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Measuring the potential utility of seasonal climate predictions
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Variation of sea surface temperature (SST) on seasonal-to-
interannual time-scales leads to changes in seasonal weather statis-
tics and seasonal climate anomalies. Relative entropy, an informa-
tion theory measure of utility, is used to quantify the impact of SST
variations on seasonal precipitation compared to natural variabil-
ity. An ensemble of general circulation model (GCM) simulations
is used to estimate this quantity in three regions where tropical SST
has a large impact on precipitation: South Florida, the Nordeste of
Brazil and Kenya. We £nd the yearly variation of relative entropy
is strongly correlated with shifts in ensemble mean precipitation
and weakly correlated with ensemble variance. Relative entropy is
also found to be related to measures of the ability of the GCM to
reproduce observations.

1. Introduction

Seasonal variability of precipitation and associated extremes
such as drought or ¤ooding are of particular interest to society.
Some seasonal climate anomalies are associated with variation of
tropical sea surface temperature (SST) on seasonal-to-interannual
time-scales. A notable example of such a connection between sea-
sonal precipitation and SST are precipitation anomalies associated
with ENSO [Ropelewski and Halpert, 1987; Mason and Goddard,
2001]. Information theory provides a useful framework for mea-
suring the impact of SST forcing on climate variability [Schneider
and Grif£es, 1999; Kleeman, 2002; DelSole, 2004]. In this setting,
the seasonal precipitation amount x is viewed as a random variable
with climatological distribution q. This climatological distribution
is then compared with the distribution p of precipitation amounts
given a particular SST. The impact of SST on seasonal precipita-
tion is measured by the extent to which the two distributions differ.
If SST has no impact on precipitation, the two distributions will be
identical. On the other hand, if SST has an impact on precipitation
amounts, the two distributions will differ signi£cantly.

There are various measures to quantify the difference between
two distributions including the t and F tests for Gaussian distri-
butions and the Kolmogorov-Smirnov distance for general distri-
butions [Sardeshmukh et al., 2000]. Relative entropy is sensitive
to changes in mean, variance and higher order moments, and mea-
sures the informational inef£ciency of using the climatological dis-
tribution instead of the SST-forced distribution [Kleeman, 2002].
Relative entropy can be used to detect when distributions are dif-
ferent as well as to measure the dif£culty of detection. Relative en-
tropy is invariant with respect to invertible transformations, mean-
ing that it is unchanged when units are changed or when the quan-
tity of interest is a nonlinear function of precipitation, for instance,
in applications that are sensitive to extreme values [Kleeman, 2002;
Majda et al., 2002]. Other interpretations of this quantity include
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determining £nancial advantage of a gambler knowing the SST-
forced distribution when “fair-odds” come from climatology [Del-
Sole, 2004].

The relative entropy R is de£ned mathematically by

R =

∫

p ln
p

q
dx . (1)

When the distributions are Gaussian, (1) has the simple form [Klee-
man, 2002]
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where µp and σ2
p are the mean and variance of p, and σ2

q is the
climatological variance; the climatological mean is assumed with-
out loss of generality to be zero. The relative importance of the
contributions to R from changes in mean and variance depends on
dynamical properties of the system [Kleeman, 2002].

Calculating relative entropy requires specifying the SST-forced
precipitation distribution p given a particular SST. Since nature
only provides a single precipitation realization for a given SST, the
SST-forced precipitation distribution is estimated from an ensemble
of general circulation model (GCM) simulations forced with ob-
served SST conditions [Kumar and Hoerling, 1995; Rowell, 1998;
Sardeshmukh et al., 2000]. Relative entropy, like signal-to-noise,
is a perfect model measure of utility, and model de£ciencies can
limit its usefulness. However, one may expect that for good models
its variations may be an indication of real variations in prediction
utility.

We compute the relative entropy for three regions where SST
has a large impact on precipitation: South Florida (including Cuba),
the Nordeste of Brazil and Kenya [Ropelewski and Halpert, 1987].
Our goals are: to quantify the yearly variation of potential utility
as measured by relative entropy, to characterize the relative impor-
tance of changes in mean and higher order moments and to relate
relative entropy with skill in reproducing observations.

2. Data and Methods

Model data come from a 24 member ensemble of T42 ECHAM
4.5 GCM simulations forced with observed SST for the period Jan-
uary 1950 to March 2004 [Roeckner et al., 1996]. Precipitation
observations come from the extended New et al. [2000] gridded
dataset of monthly precipitation for the period 1950 to 1998. Model
and observation data are averaged over the spatial domains and sea-
sons indicated in Table 1.

The sensitivity of precipitation in these three regions to SST
anomalies is apparent either when the ensemble mean is compared
to individual ensemble members or to observations. The size of
the SST-forced response relative to the model’s internal variabil-
ity determines the “perfect model” correlation rperfect of the en-
semble mean with any ensemble member [Kleeman and Moore,
1999; Sardeshmukh et al., 2000]. Both the perfect model correla-
tion rperfect and the observed correlation robs are high (Table 1) for
these regions.
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Figure 1. Time-series of relative entropy (bars) for (a) Florida,
(b) the Nordeste and (c) Kenya; plus signs show the Gaussian
approximation in (2). Solid line shows the 95% con£dence
level. Insets show climatological distributions (black) and fore-
cast distribution (gray) of the year with largest relative entropy.

The climatological and SST-forced distributions are approxi-
mated with a kernel density estimate using a normal kernel function
[Bowman and Azzalini, 1997]. The climatological distribution q is
estimated from all ensemble members and years (sample size is
1296); alternatively q could be estimated from a simulation forced
by climatological SST. The SST-forced distribution p is estimated
each year from the 24 member ensemble. The integral de£nition
of relative entropy in (1) is computed using the estimated distribu-
tions evaluated at 120 equally-spaced abscissa points whose range
exceeds that of the model climatology distribution by 10% on either
side. This kernel density estimate would likely be inappropriate for
a quantity like daily rainfall whose distribution is far from Gaus-
sian. However, the seasonal total distributions here are closer to
being Gaussian than are those of daily values (Fig. 1). The Gaus-
sian approximation in (2) is reasonably accurate though it gives
generally larger values, particularly when R itself is large (Fig. 1).

Although the relative entropy is zero when the simulation and
climatology distributions are identical, £nite ensemble size intro-
duces sampling error. Kleeman and Majda [2004] discuss this is-
sue in detail. In particular, a 24 member ensemble drawn from the
model climatological distribution will generally not have zero rela-
tive entropy. We quantify the effect of sampling with a Monte Carlo

Table 1. Domains and seasons.

Region Domain Season rperfect robs

Florida 85W-75W, 22N-28N Dec-Feb 0.78 0.75
Nordeste 45W-35W, 10S-EQ Mar-May 0.77 0.63
Kenya 33E-43E, 5S-5N Oct-Dec 0.67 0.84

method. 24 samples are drawn from the entire model climatology
and their relative entropy is computed with respect to the climato-
logical distribution. This process is repeated 100,000 times, and
the sorted results indicate the likelihood that relative entropy ex-
ceeds a given value by chance. Values above the 95th percentile
are considered signi£cant.

3. Results

The relative entropy of the SST-forced simulation with respect to
climatology has mostly modest values; for Gaussian distributions a
shift of one standard deviation without a change in variance corre-
sponds to a relative entropy value of 0.5. Relative entropy values
are statistically signi£cant in 59% (32/54) of the years for Florida,
70% (38/54) of the years for the Nordeste and 50% (27/54) of the
years for Kenya. The time-series in Fig. 1 shows that relative en-
tropy is very large for Florida and Kenya in only a handful of years.
In the case of Florida, the three years with highest relative entropy,
1983, 1998 and 1973 are all warm ENSO events. In the case of
Kenya, the three years with highest relative entropy, 1997, 1996,
1961 are warm, neutral and cold events respectively. ENSO is an
important factor, and the correlation of relative entropy with the
square of the Niño 3.4 index is 0.76, 0.67 and 0.38 for Florida, the
Nordeste and Kenya, respectively; the low correlation in the case
of Kenya may be due to the role of the Indian Ocean [Goddard and
Graham, 1999]. We comment later about the relation of relative
entropy with skill in reproducing observations.

Scatter plots of relative entropy with ensemble mean and vari-
ance in Fig. 2 show that relative entropy is highly correlated with
the simulation ensemble mean in all three regions. Florida and the
Nordeste show a negative correlation (∼ −0.3) between ensemble
variance and relative entropy. Large ensemble variance is associ-
ated with low relative entropy but low ensemble variance is not a
good indicator of high relative entropy. For Kenya, the correlation
between ensemble variance and relative entropy is approximately
zero, though the scatter plot shows some of the same qualitative
features seen in the other regions.

The weak relation between ensemble variance and relative en-
tropy suggests that here the dominant contribution to relative en-
tropy is from ensemble mean shifts. The relatively small inter-
annual variability of ensemble variance and modest ensemble size
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Figure 2. Scatter plots of relative entropy (ordinate) with (a)-(c)
the square of the normalized ensemble mean shift (abscissa) for
Florida, the Nordeste and Kenya respectively, and with (d)-(f)
the normalized ensemble variance.
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may be factors in this result. Whitaker and Loughe [1998] found in
several settings that the relation between spread and skill is strong
when the variability of ensemble variance is large. To explore the
value of higher order moments of the simulation ensemble, we de-
£ne a constructed ensemble with the same mean as the simulation
ensemble but whose distribution about that mean is £xed and is es-
timated from the climatological distribution of ensemble members
about their mean. We use relative entropy to compare the simula-
tion and constructed ensembles; the reference distribution q in (1)
is now the constructed ensemble distribution rather the climatolog-
ical one, and the relative entropy tells how much the simulation
and constructed ensemble distributions differ. Monte Carlo signif-
icance levels for the difference are constructed in a similar manner
as before. Figure 3 shows that the relative entropy between the
simulation ensemble and constructed ensemble is small with few
years being signi£cant; there are fewer years (3, 5 and 4 for Florida,
Nordeste and Kenya respectively) where both the relative entropy
between the simulation ensemble and constructed ensemble, and
the relative entropy itself are signi£cant. This comparison between
the constructed and simulation ensembles is equivalent to comput-
ing the relative entropy between the climatological and SST-forced
distributions with their means removed.

We now brie¤y examine the relation between relative entropy
and the ability of the model to reproduce observations. Fig-
ure 4 shows the ensemble mean, standard deviation and observed
anomaly for the £ve years with highest relative entropy and the
£ve years with lowest relative entropy. Years with high relative
entropy show large shifts in the ensemble mean, while years with
small relative entropy show small shifts in the ensemble mean and
some expansion of the ensemble spread relative to the model cli-
matology. High relative entropy is a perfect model measure and
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Figure 3. Relative entropy of the simulation ensemble with
respect to the constructed ensemble for (a) Florida, (b) the
Nordeste and (c) Kenya. Dashed and dotted lines show respec-
tively the 95% and 99% con£dence levels.

does not guarantee skill; note the large prediction errors for Florida
1992 and Kenya 1961. Model performance in many of the years
with small relative entropy was “good” in the sense that the ob-
servations were within a standard deviation of the ensemble mean.
However, the utility as measured by relative entropy was small in
those years because the SST-forced distribution was little different
from climatology. Those years also contribute little to the observed
correlation robs. Consider the terms that appear in the expression
for the correlation robs [Tang et al., 2004]

robs =
1

σoσmean

∑

i

Oiµi , (3)

where Oi and µi are the observations and ensemble mean respec-
tively for year i, and σo and σmean are their standard deviation. The
time-correlation of the terms in (3) with R is high (0.94, 0.87 and
0.89 for for Florida, the Nordeste and Kenya, respectively) indi-
cating that relative entropy is large (small) in those years that con-
tribute most (least) to the observed correlation.

4. Summary and Discussion

We have used relative entropy to measure the impact of SST on
GCM simulated seasonal precipitation in three regions. The im-
pact is statistically signi£cant in half or more of the years. How-
ever, large values of relative entropy are observed in only a handful
of years. This behavior is likely due to relative entropy depending
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Figure 4. The years with the highest (left to right) and lowest
(right to left) potential relative entropy for (a) Florida, (b) the
Nordeste and (c) Kenya. Error bars mark the ensemble mean
precipitation anomaly plus and minus the standard deviation of
the ensemble; the climatological standard deviation is in gray.
The observed precipitation anomaly is marked with a circle.
Units are mm/day.
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on the square of the normalized ensemble mean anomaly. Rela-
tive entropy is highly correlated with shifts in the ensemble mean
precipitation. The relation between relative entropy and ensemble
variance is weak, although large ensemble variance generally indi-
cates low utility.

We compared the simulation ensemble with a constructed en-
semble having the same mean but with a £xed distribution and
found little difference as measured by relative entropy, indicating
little detectable year-to-year variation of higher order distribution
moments (e.g. spread, shape) with this size ensemble. This conclu-
sion is similar to that of Kumar et al. [2000] who found that SST-
forced changes in height distribution variance in the Paci£c-North
America region were modest and had a relatively small impact on
the associated categorical probabilities.

Larger ensembles allow better estimation of higher order mo-
ments and may permit more robust detection of relative entropy
changes related to ensemble spread and shape, though the changes
themselves may still be small. This issue may be particularly im-
portant when changes in ensemble spread or shape signi£cantly
change the probabilities of extreme events; while changes in the
probability of extreme events are measured by the relative en-
tropy functional, they are balanced against other changes in the
distribution. Sardeshmukh et al. [2000] using the NCEP MRF9
GCM found regions where the ENSO-induced change of variabil-
ity makes as large a contribution to the change in the probability of
extreme events as does the ENSO-induced shift of the mean. How-
ever, requiring dynamical models to simulate higher order moments
of distributions accurately is a signi£cant challenge, and the utility
of large ensembles to reproduce observed distributions remains to
be established.
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