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ABSTRACT

Severe drought is a notable feature of the hydrology of Central Southwest (CSW) Asia. Although

studies have linked the region’s interannual precipitation variability to remote forcings that include East

Asia Jet Stream variability and Western Pacific tropical convection, atmospheric general circulation models

(GCMs) forced by observed sea surface temperatures demonstrate little skill in simulating interannual

precipitation variability in this region. Here statistical methods of correcting systematic errors in GCM

simulations of CSW Asia precipitation are investigated. Canonical correlation analysis is used to identify

model fields related to observed precipitation anomaly patterns. These relationships are then used to

predict observed precipitation anomalies. This approach is applied to the ECHAM 4.5 GCM using regional

precipitation, upper-level winds and Western Pacific tropical precipitation as predictors of observed CSW

Asia precipitation anomalies. The statistical corrections improve the GCM precipitation simulations,

resulting in modest, but statistically significant, cross-validated skill in simulating CSW Asia precipitation

anomalies. Applying the procedure to hindcasts with persisted sea surface temperatures gives lower, but

statistically significant, precipitation correlations in the region along the Hindu Kush mountain range.
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1. INTRODUCTION

Much of Central Southwest (CSW) Asia has a semi-arid climate with precipitation

primarily resulting from eastward-propagating mid-latitude cyclones during the cold

season (Martyn, 1992). A substantial fraction of the region’s annual precipitation falls

along the slopes of the region’s principal mountain ranges during winter and early spring,

mostly in the form of snow. The melting of this snow provides an important source
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of water during the summer. Regionally much of the winter precipitation occurs, on

average, in Northeast Afghanistan and Tajikistan and on the Southwest border of Iran.

Interannual precipitation variability is large and includes episodes of severe drought,

with CSW Asia recently experiencing four years (1998-2002) of the worst drought in fifty

years (Barlowet al., 2002). Societal impacts of the drought were severe, with agricultural

production and livestock populations, both key to subsistence livelihoods in the region,

being drastically reduced (Agrawalaet al., 2001).

Seasonal forecasts of CSW Asia precipitation anomalies would be feasible if CSW

Asia precipitation were related to predictable components of the climate system such

as ENSO. However, the CSW Asia region is not typically noted as part of the ENSO

signal (Ropelewski and Halpert, 1987, 1989), although Nazemosadat and Cordery (2000)

have recently documented an ENSO signal in Iran using a higher density of stations

than previously examined. In addition to data availability is the issue of the variation

of sea surface temperature (SST) anomaly patterns from one ENSO event to another.

Some ENSO events appear to have more impact on CSW Asia precipitation than others.

Barlowet al. (2002) stratified ENSO events based on the strength of their Western Pacific

SST anomalies and found precipitation and circulation anomalies in the Western Pacific,

Eastern Indian Ocean, and extending into Asia that were different from usual ENSO-

related patterns. The ENSO stratification with the more vigorous Western Pacific SST

signal is associated with SST and precipitation patterns similar to those observed during

the recent multi-year drought period, even when the recent drought period is withheld

from the calculation. Thus, the particular “flavor” of the extended La Niña episode of

1998-2002 appears to be linked to the severe drought in CSW Asia. Similarly, Kidson

et al. (2002) used cluster analysis of OLR data to separate ENSO warm-events into

two types with associated SST anomalies of differing western extent. The warm-event
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type with extended Western Pacific SST anomalies is associated with stronger circulation

anomalies over the Asian region.

A physical mechanism connecting Western Pacific convection and SST anomalies

with CSW Asia precipitation is the wintertime upper-tropospheric westerly jet stream

over subtropical east Asia and the Western Pacific, often referred to as the East Asia

Jet Stream (EAJS). Yanget al. (2002) found EAJS strength to be inversely related with

DJF CSW Asia precipitation anomalies; a strong (weak) EAJS is correlated with positive

(negative) CSW Asia precipitation anomalies. Maritime Continent convection influences

the EAJS through the local Hadley circulation (Chang and Lau, 1982; Chang and Lum,

1985; Lau and Boyle, 1987). Enhanced Maritime Continent convection leads to upper

level divergence and southerly flow into the subtropical Northern Hemisphere. The

resulting westerly flow near the EAJS exit region, due to Coriolis effect, intensifies the

EAJS which in turn is associated with negative CSW Asia precipitation anomalies. The

association of EAJS strengthening and upstream jet changes in the CSW Asia region seen

in observations is less fully understood.

The dynamics of tropical Western Pacific heating have also been considered in mod-

eling analyses. Sardeshmukh and Hoskins (1988) considered Rossby wave generation

by tropical heating, with particular attention to Western Pacific heating. Generation of

vorticity by tropical heating is often taken to be proportional to the product of mean

vorticity and anomalous divergence with the mean vorticity frequently approximated for

simplicity by the Coriolis parameterf . This approximation suggests only a modest re-

sponse to tropical heating in the Western Pacific during Northern Hemisphere winter,

both because the Coriolis force is modest near the equator and because the local flow

is easterly, which should produce a critical line preventing the poleward propagation

of Rossby waves. Sardeshmukh and Hoskins (1988), however, also consider the other

source term for generation of vorticity: the advection of vorticity by the divergent wind.
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For tropical heating in a region of easterlies, this term is actually largest near the subtrop-

ical westerly jets rather than the easterlies, and its strength is dependent on the vorticity

gradient associated with the jets. By this mechanism, West Pacific Northern Hemisphere

winter convection is actually a favored process for generating vorticity anomalies along

the southern flank of the East Asian Jet.

Ting and Sardeshmukh (1993) showed that the steady response of a linearized dry

GCM to heating is very sensitive to the basic state and heating location. In particular, the

response to equatorial heating varies dramatically even within the West Pacific-Eastern

Indian Ocean sector, with the largest response occurring for heating centered at 100◦E

(the “IPX” region of Barlow et al. (2002)). This sensitivity to the mean state may

be a reason why GCM simulations forced by observed SSTs demonstrate little skill in

simulating CSW Asia precipitation. Either GCMs are deficient in their simulation of the

impact of SST anomalies on CSW Asia precipitation, or CSW Asia precipitation is not

causally related to SST anomalies. Here we explore the hypothesis that SST anomalies

force some portion of CSW Asia winter precipitation variability and that poor GCM

simulation of CSW Asia winter precipitation is due to model deficiencies.

Statistical correction methods can compensate for model deficiencies by filling in

details of large-scale teleconnection patterns found in nature but incompletely represented

by models. Such methods have been used to correct model simulated precipitation

anomalies (Smith and Livezey, 1999; Feddersenet al., 1999) and seasonal forecasts (Mo

and Straus, 2002). The fundamental idea of these methods is a multivariate (pattern)

regression between model fields and observed anomalies. Principal component analysis

(PCA) of model fields and observations reduces the number of degrees of freedom and

decreases the effects of sampling error. Canonical correlation analysis (CCA) is used to

identify model fields most highly correlated with observed precipitation anomaly patterns

(Barnett and Preisendorfer, 1987). The set of CCA correspondences between model and
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observation patterns is then used to predict observed precipitation anomalies from model

outputs.

Here we first document the skill of the ECHAM 4.5 GCM in simulating winter

precipitation in CSW Asia. We then use re-analysis wind data to elucidate connections

between CSW Asia precipitation and EAJS variability, and show that the same associ-

ation is not found in model simulations. We show a relation between Western Pacific

precipitation and observed CSW Asia precipitation and demonstrate that this relation is

present in GCM simulations forced with observed SST. This relation is sufficiently robust

to be useful in hindcasts forced with imperfect, persisted SSTs.

2. DATA

2.1 Observational data

Seasonally averaged data from 48 December–March (DJFM) seasons 1950-51 to

1997-98 are used. Precipitation observations used to compute the skill and the statistical

corrections are taken from the extended Newet al. (2000) gridded dataset of monthly

precipitation for the period of 1950 to 1998. This dataset, based on station observations

interpolated to a0.5◦ × 0.5◦ lat-lon grid, is here interpolated to the T42 grid of the

atmospheric GCM. This dataset is used to calibrate IRI probability forecasts (Rajagopalan

et al., 2002). The CAMS-OPI precipitation dataset (1979-1998) which includes satellite

observations is used to examine qualitative features of tropical Pacific precipitation

(Janowiak and Xie, 1999). The CAMS-OPI dataset is not used to compute the skill or the

statistical corrections. EAJS variability is investigated using upper level (200 hPa) wind

fields from the NCEP-NCAR reanalysis (Kalnayet al., 1996).

2.2 Model data

Model data is taken from two experiments: a simulation and a hindcast. The

simulation data comes from a 24 member ensemble of T42 ECHAM 4.5 GCM runs forced

with observed SSTs for the period 1950 to 1998 (Roeckneret al., 1996). We use ensemble
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means of DJFM model precipitation and upper level (200 hPa) winds. Additionally, we

use data from a 30-year (1968-1998) 12-member ensemble of hindcast runs that use Dec

1 values from the above simulations as initial conditions and are forced with November

observed SST anomalies added to December through March monthly climatologies.

3. METHODOLOGY

3.1 Statistical correction

To predict the observed precipitation anomaly fieldx from a predictor anomaly

field y, we assume the linear relationshipx = Ay whereA is a suitably dimensioned

regression matrix. The regression error
〈
(x − Ay)T (x − Ay)

〉
is minimized by choosing

A = 〈xyT 〉〈yyT 〉−1 where()T denotes transpose and〈·〉 denotes statistical expectation,

here computed using time averages. There is insufficient data to determine the regression

matrix A when the length of the historical record is smaller than the dimensions of the

anomaly fieldsx andy, and some regularization method is necessary to invert the singular

predictor covariance matrix〈yyT 〉 and reduce the effect of sampling error.

A simple regularization method is to expand the observed and predictor anomaly

fields in truncated Empirical Orthogonal Function (EOF) series using Principal Compo-

nent Analysis (PCA). LetX be the matrix whosei-th column is the observed precipitation

anomaly at timeti. Then PCA gives thatX = UxΣxVT
x where the columns of the orthog-

onal matrixUx are EOFs of the observations with normalized time-series given by the

columns ofVx and variances given by the squares of the elements of the diagonal matrix

Σx. Likewise the predictor field can be written asY = UyΣyVT
y . Substituting these

expansions into the definition of the regression matrixA gives

A = UxΣxV
T
xVyΣyU

T
yUyΣ

−2
y UT

y = UxΣxV
T
xVyΣ

−1
y UT

y . (1)
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Difficulties caused by singularity of the predictor covariance matrix and sampling error

are reduced by limiting the number of EOFs used to represent predictor and observation

anomalies.

Elements of the matrixVT
xVy give the correlation of predictor and observation

EOF time-series, and the singular value decompositionVT
xVy = RMST is used in

canonical correlation analysis (CCA) to identify linear combinations of observation and

predictor EOFs with maximum correlation and uncorrelated time-series (Barnett and

Preisendorfer, 1987). The CCA observation and predictor homogeneous covariance maps

are respectivelyCx = UxΣxR andCy = UyΣyS with time-seriesVxR andVyS; time-

series correlations are given by the elements of the diagonal matrixM. CCA modes with

low correlation are neglected by setting the corresponding diagonal elements ofM to

zero. Therefore determination of the regression matrixA = CxMC−1
y requires specifying

the number of observation and predictor EOFs and the CCA modes (nonzero elements

of the diagonal matrixM) to be used in the regression matrixA. Here if a CCA mode

is discarded, all CCA modes with lower correlation are also discarded. The predicted

precipitationAy has less variance than the observed precipitation due to the error of the

regression.

3.2 Skill evaluation

To evaluate the cross-validated skill of the CCA model, three consecutive years

are selected and omitted from the calculation of the climatology, anomalies and CCA

prediction model (Michaelsen, 1987). The CCA model is then used to predict the

observed anomaly for the middle withheld year, and the full-field is formed by adding

the climatology. Withholding each three year sequence in turn produces 48 predicted

observation fields; two years are withheld for the prediction of the first and final years.

We withhold three years instead of a single year in the cross-validation to ensure the
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independence of the training and prediction samples, and because leaving more years out

tends to select models with fewer degrees of freedom.

In addition to spatial maps of local correlations, we calculate the mean anomaly

correlation, i.e., the anomaly correlation of the spatially averaged observations and

simulations (Feddersenet al., 1999). This measure, unlike the average correlation,

reflects error in precipitation anomalies for an entire region. EOF truncations and

CCA modes are chosen to maximize the cross-validated mean anomaly correlation.

Maximizing the spatially averaged correlation yielded in most cases the same truncations

and always yielded comparable correlation maps. Monte Carlo significance testing is

used to determine correlation significance at each grid point (Livezey and Chen, 1983).

Significance levels are obtained by ranking the correlations of 1000 random permutations

in time of the observed data with correctly ordered observations. For the GCM simulation

and other cases with 48 years of data we use the 99% significance level, and for the

30 years hindcast we use the 95% significance level. Only significant correlations are

plotted.

4. OBSERVED AND SIMULATED PRECIPITATION VARIABILITY

DJFM CSW Asia climatological precipitation and its variability are closely related

to the elevation of the region as shown in Fig. 1. Climatological precipitation follows

the principal mountain ranges of the region: the Zagros, Himalaya, Karakoram, and

Hindu Kush (see Fig. 1(b)). Precipitation variability shown in Fig. 1(c) separates into two

geographical regions. One accompanies the Zagros mountain range along the Southwest

border of Iran. There we define the SW precipitation index as the spatial average of the

precipitation in the box from 45◦E to 56.25◦E and from 26.5◦N to 35◦N (see Fig. 1(c)).

Another region of substantial precipitation variability is found where the borders of

Afghanistan, Pakistan and Tajikistan meet in the Hindu Kush, Karakoram and Pamir

mountain ranges. We define the NE precipitation index there as the spatial average of the
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(a)

(c)

(b)

Figure 1. Panel (a) total climatological DJFM precipitation in mm, (b) elevation in meters, and (c)
standard deviation of the DJFM rainfall anomalies in mm/season. The boxes in panel (c) shows the domains

used to calculate NE and SW precipitation indices.

precipitation in the box from 67.5◦E to 73◦E and 35◦N to 45.5◦N (see Fig. 1(c)). The

correlation between the SW and NE indices shown in Fig. 2 is 0.34, suggesting only a

weak statistical relation between the precipitation variability of the two regions over the

entire period, although both regions did experience drought during 1970-71 and 1998-

2002. The SW and NE precipitation indices have correlations with the NINO3 index (the

average SST over the region 5◦S to 5◦N, 90◦W to 150◦W) of 0.04 and 0.25 respectively.

There is no significant statistical relation between the precipitation variability measured

by these indices and ENSO activity as measured by NINO3 index. The weak 0.25

correlation between the NE and NINO3 indices hints that precipitation variability in the
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Figure 2. Standardized time-series of NE, SW and NINO3 indices.

Hindu Kush region (NE index) is more related to tropical forcing than that in the Zagros

(SE index).

A typical method of determining predictable components of the climate system

is to examine the simulation skill of an ensemble of atmospheric GCMs forced with

observed SST. Climate components whose variability is skillfully reproduced by such

simulations are driven by SST forcing and deemed predictable to the extent that SSTs

can be predicted. Poor simulation skill can be due to either inherent lack of predictability

or model deficiency. ECHAM 4.5 GCM simulations of DJFM CSW Asia precipitation

have little skill with local correlations not exceeding 0.2 and a mean anomaly correlation

of 0.1. The GCM simulations thus give no indication of predictability. In the next section

we examine whether statistically transformed model outputs can be used to predict CSW

Asia precipitation and correct model deficiencies.

5. RESULTS

We use selected ECHAM 4.5 GCM model outputs to predict CSW Asia precipitation

anomalies. Observational data and previous studies identify physical mechanisms for

predictability and guide our choice of predictors. EOF truncations and CCA modes are
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chosen to maximize cross-validated skill. Differences between observed mechanisms and

GCM simulation behavior can be attributed to absence of an SST-forced response and to

model deficiencies.

5.1 CSW Asia regional precipitation

Using GCM simulated CSW Asia regional precipitation as a predictor gives little

skill improvement relative to the uncorrected GCM output. The mean anomaly correla-

tion of the best CCA correction model was 0.20, obtained using 3 observed precipitation

EOFs, 2 simulated precipitation EOFs and 2 CCA modes. Local correlations of the

corrected simulation with observations were everywhere less than 0.3. This negative

result means that there is no apparent linear relation between model simulated CSW Asia

precipitation and observed CSW Asia precipitation. However, this result provides no

evidence to decide the question of whether poor skill is caused by a genuine lack of

predictability or by model deficiencies.

5.2 Upper level winds

Yanget al.(2002) define an EAJS index as the average of the 200 hPa zonal wind in

the jet maximum region 30◦N – 35◦N and 130◦E – 160◦E, and find negative correlations

between this EAJS index and DJF precipitation anomalies in CSW Asia, as well as on

the southern coast of China, South Korea and parts of Japan. Precipitation anomalies

associated with EAJS variability are different from those associated with generic ENSO

events, and the correlation between the EAJS index and the DJF SOI index is 0.05. Those

results suggest that upper level winds are a good candidate as a predictor of CSW Asia

precipitation, particularly if EAJS variability can be separated from ENSO induced wind

variability.

EOF analysis of the DJF 200 hPa zonal wind by Yanget al. (2002) in the domain

0◦ to 60◦N and 60◦E to 120◦W indicates that the leading EOF is related to ENSO

variability and has most of its structure east of the date line. The second EOF has
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(a)

(b) (c)

Figure 3. Homogeneous covariance maps for (a) 200 hPa observed winds (m/s) (shading indicates wind
speed) and (b) observed precipitation (mm/day). (c) Anomaly correlation using observed wind anomalies

to predict simultaneous precipitation.

strong zonal structure over Asia, in particular over the jet maximum region and Western

Pacific. Therefore, we focus our analysis on EAJS variability and consider the NCEP-

NCAR reanalysis 200 hPa wind field anomaly in the domain 50◦E to 170◦E and 20◦N to

60◦N, excluding the region where the ENSO impact on upper level winds is largest. The

EOF analysis of Yanget al. (2002) shows that strengthening of EAJS index corresponds

to westward and southward shifts of the jet structure east of about 75◦E. We consider

wind field anomalies rather than only zonal wind anomalies to capture meridional flow

anomalies associated with these shifts of the EAJS.
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The first EOF of the 200 hPa wind field (not shown) explains 22% of the observed

variance, and the correlation of its time-series with the NE precipitation index is 0.50; the

correlation of the first wind EOF time-series with the SW and NINO3 indices is 0.36 and -

0.14, respectively. The first EOF of the 200 hPa wind field shows southwesterly flow over

CSW Asia and is positively correlated with positive CSW Asia precipitation anomalies,

consistent with an interpretation of enhanced southwesterly winds over elevation leading

to enhanced upwind precipitation. A correction model using only the first wind anomaly

and precipitation EOFs results in a cross-validated mean anomaly correlation of 0.48.

The leading homogeneous covariance fields of a CCA model using 7 observed

precipitation EOFs, 10 observed wind EOFs and 2 CCA mode are shown in Figs. 3(a) and

3(b). The cross-validated mean anomaly correlation of this CCA correction model is 0.65

and the correlation map is shown in Fig. 3(c). Figure 3(a) shows that the homogeneous

covariance wind anomaly field over Afghanistan is northeasterly with structure similar

to the first wind field EOF. Figure 4 shows the time-series (not cross-validated) of the

leading CCA modes; the time-series multiply the homogeneous covariance patterns in

Fig. 3(a) and (b). The five year period of the reanalysis wind time-series after 1998

is independent of the CCA analysis and indicates that during the 1998-2002 drought

period there were wind anomalies associated with negative precipitation anomalies and

that during the flooding of 2003‡ there were wind anomalies associated with positive

precipitation anomalies.

Since observed upper level winds are a reasonably good predictor of CSW Asia

precipitation, we now take ECHAM 4.5 model simulated winds as predictors. However,

the skill of the best correction model (8 observation EOFs, 9 model wind EOFs and

3 CCA modes) is poor with cross-validated mean anomaly correlation of 0.27 and

‡ See http://www.irinnews.org/report.asp?ReportID=34403 a report from the Inte-
grated Regional Information Networks (IRIN), a part of the UN Office for the Coordination of Human-
itarian Affairs (OCHA).



CORRECTION OF CSW ASIA WINTER PRECIPITATION SIMULATIONS 14

Figure 4. Standardized time-series of wind and precipitation CCA modes winter 1950-51 through winter
2002-03. Wind time-series after 1998 is independent.

correlations exceeding 0.3 at only a single grid point. Model simulated winds may be

a poor predictor because the GCM responds incompletely to SST forcing or because

the observed wind variability related to CSW Asia precipitation is driven by internal

variability rather than SST forcing. The precipitation homogeneous covariance pattern

(not shown) is similar to that obtained using observed winds (Fig. 3b). However, the

model wind homogeneous covariance pattern is strikingly different from the observed

wind pattern in Fig. 3a and resembles the pattern obtained by regressing the NINO3 index

onto the observed wind field. In fact, the correlation between the model wind pattern and

NINO3 is -0.61. In contrast, the correlation between NINO3 and reanalysis wind CCA

modes 1 and 2 is -0.22 and 0.26 respectively. Additionally, the first EOF of the model

winds is well correlated with ENSO while the first EOF of the observed winds is not;

similar conclusions are true for individual ensemble members. Simulated upper-level

wind variability is more related to ENSO than is observed upper-level wind variability.

5.3 Western tropical precipitation

EAJS variability is associated with convection in the Western Pacific and Maritime

Continent (Chang and Lau, 1982; Chang and Lum, 1985; Lau and Boyle, 1987; Yang

et al., 2002). Maritime Continent convection and the EAJS are coupled through the local

East Asia Hadley circulation with correlation between the Maritime Continent and EAJS
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(a)

(b)

(c)

Figure 5. Regression of the NE time-series onto (a) DJFM Newet al. (2000) precipitation data 1950-
1998 and (b) CAMS-OPI precipitation data (1979-998). (c) Regression of Niño 3 index onto CAMS-OPI
precipitation data. Negative contours are dashed. Contour interval is 2 mm/day; zero line is heavy. Units

are mm/day.

being the result of the Coriolis effect acting on the North-South divergent outflow from

the Maritime Continent (Lau and Boyle, 1987). Enhanced Maritime Continent convection

and anomalous ascending motion are associated with upper-level divergent flow away

from the equator. In the Northern Hemisphere this southerly flow leads to an upper-level
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westerly anomaly. This westerly anomaly strengthens the EAJS which is accompanied by

negative precipitation anomalies over CSW Asia. The causality of the relation between

Maritime Continent convection and EAJS strength is less clear. However, Chang and Lum

(1985) examining lead-lag relationships between tropical divergence and acceleration

of the subtropical jet, show tropical forcing preceding jet acceleration, and specifically

note that convective activity in the Indian Ocean could result in a significant longitudinal

displacement of the EAJS.

Lau and Boyle (1987) emphasize that Maritime Continent and Central Pacific

convective forcing produce very different extratropic responses, particularly in the wind

fields, with the overall streamfunction response in the extratropics being more sensitive

to Maritime Continent forcing than to forcing in the Central Pacific. Kidsonet al. (2002)

also find that the response to tropical forcing differs according to whether the forcing is in

the Central Pacific or in the Maritime Continent. Using cluster analysis of OLR data, they

separate warm tropical SST events into two types, one of which (“EN”) has influence in

the EAJS region. The Hadley Centre GCM used in that study was not able to distinguish

between the two forcings although simpler models did.

Barlow et al. (2002) considered the ENSO signal stratified into two patterns based

on the strength of the SST anomalies in the West Pacific. This stratification resulted

in different tropical precipitation anomaly patterns in the West Pacific-Eastern Indian

Ocean and associated differences in atmospheric and precipitation anomalies extending

into Asia. The ENSO stratification with the more vigorous West Pacific SST signal was

associated with a pattern very similar to the recent drought in both SSTs and precipitation.

The regression of the NE time-series on to Newet al. (2000) precipitation data is

shown in Fig. 5a. The NE time-series is associated with positive precipitation anomalies

in western China, Korea and Southern Japan as well as east-west gradient in the Maritime

Continent region. The Maritime Continent precipitation pattern is clearer in Fig. 5b where
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satellite-based CAMS-OPI data is used.§ The precipitation pattern associated with the NE

time-series is different from the classical ENSO pattern shown in Fig. 5c. The NE pattern

has a weak negative anomaly to the west of a strong positive anomaly while the ENSO

pattern has more balanced positive and negative anomalies. The tropical anomalies in the

NE patterns are primarily to the west of 160W while the ENSO patterns extends further

to the east. The NE pattern resembles the OLR pattern (“EN”) that Kidsonet al. (2002)

associated with ENSO episodes having enhanced western extension of SST anomalies.

GCM simulated precipitation in the Western Pacific and Maritime Continent is to

a large extent driven by prescribed local SSTs and is relatively realistic. Therefore,

GCM simulated precipitation in the Western Pacific and Maritime Continent was used

to estimate CSW Asia precipitation. Using 8 observation EOFs, 7 simulation EOFs and

4 CCA modes gives a mean anomaly correlation of 0.47. The mean anomaly correlation

is relatively low but regionally some areas in the NE region have corrections above

0.4. For this reason, we chose a smaller area around the NE region and performed

the statistical corrections using this domain (see Fig. 6(b)). The best correction model

uses 2 observation EOFs, 2 model precipitation EOFs and 2 CCA modes. The leading

homogeneous covariance fields are shown in Figs. 6(a) and 6(b). The cross-validated

mean anomaly correlation is 0.54 and the correlation map is shown in Fig. 6(c); root-

mean-square (RMS) errors are shown for the uncorrected simulation and the corrected

prediction in Figs. 6(d) and 6(e).

Although Western Pacific GCM simulated precipitation is highly correlated with

observed SSTs, we find that GCM simulated precipitation is a modestly better predictor

than SST; the cross-validated mean anomaly correlation is 0.46. This difference may be

§ The lack of signal in the NE region of Fig. 5b is due to the different periods used and data issues in the
region: the variance of the NE time-series during the common period 1979-1998 is 40.3 mm/season when
computed with the Newet al. (2000) data and 29.5 mm/season when computed with the CAMS-OPI data;
the correlation of the two NE time-series is 0.81.
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(a)

(b) (c)

(d) (e)

Figure 6. Homogeneous covariance maps for (a) ECHAM 4.5 Western Pacific simulated precipitation
(negative contours are dashed; contour interval is 10 mm/day; zero line is heavy) (b) observed CSW Asia
precipitation (mm/day). (c) Anomaly correlation of the CCA model. RMS error of the (d) raw GCM

simulation and (e) corrected predictions in mm/day.
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chance or may related to the fact that precipitation is a nonlinear function of SST and is

more directly related to heating that drives circulation anomalies.

While simulation results represent the upper limit of skill when the SST is perfectly

known, in practice one cannot predict SST perfectly. To obtain a more realistic estimate

of forecast skill, we apply the same method to hindcasts that use persisted SST anomalies

instead of observed ones. Three observation EOFs, 4 model EOFs and 2 CCA modes

were used to construct the correction model. The leading homogeneous covariance fields

are shown in Figs. 7(a) and 7(b). The cross-validated mean anomaly correlation is 0.36

and the correlation map is shown in Fig. 7(c). RMS errors are shown for the uncorrected

hindcast and the corrected prediction in Figs. 7(d) and (e). Although skill is lost compared

to that using observed SST, some correlations are above 0.4, a correlation level usable in

seasonal prediction (personal communication, A. Barnston).

6. SUMMARY AND CONCLUSIONS

Drought and its severe societal impacts makes seasonal forecasts of Central South-

west (CSW) Asia precipitation highly desirable. Observational studies show links be-

tween CSW Asia precipitation, East Asia Jet Stream (EAJS) variability and Maritime

Continent convection. However, atmospheric GCMs forced by observed SSTs do not

reproduce these relations. In particular the ECHAM 4.5 model does not simulate well

CSW Asia winter precipitation. Other GCMs from NCEP, COLA and NSIPP used in

IRI seasonal forecasts present comparable simulation skill (personal communication, A.

Barnston). Poor simulation skill can be due to either lack of a response to SST forcing or

failure of the model to reproduce that response correctly.

Here we have examined statistical methods of correcting systematic errors in GCM

simulations of CSW Asia precipitation using canonical correlation analysis. The statisti-

cal corrections generally had most success in the region where the borders of Afghanistan,

Pakistan and Tajikistan meet and no success in the region along the Southwest border of
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(a)

(b) (c)

(d) (e)

Figure 7. Homogeneous covariance maps for (a) ECHAM 4.5 Western Pacific hindcast precipitation
(negative contours are dashed; contour interval is 10 mm/day; zero line is heavy) (b) observed CSW Asia
precipitation (mm/day). (c) Anomaly correlation of the CCA model. RMS error of the (d) raw GCM

hindcast and (e) corrected predictions in mm/day.
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Iran. We found that ECHAM 4.5 GCM regional precipitation was a poor predictor of

observed precipitation anomalies. However, observed CSW Asia precipitation anomalies

are related to EAJS variability and we found thatobservedupper-level winds were a good

predictor of observed precipitation anomalies.Simulatedmodel winds were a poorer

predictor.

EAJS variability is also related to Maritime Continent convective forcing. For this

reason, Western Pacific model precipitation, which is simulated relatively realistically,

has some modest skill as a predictor of CSW Asia precipitation anomalies. This relation

appears robust, and is seen not only in ECHAM 4.5 model simulations but also in in

hindcasts using persisted SST anomalies and in other GCMs simulations.
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