterns with observed ones. The MOS correction may

effectively only make minor shifts or rotations of model output when model deficiencies are mi-

nor. In these cases,local model information is sufficient to perform the MOS correction. For

instance, AGCM simulation of seasonal rainfall anomalies in the Northeast of Brazil is skillful,

and model simulated precipitation over the Northeast of Brazil provides sufficient information for

MOS corrections to improve details of model precipitation patterns. In other cases AGCM pre-

cipitation simulation deficiencies require using other model variables, for instance geopotential

height, in the MOS correction (Landman and Goddard 2002). More severe AGCM errors may

result in a complete failure of the model to reproduce large-scale teleconnection patterns seen in

observations. If the model reproduces some component of the large-scale SST response, MOS

corrections may be feasible. In these cases, use of spatially remote model variables and model

variables other than the target variable may be required. An example is the use of spatially remote

model simulated precipitation to estimate winter precipitation in the CSW Asia region (Tippett

et al. 2003). The multi-model application of the statistical-dynamical method to wintertime pre-

cipitation over the CSW Asia region, with emphasis on forecast performance during the past five

winters (1999-2003), is the subject of this paper.

Much of CSW Asia, including parts of Iran, Afghanistan, Turkmenistan, Uzbekistan, Tajik-

istan and Pakistan, has a semi-arid climate. The region lies beyond the usual reach of the Indian

Monsoon, and instead receives most of its annual precipitation during winter and early-spring in

the form of snow along the high elevation of the region (Martyn 1992). This precipitation, as-

sociated with eastward-propagating mid-latitude cyclones, displays considerable interannual vari-

ability. The recent drought (1999-2002) was the worst in fifty years and had a severe impact on

agricultural production and livestock populations (Agrawala et al. 2001; Barlow et al. 2002).
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An indication of the role of SST forcing in the recent drought is found in a modeling study

where several AGCMs forced by observed SSTs reproduced features of the 1998-2002 drought

(Hoerling and Kumar 2003). However, AGCM simulations of the period prior to the recent drought

show little skill in simulating CSW Asia seasonal precipitation anomalies, and we must rely heavily

upon the observational record to elucidate connections between CSW Asia precipitation and SST.

The classical ENSO response does not include the CSW Asia region (Ropelewski and Halpert

1987, 1989). However, Mason and Goddard (2001) did find that enhanced frequency of above

normal precipitation in Southwest Iran is associated with La Niña conditions which is in contrast

with the work of Barlow et al. (2002) that linked the La Niña episode of 1998-2002 with the severe

drought in CSW Asia. Barlow et al. (2002) also found that ENSO events with stronger West-

ern Pacific SST anomalies were associated with precipitation patterns similar to those observed

during the recent drought period, suggesting that details of the basin-wide ENSO pattern can ef-

fect different impacts over the CSW Asia region. The variation between one ENSO event and

another could be expected to produce different atmospheric responses, and modeling studies have

computed the sensitivity of the atmospheric circulation to the location of tropical heating (Sardesh-

mukh and Hoskins 1988; Ting and Sardeshmukh 1993; Hoerling and Kumar 2002; Barsugli and

Sardeshmukh 2002). However, model deficiencies can obscure sensitivities in the observed phys-

ical climate system. Ting and Sardeshmukh (1993) highlight how slight differences in the mean

circulation can strongly affect the extratropical response to tropical heating. Also in Kidson et al.

(2002), cluster analysis of OLR data was used to classify different types of ENSO warm-events,

identifying the western extent of SST anomalies as a distinguishing feature. However, in the same

study, an AGCM was unable to differentiate between the climate responses associated with the

different warm event SST types types.

An observation study by Lau and Boyle (1987) noted different circulation responses to western

Pacific/Maritime Continent and central Pacific OLR anomalies, finding that Maritime continent
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OLR anomalies had more effect on the circulation over Asia than did OLR anomalies in the cen-

tral Pacific. A dominant feature of the wintertime circulation over Asia is the upper-tropospheric

westerly jet stream over subtropical east Asia and the western Pacific, referred to as the East Asia

Jet Stream (EAJS). Using composite analysis, Lau and Boyle (1987) found that enhanced EAJS

strength was associated with enhanced Maritime continent convection. Maritime Continent con-

vection influences the EAJS through the local Hadley circulation (Chang and Lau 1982; Chang and

Lum 1985; Lau and Boyle 1987). Enhanced Maritime Continent convection leads to upper level

divergence and southerly flow into the subtropical Northern Hemisphere. The resulting westerly

flow near the EAJS exit region, due to Coriolis effect, intensifies the EAJS. Yang et al. (2002)

found EAJS strength to be positively correlated with precipitation anomalies in the Maritime Con-

tinent and western Pacific regions. Additionally, they found EAJS strength to be uncorrelated

with ENSO. They also found significant negative correlations between EAJS strength and pre-

cipitation anomalies on the east coasts of Asia and the United States, as well as southeast of the

Ural mountains. A possible explanation for the association between EAJS strength and CSW Asia

precipitation is that the dominant mode of variability of observed (Reanalysis) upper-level winds

indicates EAJS strengthening is accompanied by a southward shift of the jet maximum and north-

easterly flow anomalies over the CSW Asia region (Tippett et al. 2003). The negative correlation

between EAJS strength and CSW Asia precipitation means that southwesterly flow anomalies over

the CSW Asia region are associated with enhanced upslope precipitation.

Tippett et al. (2003) found that poor ECHAM 4.5 simulation of EAJS variability precluded

using upper-level model winds as a predictor for CSW Asia precipitation. The difficulty some

AGCMs have in simulating EAJS variability may be a factor in the poor simulation of CSW Asia

precipitation. However, statistical corrections using ECHAM 4.5 precipitation in the Western Pa-

cific and Maritime Continent region were shown to give statistically significant simulation skill

(Tippett et al. 2003). In the present work we apply this method to the ECHAM 4.5 and four ad-
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(a) (b)

Figure 1. (a) Climatological and (b) root-mean-square anomaly of the DJFM precipitation
1951-1998 (0.5◦ × 0.5◦ resolution).

ditional AGCMs and obtain an estimate of simulation skill. We also use the corrections to make

retrospective statistical-dynamical forecasts based on operational two-tier IRI AGCM forecasts of

December-March (DJFM) precipitation anomalies for the last five years (1999-2003); the AGCM

forecasts use SST predicted the preceding October. Simulation skill is used to estimate forecast

uncertainty and produce probability forecasts.

2. Data and methods

a. Observations

Precipitation observations used to compute skill and statistical corrections are taken from the ex-

tended New et al. (2000) gridded dataset of monthly precipitation for the period of 1950 to 1998,

giving 48 DJFM seasons. This dataset is based on station observations interpolated to a0.5◦×0.5◦

lat-lon grid. A low-resolution version of this dataset interpolated to a T42 grid is used for the

calculations here unless otherwise noted.

DJFM CSW Asia climatological precipitation and its variability, shown in Fig. 1, are closely

related to the elevation of the region. Climatological precipitation follows the principal mountain
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ranges of the region: the Zagros, Himalaya, Karakorum, and Hindu Kush. Precipitation variability

shown in Fig. 1(b) separates into two geographical regions. One accompanies the Zagros mountain

range along the Southwest border of Iran. Another region of precipitation variability is found where

the borders of Afghanistan, Pakistan and Tajikistan meet in the Hindu Kush mountain range. The

correlation between box averages over the SW and NE regions is 0.34, suggesting only a weak

statistical relation between the precipitation variability of the two regions over the entire period;

both regions did experience drought during 1970-71 and 1999-2002. Neither region is significantly

correlated with the NINO3 SST index (the average SST over the region 5◦S to 5◦N, 90◦W to

150◦W).

The CAMS-OPI precipitation dataset, which includes satellite observations, is used to examine

qualitative precipitation features for the period 1999-2003 as shown in Fig. 2 (Janowiak and Xie

1999). The general features are of below normal precipitation beginning in DJFM 1999, continuing

through 2001, weakening of the drought in some northern areas in 2002 and return to normal

conditions in northern areas in 2003. However, as shown in Fig. 3, there are very few reporting

stations in this region during this period, and the precipitation estimate relies heavily on satellite

data. Uncertainties with the observational data limit forecast verification to qualitative aspects.

News reports and humanitarian aid information support these general features, including the

enhanced wet conditions in the northern part of the regions during DJFM 2003 where flooding

occurred. Station data available during the drought period and with sufficiently long records to

compute 30-year (1961-1990) climatologies are shown in Fig. 4. The station data shows above

normal precipitation in DJFM 1998 followed by 3 years of below normal precipitation. Station

precipitation amounts were close to normal in DJFM 2002 and above normal in DJFM 2003.
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(c) (d)

(e)

Figure 2. CAMS OPI anomalies (mm/day) for DJFM (a) 1999, (b) 2000, (c) 2001, (d) 2002 and
(e) 2003.
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Figure 3. Average number of gauge data available per month per grid box in CAMS OPI data
DJFM 1999-2003.

Figure 4. Fraction of normal DJFM precipitation at three stations: Naryn (Central Kyrgyzstan;
76E,41.43N), Chardzhev (Turkmenistan; 63.6E, 39.1N) and Ashgabat Keshi (Southern

Turkmenistan; 58.33E,37.97N) for the period DJFM 1998-2003.
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Model Resolution Start End Ens. Size
NCEP/MRF9 T42 DJFM 1966 DJFM 1998 10
CCM3 T42 DJFM 1951 DJFM 1998 10
ECHAM4.5 T42 DJFM 1951 DJFM 1998 24
COLA T63 DJFM 1951 DJFM 1997 10
NSIPP 2.5◦ × 2◦ DJFM 1962 DJFM 1998 9

TABLE 1. AGCMs simulation periods and ensemble sizes used to computed corrections and
estimate simulation skill.

b. Model simulations and forecasts

We examine the AGCMs used operationally at IRI: NCEP/MRF9, ECHAM4.5, COLA, CCM3.2,

and NSIPP-1 (Livezey et al. 1996; Roeckner et al. 1996; Kinter et al. 1997; Hack et al. 1998;

Bacmeister et al. 2000, respectively). The simulation skill of the AGCMs is estimated by perform-

ing long ensemble integrations forced by observed SSTs. The spatial resolution, simulation period

and ensemble size for each model are shown in Table 1. Spatial maps of temporal anomaly cor-

relation of model simulation and observation (Fig. 5) indicate little skill in the CSW Asia region

with few correlations exceeding 0.3.

The IRI has been making two-tier real-time seasonal forecasts since 1995 and Net Assessment

forecasts since 1997 (Mason et al. 1999; Goddard et al. 2003). SST conditions for the forecast

period are first predicted, and then those predicted SST conditions are used as forcing for a set

of AGCM integrations. AGCM initial conditions are taken from simulations forced by observed

SST until the forecast start time. SST predictions are made using a combination of dynamical and

statistical forecast models. The dynamical model is the coupled ocean-atmosphere model of the

National Centers for Environmental Prediction (NCEP) covering the area from 30N to 25S, and

70W to 120E (Ji et al. 1998). Forecasts of the tropical Atlantic SST are made using the statistical

canonical correlation analysis (CCA) model of CPTEC/INPE in Brazil, using the tropical Atlantic

and Pacific SST fields as predictors (Repelli and Nobre 2003). Similarly, forecasts of the Indian
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1999 2000 2001 2002 2003
NCEP • • • • •
CCM3 • • • • •
ECHAM4.5 • • • • •
NSIPP-1 • •
COLA • •

TABLE 2. Availability of DJFM AGCM forecasts made Oct of the preceding year.

Ocean are presently done at the IRI using a CCA model, using the observed Indo-Pacific SST

anomalies, and the forecasts of the Pacific SST field, as predictors. This Indian Ocean CCA model

makes use of, among other things, the observed tendency for the Indian Ocean’s SST anomalies to

approximately follow the ENSO-related SST anomalies of the tropical Pacific, with a lag time of

about one season.

In the second step of the two-tiered forecasting approach, the predicted SST is used as a pre-

scribed boundary condition for several atmospheric AGCMs. For the forecasts here, the AGCMs

are forced with observed SST until the end of September and with forecast SST for the period Oct-

Mar. Forecast DJFM seasonal anomalies are computed with respect to the time-mean of the given

AGCM’s simulations over the period 1969 to 1998. The AGCMs and ensemble sizes are the same

as those listed in Table 1. However, the availability of the AGCMs in forecast mode varies during

the period as shown in Table 2; only the NCEP, CCM3 and ECHAM 4.5 models are available for

DJFM 1999-2003. Moreover, the ECHAM 4.5 model forecasts for 1999-2001 were not available

in real-time.

c. Correction Method

Statistical correction methods can compensate for model deficiencies by filling in details of large-

scale teleconnection patterns found in nature but inaccurately or incompletely represented by mod-

els. Such methods have been used to correct model simulated precipitation anomalies (Smith and
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(c) (d)

(e)

Figure 5. Anomaly correlation of DJFM observed precipitation with precipitation simulated by
the (a) NCEP, (b) CCM3, (c) ECHAM 4.5, (d) COLA and (e) NSIPP AGCMs.
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Livezey 1999; Feddersen et al. 1999) and seasonal forecasts (Mo and Straus 2002). Model precip-

itation has also been used as a predictor for statistical downscaling (Widmann et al. 2003). The

fundamental idea of these methods is a multivariate (pattern) regression between model fields and

observed anomaly fields. Prior to employing such a multivariate regression, separate principal

component analyses (PCA) of model fields and observations are applied to reduce the number

of degrees of freedom and decrease the effects of sampling error. Canonical correlation analysis

(CCA) is the multivariate regression method used to identify model fields most highly correlated

with observed precipitation anomaly patterns (Barnett and Preisendorfer 1987). The set of CCA

correspondences between model and observation patterns is then used to predict observed precipi-

tation anomalies from model outputs.

Previous work showed a relation between observed variations of the EAJS and observed CSW

Asia precipitation with the observed 200 mb wind field being a good predictor of simultaneous

observed CSW Asia precipitation (Tippett et al. 2003). However, examination of the ECHAM

4.5 and NSIPP simulated wind fields show that they exhibit different variability than do observed

winds and are not good predictors of CSW Asia precipitation; the AGCM simulated winds are

more highly correlated with ENSO than are observed (Reanalysis) winds. Wind fields from the

other AGCMs were not available. Since Western Pacific upper atmospheric heating is related

to EAJS variability it is reasonable that it might be directly related to CSW Asia precipitation.

Previous work confirmed a relation between Western Pacific precipitation and observed CSW Asia

precipitation and demonstrated that this relation is present in ECHAM 4.5 AGCM simulations

forced with observed SST (Tippett et al. 2003). The statistical correction is made using model

precipitation in the region 100°E to 130°W and 20°S to 20°N as the predictor. Here we apply the

same method also to four other AGCMs. Maps of corrected simulation skill estimated with cross-

validation in which three consecutive years are left out and the middle year used as the target, are

shown in Fig. 6. Correction skill is limited to the northern part of the region from Turkmenistan
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Model Grid points withr > 0.3 Averager over points withr > 0.3
Uncorrected Corrected Uncorrected Corrected

NCEP 3 pts. 25 pts. 0.35 0.4
CCM3 17 pts. 26 pts. 0.39 0.36
ECHAM4.5 6 pts. 22 pts. 0.32 0.38
COLA T63 3 pts. 28 pts. 0.33 0.38
NSIPP 8 pts. 28 pts. 0.35 0.43

TABLE 3. Number of grid points where the simulation anomaly correlation exceeds 0.3 and the
average anomaly correlation at those points.

Model AGCM EOFs Observation EOFs CCA modes
NCEP 5 3 1
CCM3 3 2 1
ECHAM4.5 2 3 1
COLA T63 2 3 2
NSIPP 4 4 3
SST 3 7 2

TABLE 4. Number of AGCM and observation EOFs and number of CCA modes used to
construct the statistical corrections.

west through Uzbekistan, northern Afghanistan and Pakistan, Tajikistan and Kyrgyzstan. The

number of grid points whose correlation exceeds 0.3, and their average correlation, are given in

Table 3. EOF truncations and number of CCA modes are shown in Table 4. EOF and CCA

truncations were chosen to maximize the sum of the cross-validated correlations exceeding 0.3 in

the simulation skill estimates. The relatively low-dimension of the statistical correction lessens the

risk of over-fitting the data in the regression.

d. Tercile probability forecasts

Seasonal forecasts are inherently nondeterministic and uncertain. Probabilistic forecasts provide a

means of quantifying and communicating forecast uncertainty. Ideally, a seasonal forecast should
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Figure 6. As in Fig. 5 but for the AGCM precipitation corrected using model Pacific precipitation.
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consist of the probability distribution function (pdf) of possible outcomes given the present cli-

mate state. Then the probability of a particular event, for instance, the probability of precipitation

exceeding a given amount, can be computed.

The historical record can be used to construct probability forecasts by looking at what occurred

subsequent to states similar to the present one. This is the method of analogues. The shortness

of the historical record necessitates that only a few parameters be used to select analogues–for

instance, values of a single index. Then it is possible to compute relative frequencies of outcomes

given conditions close to present ones. However, the crude selection process can result in a failure

to distinguish between different phenomena.

Model-based forecasts are a means of circumventing the short record problem. The issue be-

comes how to construct probabilistic forecasts from deterministic models. Ensemble methods are

essentially Monte Carlo methods of evolving an initial condition pdf into a forecast pdf. However,

small ensemble size and model error make it difficult to use ensemble statistics directly. Model

error often appears in the form of biases in ensemble statistics. Although the MOS correction is

designed to correct errors in the ensemble mean, errors in the ensemble statistics such as overcon-

fidence remain; these require separate treatment (Rajagopalan et al. 2002).

Here we use the historical record to estimate parametrically the forecast pdf (Kharin and Zwiers

2003). This approach limits us to stationary distributions. Furthermore we estimate only the

distribution variance and assume that the pdf is Gaussian. More complex forecast uncertainty

models can be formulated but the shortness of the climate record may make their use challenging.

In the approach here, we decompose the observed climate variableC as the sum of a predictionM

and an errorE

C = M + E ;

for instance,M is an ensemble-mean forecast, andE is the difference between ensemble-mean

forecast and observation. Then, the expected correlationr between the observed climateC and the
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ensemble meanM is

r =
σM√

σ2
E + σ2

M

(1)

whereσ2
M is the prediction variance,σ2

E is the error variance, and we assume that the ensemble

meanM and errorE are independent. The assumption of forecast-independent error is usually

unjustified, and furthermore implies that the correlationr is nonnegative. The forecast pdf is

completely determined from the error varianceσ2
E and the ensemble meanM if we assume that

forecast errors are Gaussian and stationary. Probabilities of events in the below, normal and above

categories can be computed from the parametric forecast pdf.

The correlationr and prediction varianceσ2
M are computed at each gridpoint for uncorrected

simulations and for leave-three-out cross-validated statistical-dynamical simulations. The error

varianceσ2
E at each gridpoint is then obtained by solving (1). Negative correlations are set to zero

in (1), effectively forcing the error varianceσ2
E to be unbounded. The probabilities coming from

the different models are averaged equally. Models with relatively low skill will have a larger value

of σE and consequently a wider forecast pdf and will contribute less to probability shifts. Forecast

uncertainty may be underestimated as this procedure does not take into account error in the SST

prediction.

3. Forecast Results

We now examine the probability forecasts obtained using the AGCM forecast precipitation over

CSW Asia and those obtained using statistical-dynamical forecasts based on model precipitation

over the Western Pacific. The forecast period 1999-2003 is independent of the period used to

compute the model corrections. The statistical-dynamical calibration method is slightly different

from that used in Tippett et al. (2003). There ECHAM 4.5 was forced by persisted SST, and the

data used for the statistical correction came from a set of hindcasts also forced by persisted SST.

17



Such an approach has the potential to account for error due to systematic SST errors. Here the

statistical correction is computed using AGCM simulations from observed SST which are less

computationally costly than hindcasts.

We examine the SST forecast, AGCM-based precipitation forecast and statistical-dynamical

precipitation forecast for each of the five winters 1999-2003. The observed and forecast SST are

shown in Fig. 7. SST forecasts are made in the Oct preceding the target season. The uncorrected

retrospective forecasts are shown in Fig. 8 and the corrected ones in Fig. 9.

a. DJFM 1999

In the first year of the drought, La Niña conditions prevailed in DJFM 1999, particularly in the

Central Pacific. These cool conditions were also present in the forecast SST used to force the

AGCMs (Fig. 7a). Also present in both observed and forecast SST were warm conditions in the

Maritime Continent region. These warm conditions are correlated with local positive precipitation

anomalies, which in turn are correlated with negative precipitation anomalies over CSW Asia. The

statistical model used to predict Indian ocean SST produced weak cool anomalies while warm

anomalies were actually observed there. The Oct 1998 AGCM ensemble mean forecasts of DJFM

1999 all show wet anomalies, and the tercile probabilities from the AGCM output (Fig. 8a) show

enhanced likelihood of above normal precipitation along the southwest border of Iran and in the

region northeast of Afghanistan. The corrected tercile forecasts (Fig. 9a) show enhanced likelihood

of below normal precipitation in the region where there is skill.

b. DJFM 2000

In the second year of the drought, La Niña conditions continued in DJFM 2000, particularly in the

Central Pacific. These cool condition were present to a much lesser extent in the forecast SST used

to force the AGCMs, being mostly confined to the South American coast (Fig. 7b). Also present
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(a)

(b)

(c)

(d)

(e)

Figure 7. Forecast (right panel) and observed (left panel) SST anomalies for DJFM (a) 1999, (b)
2000, (c) 2001, (d) 2002, (e) 2003.
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(a)

(b)

(c)

(d)

(e)

Figure 8. Forecast probabilities (in percent) obtained from AGCM output of below (left panel),
normal (center panel) and above (right panel) catagories for DJFM (a) 1999, (b) 2000, (c) 2001,

(d) 2002, and (e) 2003.
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(a)

(b)

(c)

(d)

(e)

Figure 9. As in Fig. 8 but the forecast categorical probabilities from the statistical-dynamical
forecasts.
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in both observations and forecast were warm conditions in the Maritime Continent region. Again

the statistical model used to predict Indian ocean SST produced weak cool anomalies while some

warm anomalies were actually observed there.

The available models forecast wet ensemble mean anomalies resulting in the enhanced like-

lihood of above normal precipitation (Fig. 8b). The corrected tercile forecasts (Fig. 9b) show an

enhanced likelihood of below normal precipitation in the region where the corrections have skill.

In the southwest part of the region, including Iran where the correction have little skill, there was

also severe drought.

c. DJFM 2001

Cool, although weaker, SST anomalies continued in the Central Pacific during DJFM 2001. These

cool conditions were only weakly present in the forecast SST used to force the AGCMs (Fig. 7c).

More importantly, missing from the forecast were warm SST conditions in the Maritime Conti-

nent region. Again the statistical model used to prediction Indian ocean SST produced weak cool

anomalies while warm anomalies were actually observed there. The available AGCMs all fore-

cast positive precipitation anomalies over CSW Asia (Fig. 8c). The statistical-dynamical forecasts

using the NCEP and ECHAM 4.5 models indicated negative precipitation anomalies and the one

using the CCM3 model indicated positive precipitation anomalies. The corrected tercile forecasts

(Fig. 9c) show an enhanced likelihood of below normal precipitation. However, the shift toward

below normal was weaker than in the previous two forecasts.

d. DJFM 2002

Warm SST anomalies were observed in DJFM 2002 in the central western Pacific, Maritime Con-

tinent and Indian Ocean. However, only very modest warm anomalies in the Central and Western

Pacific were forecast (Fig. 7d). All AGCMs indicated wet anomalies in CSW Asia except the
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COLA model which showed negative precipitation anomalies in the northern part of the domain.

The uncorrected AGCM tercile probabilities indicate enhanced likelihood of above normal precip-

itation (Fig. 8d). The NCEP and COLA model statistical-dynamical forecasts indicated dry condi-

tions, while those of the CCM3 and ECHAM 4.5 models showed positive precipitation anomalies;

the NSIPP statistical-dynamical forecast indicated positive precipitation anomalies in north and

negative precipitation anomalies in south. The weakness of the SST forcing is perhaps reflected

in the lack of agreement in the AGCM forecasts. The resulting tercile forecast reflects the lack of

consensus and shows a slight shift to dry conditions in most of the region with a slight shift toward

wet in the northeast of Afghanistan and Tajikistan (Fig. 9d). While drought continued in many

regions, drought conditions began to ease in March and April in the northeast, as suggested by the

station data shown in Fig. 4.

e. DJFM 2003

Warm SSTs were observed in DJFM 2003 across the Central Pacific (a weak to moderate El Niño

was begining to decay), through the Maritime Continent and into the Indian Ocean. Forecast SSTs

captured only the warm Pacific SSTs (Fig. 7e). AGCM forecast anomalies and tercile probabilities

indicated wet conditions, much as they did during the drought (Fig. 8e). The statistical-dynamical

forecasts are uniformly wet across models, and the tercile probabilities are shifted to the above

normal category (Fig. 9e). Above normal precipitation was observed in the northern half of the

region, and the drought of the previous years had ended.

4. Summary and Conclusions

Statistical-dynamical seasonal forecasts use statistical methods to correct systematic deficiencies in

the response of atmospheric general circulation models (AGCMs) to predicted sea surface temper-

ature (SST). The statistical correction is constructed here by applying a CCA regression between

23



AGCM simulations forced by observed SST, and the corresponding observations. This regression

is then applied to AGCM forecasts forced by predicted SST in a two-tiered prediction system,

outside of the regression training period. Simulation performance provides an estimate of forecast

uncertainty that can be used to construct a parametric forecast probability density function and

compute categorical probabilities.

We applied this method to winter (DJFM) precipitation in Central Southwest (CSW) Asia. Al-

though observational studies relate the region’s precipitation to tropical SST forcing with some

success, AGCMs forced with observed sea surface temperatures simulate poorly the region’s in-

terannual variability. The CSW Asia response pattern is part of a large-scale pattern that includes

ocean-atmosphere processes around the Maritime Continent. AGCMs do simulate precipitation

variability in the Maritime Continent region reasonably well, and we base the statistical correction

on model precipitation over the Maritime Continent region. This approach was previously used

for the ECHAM 4.5 model using observed and persisted SSTs (Tippett et al. 2003). Here we have

applied the method to ECHAM 4.5 and four additional AGCMs presently used at IRI for seasonal

forecasting. We find that the correction of simulations forced by observed SST results in significant

historical cross-validated skill.

We also applied the statistical-dynamical method to two-tier AGCM forecasts of the DJFM

season made during the period 1999-2003; the AGCMs are forced with SST forecasts made the

previous October. This period is independent of that used for developing the correction statistics

and includes a severe multi-year (1999-2002) drought. Tercile probability forecasts were con-

structed using simulation skill as an estimate of forecast uncertainty. While the SST forecasts had

errors, they usually had the correct anomaly sign in much of the critical region in the western trop-

ical Pacific. In spite of these SST errors, the statistical-dynamical forecasts capture some of the

general features of the 1999-2003 period. The statistical-dynamical forecast probabilities show en-

hanced likelihood of below normal precipitation during the drought years and enhanced likelihood
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Figure 10. As in Fig. 5 but for the CCA-predicted precipitation using only simultaneous Pacific
SST.

of above normal precipitation for DJFM 2003 when the northern part of the region experienced a

return to normal and above normal conditions, including flooding.

The statistical nature of this approach leads to the question of whether there is benefit to using

AGCMs or whether a purely statistical forecast using only the forecast SST would perform as well.

We believe that statistical-dynamical approaches are potentially superior to purely statistical ones

since AGCMs have the potential to produce nonlinear responses to SST forcing. Furthermore we

expect AGCMs to improve in performance with time. Figure 10 shows that the estimated skill of a

purely statistical CCA scheme using simultaneous observed SST as a predictor is slightly less than

that of some of the corrected AGCMs. The difference in skill is modest and is, for the most part, not

statistically significant. However, we can conclude that the statistical-dynamical method permits

AGCMs to achieve skill levels comparable with, if not better then, purely statistical methods.

Additionally since the detailed characteristics of each AGCM are different, using several models

may improve the robustness of the forecast.
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