
1 Measuring the potential utility of seasonal climate predictions

2 Michael K. Tippett
3 International Research Institute for Climate Prediction, Columbia University, Palisades, New York, USA

4 Richard Kleeman and Youmin Tang
5 Courant Institute of Mathematical Sciences, New York University, New York, New York, USA

6 Received 21 September 2004; accepted 19 October 2004; published XX Month 2004.

8 [1] Variation of sea surface temperature (SST) on
9 seasonal-to-interannual time-scales leads to changes in
10 seasonal weather statistics and seasonal climate anomalies.
11 Relative entropy, an information theory measure of utility, is
12 used to quantify the impact of SST variations on seasonal
13 precipitation compared to natural variability. An ensemble
14 of general circulation model (GCM) simulations is used to
15 estimate this quantity in three regions where tropical SST
16 has a large impact on precipitation: South Florida, the
17 Nordeste of Brazil and Kenya. We find the yearly variation
18 of relative entropy is strongly correlated with shifts in
19 ensemble mean precipitation and weakly correlated with
20 ensemble variance. Relative entropy is also found to be
21 related to measures of the ability of the GCM to reproduce
22 observations. INDEX TERMS: 1620 Global Change: Climate

23 dynamics (3309); 3354 Meteorology and Atmospheric Dynamics:

24 Precipitation (1854); 3339 Meteorology and Atmospheric
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32 1. Introduction

33 [2] Seasonal variability of precipitation and associated
34 extremes such as drought or flooding are of particular
35 interest to society. Some seasonal climate anomalies are
36 associated with variation of tropical sea surface temperature
37 (SST) on seasonal-to-interannual time-scales. A notable
38 example of such a connection between seasonal precipita-
39 tion and SST are precipitation anomalies associated
40 with ENSO [Ropelewski and Halpert, 1987; Mason and
41 Goddard, 2001]. Information theory provides a useful
42 framework for measuring the impact of SST forcing on
43 climate variability [Schneider and Griffies, 1999; Kleeman,
44 2002; DelSole, 2004]. In this setting, the seasonal precipi-
45 tation amount x is viewed as a random variable with
46 climatological distribution q. This climatological distribu-
47 tion is then compared with the distribution p of precipitation
48 amounts given a particular SST. The impact of SST on
49 seasonal precipitation is measured by the extent to which
50 the two distributions differ. If SST has no impact on
51 precipitation, the two distributions will be identical. On
52 the other hand, if SST has an impact on precipitation
53 amounts, the two distributions will differ significantly.

54[3] There are various measures to quantify the difference
55between two distributions including the t and F tests for
56Gaussian distributions and the Kolmogorov-Smirnov dis-
57tance for general distributions [Sardeshmukh et al., 2000].
58Relative entropy is sensitive to changes in mean, variance
59and higher order moments, and measures the informational
60inefficiency of using the climatological distribution instead
61of the SST-forced distribution [Kleeman, 2002]. Relative
62entropy can be used to detect when distributions are
63different as well as to measure the difficulty of detection.
64Relative entropy is invariant with respect to invertible
65transformations, meaning that it is unchanged when units
66are changed or when the quantity of interest is a nonlinear
67function of precipitation, for instance, in applications that
68are sensitive to extreme values [Kleeman, 2002; Majda et
69al., 2002]. Other interpretations of this quantity include
70determining financial advantage of a gambler knowing
71the SST-forced distribution when ‘‘fair-odds’’ come from
72climatology [DelSole, 2004].
73[4] The relative entropy R is defined mathematically by

R ¼
Z

p ln
p

q
dx : ð1Þ

75When the distributions are Gaussian, (1) has the simple
76form [Kleeman, 2002]
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78where mp and sp
2 are the mean and variance of p, and sq

2 is
79the climatological variance; the climatological mean is
80assumed without loss of generality to be zero. The relative
81importance of the contributions to R from changes in mean
82and variance depends on dynamical properties of the system
83[Kleeman, 2002].
84[5] Calculating relative entropy requires specifying the
85SST-forced precipitation distribution p given a particular
86SST. Since nature only provides a single precipitation
87realization for a given SST, the SST-forced precipitation
88distribution is estimated from an ensemble of general
89circulation model (GCM) simulations forced with observed
90SST conditions [Kumar and Hoerling, 1995; Rowell, 1998;
91Sardeshmukh et al., 2000]. Relative entropy, like signal-to-
92noise, is a perfect model measure of utility, and model
93deficiencies can limit its usefulness. However, one may
94expect that for good models its variations may be an
95indication of real variations in prediction utility.
96[6] We compute the relative entropy for three regions
97where SST has a large impact on precipitation: South
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98 Florida (including Cuba), the Nordeste of Brazil and Kenya
99 [Ropelewski and Halpert, 1987]. Our goals are to quantify
100 the yearly variation of potential utility as measured by
101 relative entropy, to characterize the relative importance of
102 changes in mean and higher order moments and to relate
103 relative entropy with skill in reproducing observations.

104 2. Data and Methods

105 [7] Model data come from a 24 member ensemble of
106 T42 ECHAM 4.5 GCM simulations forced with observed
107 SST for the period January 1950 to March 2004 [Roeckner
108 et al., 1996]. Precipitation observations come from the
109 extended New et al. [2000] gridded data set of monthly
110 precipitation for the period 1950 to 1998. Model and
111 observation data are averaged over the spatial domains
112 and seasons indicated in Table 1.
113 [8] The sensitivity of precipitation in these three regions
114 to SST anomalies is apparent either when the ensemble mean
115 is compared to individual ensemble members or to observa-
116 tions. The size of the SST-forced response relative to the
117 model’s internal variability determines the ‘‘perfect model’’
118 correlation rperfect of the ensemble mean with any ensemble
119 member [Kleeman and Moore, 1999; Sardeshmukh et al.,
120 2000]. Both the perfect model correlation rperfect and the
121 observed correlation robs are high (Table 1) for these regions.
122 [9] The climatological and SST-forced distributions are
123 approximated with a kernel density estimate using a normal
124 kernel function [Bowman and Azzalini, 1997]. The clima-
125 tological distribution q is estimated from all ensemble
126 members and years (sample size is 1296); alternatively q
127 could be estimated from a simulation forced by climatolog-
128 ical SST. The SST-forced distribution p is estimated each
129 year from the 24 member ensemble. The integral definition
130 of relative entropy in (1) is computed using the estimated
131 distributions evaluated at 120 equally spaced abscissa points
132 whose range exceeds that of the model climatology distri-
133 bution by 10% on either side. This kernel density estimate
134 would likely be inappropriate for a quantity like daily
135 rainfall whose distribution is far from Gaussian. However,
136 the seasonal total distributions here are closer to being
137 Gaussian than are those of daily values (Figure 1). The
138 Gaussian approximation in (2) is reasonably accurate
139 though it gives generally larger values, particularly when
140 R itself is large (Figure 1).
141 [10] Although the relative entropy is zero when the
142 simulation and climatology distributions are identical, finite
143 ensemble size introduces sampling error. R. Kleeman and
144 A. J. Majda (Predictability in a model of geostrophic
145 turbulence, submitted to Journal of Atmospheric Sciences,
146 2004) discuss this issue in detail. In particular, a 24 member
147 ensemble drawn from the model climatological distribution
148 will generally not have zero relative entropy. We quantify the
149 effect of samplingwith aMonteCarlomethod. 24 samples are
150 drawn from the entire model climatology and their relative

151entropy is computed with respect to the climatological
152distribution. This process is repeated 100,000 times, and
153the sorted results indicate the likelihood that relative entropy
154exceeds a given value by chance. Values above the 95th
155percentile are considered significant.

1563. Results

157[11] The relative entropy of the SST-forced simulation
158with respect to climatology has mostly modest values; for
159Gaussian distributions a shift of one standard deviation
160without a change in variance corresponds to a relative
161entropy value of 0.5. Relative entropy values are statisti-
162cally significant in 59% (32/54) of the years for Florida,
16370% (38/54) of the years for the Nordeste and 50% (27/54)
164of the years for Kenya. The time-series in Figure 1 shows
165that relative entropy is very large for Florida and Kenya in
166only a handful of years. In the case of Florida, the three
167years with highest relative entropy, 1983, 1998 and 1973 are
168all warm ENSO events. In the case of Kenya, the three years
169with highest relative entropy, 1997, 1996, 1961 are warm,
170neutral and cold events respectively. ENSO is an important
171factor, and the correlation of relative entropy with the square
172of the Niño 3.4 index is 0.76, 0.67 and 0.38 for Florida, the
173Nordeste and Kenya, respectively; the low correlation in
174the case of Kenya may be due to the role of the Indian
175Ocean [Goddard and Graham, 1999]. We comment later
176about the relation of relative entropy with skill in reproduc-
177ing observations.
178[12] Scatter plots of relative entropy with ensemble mean
179and variance in Figure 2 show that relative entropy is highly

t1.1 Table 1. Domains and Seasons

Region Domain Season rperfect robst1.2

Florida 85W–75W, 22N–28N Dec–Feb 0.78 0.75t1.3
Nordeste 45W–35W, 10S–EQ Mar–May 0.77 0.63t1.4
Kenya 33E–43E, 5S–5N Oct–Dec 0.67 0.84t1.5

Figure 1. Time series of relative entropy (bars) for
(a) Florida, (b) the Nordeste and (c) Kenya; plus signs
show the Gaussian approximation in (2). Solid line shows
the 95% confidence level. Insets show climatological
distributions (black) and forecast distribution (gray) of the
year with largest relative entropy.
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180 correlated with the simulation ensemble mean in all
181 three regions. Florida and the Nordeste show a negative
182 correlation (��0.3) between ensemble variance and relative
183 entropy. Large ensemble variance is associated with low
184 relative entropy but low ensemble variance is not a good
185 indicator of high relative entropy. For Kenya, the correlation
186 between ensemble variance and relative entropy is approx-
187 imately zero, though the scatter plot shows some of the
188 same qualitative features seen in the other regions.
189 [13] The weak relation between ensemble variance and
190 relative entropy suggests that here the dominant contribu-
191 tion to relative entropy is from ensemble mean shifts. The
192 relatively small interannual variability of ensemble variance
193 and modest ensemble size may be factors in this result.
194 Whitaker and Loughe [1998] found in several settings that
195 the relation between spread and skill is strong when the
196 variability of ensemble variance is large. To explore the
197 value of higher order moments of the simulation ensemble,
198 we define a constructed ensemble with the same mean as
199 the simulation ensemble but whose distribution about that
200 mean is fixed and is estimated from the climatological
201 distribution of ensemble members about their mean. We
202 use relative entropy to compare the simulation and con-
203 structed ensembles; the reference distribution q in (1) is
204 now the constructed ensemble distribution rather the clima-
205 tological one, and the relative entropy tells how much the
206 simulation and constructed ensemble distributions differ.
207 Monte Carlo significance levels for the difference are
208 constructed in a similar manner as before. Figure 3 shows
209 that the relative entropy between the simulation ensemble
210 and constructed ensemble is small with few years being
211 significant; there are fewer years (3, 5 and 4 for Florida,
212 Nordeste and Kenya respectively) where both the relative
213 entropy between the simulation ensemble and constructed
214 ensemble, and the relative entropy itself are significant. This

215comparison between the constructed and simulation ensem-
216bles is equivalent to computing the relative entropy between
217the climatological and SST-forced distributions with their
218means removed.
219[14] We now briefly examine the relation between rela-
220tive entropy and the ability of the model to reproduce
221observations. Figure 4 shows the ensemble mean, standard
222deviation and observed anomaly for the five years with
223highest relative entropy and the five years with lowest
224relative entropy. Years with high relative entropy show
225large shifts in the ensemble mean, while years with small
226relative entropy show small shifts in the ensemble mean and
227some expansion of the ensemble spread relative to the
228model climatology. High relative entropy is a perfect model
229measure and does not guarantee skill; note the large
230prediction errors for Florida 1992 and Kenya 1961. Model
231performance in many of the years with small relative
232entropy was ‘‘good’’ in the sense that the observations
233were within a standard deviation of the ensemble mean.
234However, the utility as measured by relative entropy was
235small in those years because the SST-forced distribution was
236little different from climatology. Those years also contribute
237little to the observed correlation robs. Consider the terms that
238appear in the expression for the correlation robs (Y. Tang et
239al., On the reliability of ENSO dynamical predictions,
240submitted to Journal of Atmospheric Sciences, 2004)

robs ¼
1

sosmean

X
i

Oimi ; ð3Þ

241where Oi and mi are the observations and ensemble mean
243respectively for year i, and so and smean are their standard
244deviation. The time-correlation of the terms in (3) with R is

Figure 2. Scatter plots of relative entropy (ordinate) with
(a)–(c) the square of the normalized ensemble mean shift
(abscissa) for Florida, the Nordeste and Kenya respectively,
and with (d)–(f) the normalized ensemble variance.

Figure 3. Relative entropy of the simulation ensemble
with respect to the constructed ensemble for (a) Florida,
(b) the Nordeste and (c) Kenya. Dashed and dotted lines
show respectively the 95% and 99% confidence levels.
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245 high (0.94, 0.87 and 0.89 for Florida, the Nordeste and
246 Kenya, respectively) indicating that relative entropy is large
247 (small) in those years that contribute most (least) to the
248 observed correlation.

249 4. Summary and Discussion

250 [15] We have used relative entropy to measure the impact
251 of SST on GCM simulated seasonal precipitation in three
252 regions. The impact is statistically significant in half or
253 more of the years. However, large values of relative entropy
254 are observed in only a handful of years. This behavior is
255 likely due to relative entropy depending on the square of
256 the normalized ensemble mean anomaly. Relative entropy
257 is highly correlated with shifts in the ensemble mean
258 precipitation. The relation between relative entropy and
259 ensemble variance is weak, although large ensemble
260 variance generally indicates low utility.
261 [16] We compared the simulation ensemble with a
262 constructed ensemble having the same mean but with a
263 fixed distribution and found little difference as measured by
264 relative entropy, indicating little detectable year-to-year
265 variation of higher order distribution moments (e.g., spread,
266 shape) with this size ensemble. This conclusion is similar to
267 that of Kumar et al. [2000] who found that SST-forced
268 changes in height distribution variance in the Pacific-North
269 America region were modest and had a relatively small
270 impact on the associated categorical probabilities.
271 [17] Larger ensembles allow better estimation of higher
272 order moments and may permit more robust detection of

273relative entropy changes related to ensemble spread and
274shape, though the changes themselves may still be small.
275This issue may be particularly important when changes in
276ensemble spread or shape significantly change the proba-
277bilities of extreme events; while changes in the probability
278of extreme events are measured by the relative entropy
279functional, they are balanced against other changes in the
280distribution. Sardeshmukh et al. [2000] using the NCEP
281MRF9 GCM found regions where the ENSO-induced
282change of variability makes as large a contribution to the
283change in the probability of extreme events as does the
284ENSO-induced shift of the mean. However, requiring
285dynamical models to simulate higher order moments of
286distributions accurately is a significant challenge, and the
287utility of large ensembles to reproduce observed distribu-
288tions remains to be established.
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Figure 4. . The years with the highest (left to right) and
lowest (right to left) potential relative entropy for (a) Florida,
(b) the Nordeste and (c) Kenya. Error bars mark the
ensemble mean precipitation anomaly plus and minus the
standard deviation of the ensemble; the climatological
standard deviation is in gray. The observed precipitation
anomaly is marked with a circle. Units are mm/day.
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