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ABSTRACT

There are a variety of multivariate statistical methods for analyzing the relations between two datasets.
Two commonly used methods are canonical correlation analysis (CCA) and maximum covariance analysis
(MCA), which find the projections of the data onto coupled patterns with maximum correlation and
covariance, respectively. These projections are often used in linear prediction models. Redundancy analysis
and principal predictor analysis construct projections that maximize the explained variance and the sum of
squared correlations of regression models. This paper shows that the above pattern methods are equivalent
to different diagonalizations of the regression between the two datasets. The different diagonalizations are
computed using the singular value decomposition of the regression matrix developed using data that are
suitably transformed for each method. This common framework for the pattern methods permits easy
comparison of their properties. Principal component regression is shown to be a special case of CCA-based
regression. A commonly used linear prediction model constructed from MCA patterns does not give a least
squares estimate since correlations among MCA predictors are neglected. A variation, denoted least
squares estimate (LSE)-MCA, is suggested that uses the same patterns but minimizes squared error. Since
the different pattern methods correspond to diagonalizations of the same regression matrix, they all produce
the same regression model when a complete set of patterns is used. Different prediction models are
obtained when an incomplete set of patterns is used, with each method optimizing different properties of
the regression. Some key points are illustrated in two idealized examples, and the methods are applied to
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statistical downscaling of rainfall over the northeast of Brazil.

1. Introduction

Multivariate statistical methods are used to analyze
observational and model data, to make statistical fore-
casts, and to calibrate or correct dynamical forecasts.
Some of the most commonly used methods include
principal component analysis (PCA), maximum covari-
ance analysis (MCA), and canonical correlation analy-
sis (CCA; e.g., Bretherton et al. 1992). PCA is usually
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applied to a single dataset, finding the projections [em-
pirical orthogonal functions (EOFs)] or components
that explain the most variance. Methods such as CCA
and MCA work with two datasets, finding projections
that optimize some measure of linear association be-
tween the two datasets: CCA selects components of
each dataset so as to maximize their correlation; MCA
does likewise, except maximizing covariance. A com-
mon application of these methods is the construction of
linear prediction models based on the identified, and
often physically meaningful, coupled patterns.
Redundancy analysis (RDA) and principal predictor
analysis (PPA) are pattern methods specifically tailored
for use in linear regression models and, unlike CCA
and MCA, are asymmetric in their treatment of the two
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datasets, identifying one dataset as the predictor and
the other as the predictand. RDA selects predictor
components that maximize explained variance (von
Storch and Zwiers 1999; Wang and Zwiers 2001). PPA
selects predictor components that maximize the sum of
squared correlations (Thacker 1999). Another com-
monly used pattern regression method is principal com-
ponent regression (PCR; e.g., Yu et al. 1997) in which
PCA is applied to the predictor field and then a mul-
tiple linear regression is developed between the EOF
coefficients or principal components (PCs) and each
predictand element individually.

The purpose of this paper is to elucidate the connec-
tion between methods for finding coupled patterns and
multivariate regression. A key element is the use of the
singular value decomposition (SVD) to analyze the ma-
trix of regression coefficients. The SVD reveals the
structure of the regression by finding orthogonal trans-
formations that diagonalize the regression. The singular
values are the regression coefficients of the diagonal-
ized regression. The regression is invariant with respect
to linear transformations of the data (as long as the
predictor transformation is invertible) in the sense that
the regression matrix is transformed in the same way as
the data. However, the SVD of the regression matrix is
not invariant since, after a linear transformation of the
data, the transformations that diagonalize the regres-
sion are generally no longer orthogonal. Therefore ap-
plying the SVD to regression matrices developed with
different transformations of the data yields distinct di-
agonalizations of the regression. Furthermore, these
distinct diagonalizations diagnose different properties
of the regression as measured by the singular values.
For instance, previous work has shown that when the
data are expressed in the basis of its principal compo-
nents, the regression matrix reduces to the cross-
covariance matrix and its SVD corresponds to CCA
with the singular values being the canonical correla-
tions (Bretherton et al. 1992; DelSole and Chang 2003).
Here we extend this idea and show that MCA, RDA,
and PPA are equivalent to SVDs of the regression de-
veloped using data that are transformed in a distinct
manner for each method. The connection between the
pattern methods and multivariate regression provides a
common framework that is useful for understanding
and comparing the pattern methods, as well as for com-
putation.

The paper is organized as follows: in section 2, we
examine in a univariate regression how, with appropri-
ate linear transformations of the data, the regression
coefficient measures correlation, explained variance, or
covariance. In section 3, we examine the behavior of
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multivariate regression when linear transformations are
applied to the data. In section 4, we analyze the multi-
variate regression and obtain the coupled pattern meth-
ods as singular vectors of a transformed regression. We
discuss reduced-rank regression in section 5. Some of
the key issues are illustrated with idealized examples in
section 6. The methods are compared in a statistical
downscaling example in section 7. Section 8 gives a
summary and conclusions.

2. Univariate linear regression

In the case of a single predictand and a single pre-
dictor, an estimate y of the predictand y based on the
predictor x is given by the linear regression

y = ax, (1)

where the regression coefficient a is

a=@ )

@)

and ( ) denotes expectation; we take x and y to be
anomaly values, that is, deviations from their respective
means, and thus the regression equation contains no
constant term. The regression coefficient can be ma-
nipulated to obtain quantities such as correlation, ex-
plained variance, and covariance, which measure as-
pects of the linear relation between predictor and pre-
dictand. Specifically,

correlation = L = @
V ()y7)
. . 1l
\/explained variance = lal\/ (x
V)
covariance = (yx) = a(x*). (3)

Here “explained variance” means the variance of y ex-
plained by the regression, not the fraction of variance,
which is the square of the correlation. The difference of
the variance of y and the explained variance is the error
variance of the regression. Since the linear regression
minimizes squared error, it maximizes explained vari-
ance.

The regression coefficient a changes in a simple way
when a linear scaling is applied to the variables. Sup-
pose that new variables are defined by x’ = Ix and y' =
my, where [ and m are scalars and / # 0. The regression
equation for the new variables is

¥ =ax, @
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where the new regression coefficient a’ is related to the
original regression coefficient by

,_&y) _m@y) m
a'=——==—-——=—a (5)
@ ey
Combining Egs. (3) and (5) shows that particular
choices of [ and m lead to the transformed regression
coefficient a’ having the following interpretations:

* when both variables are normalized to have unit vari-
ance, x' = x/\/{x*), y' = y/\/{(y*), and the regression
coefficient a’ is the correlation between x and y;

e when x alone is normalized to have unit variance,
x' = x/\/{x%, and the magnitude of the regression co-
efficient la’l is the square root of the variance ex-
plained by x; and

« when x is normalized by its variance, x' = x/(x*), and
the regression coefficient a’ is the covariance be-
tween x and y.

The connection between transformations of the data
and the interpretation of the regression coefficient is
simple but not particularly useful in the scalar case. The
univariate regression does, however, indicate that re-
scaling of the data, while changing the value and inter-
pretation of the regression coefficient, does not funda-
mentally change the regression; the rescalings of the
data are simply applied to the least squares estimate
(LSE) and the regression coefficient. This concept is
generalized to the multivariate case in section 3, and in
section 4 we present the appropriate multivariate gen-
eralizations of these data transformations that lead to
regression coefficients that measure correlation, ex-
plained variance, or covariance—the same quantities
that arise in methods for finding coupled patterns.

3. Multivariate linear regression

Suppose that the multivariate predictand y is linearly
related to the multivariate predictor x, where x and y
are anomaly fields; we use the convention that x and y
are column vectors. The least squares estimate § of the
predictand is given by linear regression as

§ = (yxxx) x, (6)

where T and —1 denote transpose and matrix inverse,
respectively. Typically the expectations are computed
from data using sample averages. The predictor data
matrix X is the matrix whose ith column is the ith
sample of the predictor x; the number of rows of X is
equal to the dimension of x, and the number of columns
of X is equal to the number of samples. Likewise the

JOURNAL OF CLIMATE

VOLUME 21

predictand data matrix Y is the matrix whose ith col-
umn is the ith sample of the predictand y. Then

y = Ax, 7

where the least squares regression coefficient matrix is
defined as A = (YXT)(XX")"*.!

As in the univariate case of Eq. (5), linear transfor-
mations of the data lead to transformation of the re-
gression matrix. Suppose we introduce new variables
y' = My and x’ = Lx, where L and M are matrices. The
regression matrix A’ relating the transformed variables
is

A =YX TXXT) = (MYXTLT)LXXLD) L (8)

If, additionally, L is invertible then the transformed re-
gression matrix has the simple form

A’ = MAL ', 9)

analogous to the univariate case in Eq. (5). This rela-
tion provides several pieces of useful information. First,
when the transformation L of the predictor is invertible,
the least squares estimate §' of y’ is

§ = A’x’ = MAL 'Lx = M3, (10)

which means that the least squares estimate using the
transformed data is just the transformation of the origi-
nal least squares estimate. Rescaling the data or ex-
pressing it in another basis does not fundamentally
change the regression so long as the transformation L of
predictor data is invertible.

The transformation L of the predictor data is not
invertible when Lx = 0 for some x # 0, which means
that the transform L has the effect of reducing the num-
ber of predictors. Reducing the number of predictors is
often desirable when the dimension of the predictor is
large compared to the number of available samples.
When the number of predictors is large compared to
the number of samples, the sample covariance matrix
XXT is ill conditioned or even singular, and reducing the
number of predictors regularizes the regression prob-
lem by making it have a unique solution that is not
overly sensitive to the data. The number of predictors is
often reduced using PCA, which finds the components
of the data that explain the most variance, although
other projections may be used as well (DelSole and
Shukla 2006). Reducing the set of predictors to some
smaller number of PCs is called prefiltering in the con-

! We use the convention that the data in X and Y are normalized
by Vn — 1, where n is the number of samples. This convention sim-
plifies the notation by making (xx*) = XX* and (yx") = YX™. The
matrix of regression coefficients is independent of n.
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text of CCA (Bretherton et al. 1992). In contrast to the
general case of singular transformations of the predic-
tor data, when L is the prefiltering transformation that
maps the data onto a subset of its PCs, the regression
developed with the prefiltered data is the same as the
original regression applied to the prefiltered data (see
the appendix).

The goal when selecting the number of predictors is
a skillful model. However, the data used to estimate the
regression coefficients are not directly useful for deter-
mining the skill of the regression.” For instance, if the
dimension of the predictor x exceeds the number of
samples and prefiltering is done using the maximum
number of PCs, the in-sample error is 0 since Y = AX.
However, since such a regression completely fits the
data, including its random components, we expect it to
suffer from overfitting and have poor skill on indepen-
dent data. Regression models with fewer predictors are
more likely to represent the actual relationships, avoid
overfitting, and better predict out-of-sample data. To
choose the number of predictors that optimizes the out-
of-sample skill of the regression, the data can be split
into two segments with the regression coefficients esti-
mated using one segment and the number of predictors
chosen to optimize the skill in the independent seg-
ment. This procedure does, however, give an overly
optimistic estimate of skill due to selection bias (Zuc-
chini 2000), and the skill of the selected model should
ideally be estimated on a third independent set of data.
In what follows, we assume that the number of predic-
tors has been reduced so that the number of predictors
is less than the number of samples, and the predictor
covariance matrix is invertible.

Another important consequence of the relation in
Eq. (8) follows from noting that the error variance
ly — 317 = (y/ — §)"(y — §') of the transformed
variable is minimized, and that (y' — §)(y’ — §') =
(y — §)T(M™™) (y — §). Therefore, not only is the sum
of squared error (y — §)"(y — §) minimized, but so
is the positive semidefinite quadratic function of the
error (y — §)"(M™M)(y — §). Changing the weighting
of the error elements does not result in an estimate
that is different from the least squares estimate, and in
fact, some of the weights can be set to 0 since M is
not required to be invertible. For instance, choosing
M = e/, where e, is the ith column of the identity ma-
trix means that the least squares estimate minimizes

2 There are in-sample estimates of the out-of-sample error such
as Akaike’s information criterion (AIC) and the Bayesian infor-
mation criterion (BIC) that take into account the number of pre-
dictors (Akaike 1973; Schwarz 1978).
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lef(y — $)IF = (y; — y,)*, which is the error of the ith
element of the predictand. Therefore regression mini-
mizes not only the total error variance but the error
variance of each element separately. Consequently, the
regression estimate developed using all the elements of
the predictand simultaneously is the same as the one
developed with individual elements of the predictand
separately. However, for questions of inference, such as
testing hypotheses about the regression coefficients, the
multivariate character of the problem cannot be ne-
glected, and correlations between parameters must be
considered.

This last property of regression aids the interpreta-
tion of PCR. In PCR, regressions are developed be-
tween predictor PCs and each of the predictands indi-
vidually. The above conclusion means that PCR is the
same as developing the regression between all of the
predictands and the PCs simultaneously. This shows a
connection with CCA since a CCA-based regression
model with EOF prefiltering of the predictor (and no
other truncation) is the same as multiple linear regres-
sion between the predictor PCs and the predictand
(Glahn 1968; DelSole and Chang 2003). Therefore PCR
is the same as a CCA-based regression model with EOF
prefiltering of the predictor and no other truncation
such as prefiltering of the predictand.

4. Analysis of the regression matrix

We now show that transforming the multivariate data
in ways suggested by the univariate case allows us to
interpret the regression coefficients as correlation, vari-
ance explained, standardized explained variance, or co-
variance of the original data. The SVD of the trans-
formed regression matrix diagonalizes the regression
and identifies projections of the data that maximize
these measures. These projections are the same that are
used in methods for finding coupled patterns.

a. Correlation

In the univariate case, normalizing the predictor and
predictand by their standard deviation makes the re-
gression coefficient equal to the correlation between
predictor and predictand. The appropriate multivariate
generalization is to multiply the variables by the inverse
of the matrix square root’ of their covariance:

X’ — (XXT)71/2X

y = (YYD Py (11)

3 A matrix square root of the positive definite matrix P is Z if
ZZ" = P.
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The appearance of the inverse of the predictand covari-
ance indicates that it may be necessary to prefilter the
predictand as well as the predictor. The matrix square
root is not uniquely defined; postmultiplication of a
matrix square root by an orthogonal matrix gives an-
other matrix square root. A convenient choice for the
matrix square root of the inverse covariance is the
transformation that replaces the data with its PC time
series (normalized to have unit variance); that is, x" and
y' are the normalized principal component scores. Such
a transformation is sometimes called a whitening trans-
formation (DelSole and Tippett 2007) since the trans-
formed data are uncorrelated and have unit variance
X'XT=1

and Y'YT =1, (12)

where | is the identity matrix. The regression matrix for
predicting y’ from x’ is

A = Y/XrT(Xler)—l — errT’ (13)

since X'X'T = I. The (i, j)th element of A’ is the corre-
lation between the ith element of y’ and the jth element
of x’, denoted y; and x/, respectively, since

1 — JTAre — Iy T, — T Tyyn\T /o
Ai=¢Ae=¢YX e=¢eY(eX) =(x),
(14)

and the elements of x’ and y’ have unit variance.

Instead of looking at the correlations between indi-
vidual elements of x’ and y’, we can examine the cor-
relation of one-dimensional projections of the data.
Projecting the transformed predictand and predictor
data onto the weight vectors u and v, respectively, gives
the time series

u'y’ viX’
b
\/ulu \/ vy’

which from Eq. (12) have unit variance. The correlation
between the time series of the projections is

and (15)

'Y vIXHT utY'X' Ty u'A'y

\/uTuvTv \/uTuvTv \/uTuvTv
where we use the definition of A’ from Eq. (13). This
ratio is maximized when u and v are, respectively, the

left and right leading singular vectors of A’ (Golub and
Van Loan 1996). The SVD of A’ is defined to be

(16)

A’ = USV", (17)

where U and V are square orthogonal matrices and S is
a matrix with nonnegative diagonal entries s; ordered
from largest to smallest; the columns of U and V form
complete, orthogonal bases for the predictand and pre-
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dictor, respectively. The singular vectors uw; and v, are
the ith columns of U and V and satisfy

wAv,=s, i=1,...,k (18)

where k is the smaller of row and column dimensions of
A'. Therefore s; = ujA'v, is the largest possible corre-
lation between projections of the data. The next largest
singular value s, = u; A'v, is the largest possible corre-
lation between projections of the data subject to the
constraint that the projections be orthogonal to the first
ones, that is, the constraint that usu, = v3v, = 0. This
orthogonality constraint has the consequence that the
associated time series are uncorrelated because

u{Y)wY) =ufu, =0, and

ViXHVa Xt =vly, = 0. (19)

Likewise, subsequent singular values are the maximum
correlation subject to the constraint that the projections
are orthogonal (time series are uncorrelated) to previ-
ous ones.

The weight vectors for the untransformed variables
are the columns of the matrices Q, and Q, defined so
that the projection of the untransformed variables is
equal to the projection of the transformed variables

QX=V'X" and QY=U"Y" (20)

Using Eq. (11) gives Q, = (YY)""?U and Q, =
(XXT)~'2V. Although the weight vectors for the trans-
formed variables are orthogonal, the weight vectors for
the untransformed variables are not, or more precisely,
they are orthogonal with respect to a different norm
since @} (YY")™'Q, = land Q{(XX")"'Q, = I. The data
can be expressed as patterns that multiply the time se-
ries. The pattern vectors differ from the weight vectors
since the weight vectors are not orthogonal. The matri-
ces P, and P, of pattern vectors are found by solving

X=PQ/X and Y=PQY, (21)

which gives P, = (XX")"?V and P, = (YY")'"U; these
patterns solve Eq. (21) in a least squares sense when an
incomplete set of projections is used. The pattern and
weight vectors are orthogonal to each other since
PIQ, =land P]Q, = I.

The above analysis defines the decomposition of the
data into patterns whose times series have the maxi-
mum correlation subject to the constraint that subse-
quent predictor and predictand time series be uncorre-
lated. This decomposition is CCA with the columns of
Q,(Q,) being the predictor (predictand) weight vectors,
the columns of P,(P,) the predictor (predictand) pat-
terns, and the diagonal elements of S the canonical
correlations [DelSole and Chang (2003); see the appen-
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Table 1. The optimized quantity, the variable transformations, the weights, and the patterns for CCA, RDA, PPA, and MCA. In all
cases, USV™ is the SVD of the transformed regression A’ = Y'X'T and the decomposition of the original regression is A = P,SQJ.

CCA RDA PPA MCA
Optimizes Correlation Explained variance Sum of squared correlations Covariance
x’' x' = (XxT)fl/ZX x = (XxT)fl/ZX x' = (XxT)fllzx x = XXT)71X
y y' = (YY)~ 12y y =y y' = (Diag YY") ™%y y=v
Weights Q, = (XXT)" 12V Q, = (XXT)~2v Q, = (XXT) "2V Q, = (XX")"*v
Q, = (YY) U Q,=U Q, = (Diag YY)~ '"U a,=U
Patterns P, = (XX")'2V P, = (XX")"*V P, = (XX")"*V P, = XXV
P, = (YY")2U P,=U P, = (Diag YYT)"2U P,=U

dix of this paper for a derivation of the usual CCA
equations]. Using the relation between A and A’ in Eq.
(9), the regression matrix can be simply written using
the weight vectors and patterns as

A — (YYT)1/2A7(XxT)—l/2 — (YYT)I/ZUS\IT(XxT)—I/Z

= P,sQ’. (22)

The above relation shows that CCA diagonalizes the
regression. Since QIP, = I, AP, = P,S, and predictor
patterns are mapped to predictand patterns scaled by
their correlation. The decomposition of A in Eq. (22) is
not the usual SVD of A since P, and Q, are not or-
thogonal matrices, but can be interpreted as a SVD of
A with the usual vector norms replaced by the norms
implied by the whitening transformations.*

b. Variance explained

In the univariate case, normalizing the predictor by
its standard deviation and leaving the predictand un-
changed makes the regression coefficient equal the
square root of the explained variance. The appropriate
generalization to the multivariate problem is to apply
the whitening transformation to the predictor as in Eq.

(11),

x = (XX")" ", (23)

and to leave the predictand unchanged. The regression
matrix relating x’ and y is

A =YXT, (24)

since X'X'T = I. Proceeding as in (14) of the previous
section shows that the absolute value of the (i, j) entry
of the transformed regression matrix A’ is the square
root of variance explained by the regression between y;
and x;. The square root of the variance explained by a

4 The dependence of the SVD on choice of norm is well known
in ensemble forecasting where the SVD is sometimes used to
generate initial perturbations (Ehrendorfer and Tribbia 1997).

regression between projections using the weight vectors
u and v of the predictand and predictor data is
u Y(vIX)T u'A'v
\/uTuvTv \/uTuvTv
This ratio is maximized when u and v are, respectively,
the leading left and right singular vectors of A’. There-
fore s7 = (uf A’v,)? is the maximum variance explained
by a single predictor. Conversely, (y'y) — s? is the mini-
mum error variance of a regression that uses a single
predictor. The variance explained using the first two
pairs of singular vectors is s7 + s3, and the minimum
error variance when two predictors are used is (y'y) —
s7 — s3. The variances add since the predictor projec-
tions are uncorrelated, a consequence of the fact that
viX'X"Tv, = v{v, = 0. The predictand projection time
series are correlated but the predictand weight (and
pattern) vectors are orthogonal since ulu, = 0. This
decomposition of the data is called RDA (von Storch
and Zwiers 1999; Wang and Zwiers 2001). Additional
details of the weight and pattern vectors are given in
Table 1. The RDA patterns diagonalize the regression
with the diagonal elements measuring the square root
of the variance explained by each predictor pattern. A
related method is Empirical Orthogonal Teleconnec-
tion 2 (EOT2), which finds the predictor element,
rather than the linear combination of predictor ele-
ments, that explains the maximum predictand variance
(Van den Dool 2006). Subsequent uncorrelated EOT2
components are computed iteratively by finding the
predictor element at each step that explains the most
residual variance.

(25)

c. Explained standardized variance

If the variances of the predictands are highly dispa-
rate, standardization, that is, normalizing each pre-
dictand by its standard deviation, may be appropriate.
Applying RDA to standardized predictands finds the
projections that maximize the explained standardized
variance. Explicitly, we use the transformations
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x = (XX") "

y' = (Diag YYT) 7y, (26)

where the notation Diag YYT means the diagonal ma-
trix whose diagonal elements are the same as those of
YYT; the elements of the diagonal matrix Diag YY" are
the predictor variances and y' is y with each element
divided by its standard deviation. This transformation
of the predictand normalizes each predictand to have
unit variance as in CCA, but unlike CCA, the trans-
formed predictands remain correlated. The trans-
formed regression matrix is

A =YXT (27)

The (i, j)th element of A’ is the correlation between y;
and x; since
1
/_Tr:'_T/rT_: TTrT
Ai=e Ae=¢YX e —\/melY(er) .
(28)

The absolute value of this quantity is also the square
root of the fraction of the variance of y; explained by x/,
that is, the square root of the explained standardized
variance. Paralleling the interpretation of CCA and
RDA, we project the transformed data onto the vectors
u and v. The square root of the standardized explained
variance of the regression between the projections is

ulY' (vIX)HT u'A'y

\/uTuvTv \/uTuvTv
The u and v that maximize this ratio are the leading
singular vectors of A’.

The explained standardized variance is the sum of
the explained fraction of variance for each predictand.
On the other hand, the explained fraction of variance
for each predictand is the square of the correlation be-
tween the prediction and the predictand. Therefore,
maximizing the explained standardized variance is the
same as maximizing the sum of squared correlations
between predictand and prediction.

We call this decomposition of data PPA after
Thacker (1999) who focused on the predictor patterns,
which he called principal predictors and characterized
as maximizing the sum of squared correlation between
the predictor patterns and the predictand data. Like
CCA and RDA, the PPA predictor projections are un-
correlated because of the use of the whitening transfor-
mation. However, the predictand projections are nei-
ther uncorrelated nor orthogonal. Additional details of
the weight and pattern vectors are give in Table 1. PPA
provides a diagonalization of the regression with the

(29)
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diagonal elements measuring the square root of the ex-
plained standardized variance for each pattern pair.

d. Covariance

In the univariate problem, normalizing the predictor
by its variance makes the regression coefficient equal to
covariance. To generalize to the multivariate problem
we multiply the predictor by the inverse of its covari-
ance,

x = (XXT) " x, (30)

and do not transform y. The regression matrix for pre-
dicting y from x’ is

A= YXTXX'T) ! = YXT. 31)

The (i, j)th element of A’ is the covariance between y,
and x; The covariance between projections of the pre-
dictand and predictor data in the directions u and v,
respectively, is

u'Y(VTX)T u'A'y

\/uTuvTv \/uTuvTv
This ratio is maximized when u and v are the left and
right leading singular vectors of A’.> This decomposi-
tion of the data is maximum covariance analysis
(MCA), sometimes referred to as SVD; we use the
name MCA to distinguish between the coupled pattern
method based on the SVD of the cross covariance and
the general SVD matrix procedure (von Storch and
Zwiers 1999).

Writing the regression matrix A using the MCA pro-
jections gives

(32)

A =UsSVi(xxhH !, (33)

where USVT is the SVD of YX".® The ith MCA pre-
dictand projection is uncorrelated with the jth MCA
predictor projection for i # j since the matrix UTYX"V
only has nonzero elements on its diagonal. However,
this does not mean that a regression for the ith MCA
predictand projection should only include the ith MCA
predictor projection. To show this, we express the pre-

>The SVD of the cross-covariance matrix also arises in the
solution of the orthogonal Procrustes problem (Gower and Dijk-
sterhuis 2004).

¢ Forming YX" is impractical and unnecessary when the predic-
tor and predictand dimensions are large compared to the number
of samples. Instead, MCA can be applied to the covariance of the
unnormalized predictor and predictand PCs since the SVD is in-
variant under orthogonal transformations. The dimensions in the
SVD calculation are thus determined by the number of PCs rather
than the predictor and predictand dimensions.
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dictor data as X = VB, where the rows of B contain the
time series of the projection of the predictors onto V,
and B is given by B = V'X. Substituting this represen-
tation of the predictor data into Eq. (33) gives

A = (USVT)(VBB"V") ! = US(BB") 'V'.  (34)

This form is similar to usual MCA-based linear models.
However, usually BB” is replaced by the diagonal ma-
trix whose first n, diagonal entries are the same as those
of BBT, the variance of the MCA time series and whose
remaining diagonal entries are zero (e.g., Widmann et
al. 2003); n, is the dimension of the predictand. This
approximation means that correlations between MCA
modes are neglected, and the resulting estimate is not
generally an LSE. Therefore, we call the method using
the regression matrix in Eq. (34) LSE-MCA since it
uses the projections that maximize covariance like
MCA but is a least squares estimate. Like MCA, LSE-
MCA requires no EOF prefiltering. Widmann (2005)
also noted that the usual MCA-based linear models do
not agree with CCA-based regression and multiple lin-
ear regression, even when the predictand is a scalar.
When the predictand is a scalar, the usual MCA-based
linear model uses a single SVD mode as predictor, trun-
cating the predictor data. LSE-MCA, on the other
hand, does not truncate the data and reproduces the
least squares estimate. The usual MCA-based linear
model is the same as LSE-MCA when the predictor and
predictand dimensions are the same and BB™ is indeed
diagonal. The matrix BBT is diagonal when the MCA
modes V also happen to be EOFs of the predictor or
when the predictors are uncorrelated with equal vari-
ance and the covariance matrix XX is proportional to
the identity matrix; the latter condition is true when,
for instance, the predictors are whitened variables. Fed-
dersen et al. (1999) used MCA projections in a least
squares estimate but with an implementation that ad-
ditionally required the solution be found by numerical
optimization. MCA is similar to partial least squares
(PLS) regression (Wold et al. 1984; Boulesteix and
Strimmer 2007) in that the components maximize co-
variance, and the first PLS component is the same as
the first MCA component. However, subsequent com-
ponents differ because PLS components are uncorre-
lated.

5. Reduced-rank regressions

We have shown that the regression matrix can be
decomposed into patterns that optimize selected quan-
tities including correlation, explained variance, ex-
plained standardized variance, and covariance. These
decompositions help diagnose properties of the regres-

TIPPETT ET AL.

4391

sion by expressing the data in bases so that the regres-
sion matrix is diagonal. As shown in section 3, the use
of different bases does not fundamentally change the
regression as long as the bases are complete and there
is no truncation of the data. Therefore, all the methods
give the same prediction model as multiple regression
when a complete set of patterns are used. However, the
regression is changed when a partial set of patterns is
used, effectively truncating the data used to develop the
regression. Such a simplification of the regression may
be desirable since it reduces the number of predictors,
and hence the number of parameters that must be es-
timated from the data. We expect that regressions that
use too many predictors will have poor skill on inde-
pendent data due to overfitting and sampling error.
Reducing the number of patterns used in the regres-
sion is somewhat different from prefiltering, which re-
duces the number of predictors or predictands without
necessarily considering joint relations between predic-
tor and predictand. Decomposition of the regression
into pairs of patterns produces measures of the strength
of the relation between the patterns; for instance, CCA
gives the correlation between the time series of the
patterns. Therefore, it is reasonable to retain those
pairs of patterns that represent the strongest relations
and discard the rest. Since overfitting may exaggerate
the in-sample relationship, validation of the relation on
independent data is useful for deciding which pairs of
patterns to retain. Often cross-validated skill is the ba-
sis for selecting the patterns to keep in the regression.
However, as mentioned earlier in the context of EOF
prefiltering, the cross-validated skill used to select the
model will give an overly optimistic estimate of perfor-
mance on independent data due to selection bias.
Since the pattern pairs are found by computing the
SVD of the transformed regression matrix A’, restrict-
ing the patterns used in the regression is the same as
replacing A’ by a truncated SVD; that is, the regression
matrix A’ = USVT is replaced with A’ = USVT, where
the first r diagonal elements of S are the same as those
of S and the rest are 0; the patterns and weights do not
change. The resulting truncated regression matrix A =
PySQI retains r pairs of patterns and has the property
that it is the rank-r regression, which optimizes the con-
dition that the SVD measures. In particular, depending
on method, the rank-r regression may optimize mutual
information (CCA),” explained variance (RDA), the

7 This is a consequence of the facts that (i) mutual information
of normally distributed variables is an increasing function of cor-
relation alone and (ii) the mutual information of a sum of inde-
pendent variables is the sum of their mutual information.
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sum of squared correlations (PPA), or the sum of co-
variance (LSE-MCA).

The patterns obtained in each method are generally
different, and for a given value of r, the rank-r regres-
sion will be different for each method. Therefore, the
different pattern methods produce different regressions
when the regression is truncated. The motives of the
user or the nature of the problem may indicate that one
pattern method is preferable over another. For in-
stance, CCA can select patterns with large correlation
but small explained variance. In this case, RDA might
be preferable as it maximizes explained variance. Simi-
larly, LSE-MCA, by maximizing covariance, may select
patterns with large variance but not necessarily high
correlation. In this case, CCA might be preferable. The
optimization of mutual information makes CCA attrac-
tive from the viewpoint of predictability since mutual
information is a predictability measure with many at-
tractive properties (DelSole and Tippett 2007).

A final point regarding these truncated regressions is
that the truncated regression is indeed the same as the
regression developed using the data projected onto the
retained patterns since essentially a diagonal regression
matrix is being truncated.

6. Two idealized examples

a. MCA and LSE-MCA

We now consider a simple example that illustrates
the difference between the commonly used MCA linear
model and LSE-MCA. We take x and y each to have
two elements. Suppose that YXT = | and the MCA
modes are the columns of the identity matrix. Then
from Eq. (33) the regression matrix is simply

A= (XX (35)

The commonly used approximation of the regression
matrix is the diagonal matrix

Ayica = Diag(XX™) 1. (36)

We take the predictor covariance to have the form

cos®@ —sinf][1 O [[cosd —sind]T

XX = > . )
cosf [|0 o sinf  cosf

sinf

(37)
where 0 is the angle between the MCA modes and
predictor EOFs, and the predictor EOFs have variance
of 1 and o%. The angle 6 is important because MCA and
LSE-MCA are the same when the MCA modes are
predictor EOFs, that is, when 6 = 0. Additionally, sup-
pose the predictand covariance has the similar structure
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vy cos® —sinb |[ 1/(0.8)° 0
| sinf  cosf 0 1/(0.50)*
cosf —sinf |T
X . 38
sinf  cos6 (38)

These choices for the covariances imply that the CCA
weight vectors are the same as the EOFs and that the
canonical correlations are 0.8 and 0.5 [see Eq. (A5) of
the appendix].

The error variance of the regression is

(|Ax = y|*) = tr(A(x)AT + (yy") — A(xy") — (yx")AT)
= tr(AXXTAT + YYT — A — AT)
= t[YYT — (XXT)"!]

_ ! + ! 1 ! 39)
0.8 (0507 o2’

where we use the facts that YX* = land A = (XX")™'.
The error variance of the MCA model is

(|Acax = ¥I%) = tr(Ayca XX A ca + YYT = Ayca
— Auca)
= tr(YYT — (XXT)™ 1
+ tr(Apic AXXTAE4C A~ (XXT)*I)
= (| Ax = y|?) + tr(AycaXX Abica
- (XXT)”). (40)

Therefore the error variance of the MCA linear model
relative to that of the LSE-MCA regression is

(I AMcax — Y||2> _
(IlAx — y|1%)

N tr(ApcaXXTAyca — (XX
(IlIAx — y|I*)
(41)

This error variance is governed by 6 and o. Figure 1
shows the error of the MCA linear model relative to
that of the LSE-MCA regression as a function of 6 and
0. When 6 = 0, the MCA modes are also EOFs of the
predictors, and there is no difference between the
methods. Increasing 6 increases the error of the MCA
linear model. When o = 1, the methods are the same
since XX* = I and again the MCA modes are the same
as the predictor EOFs. As o decreases, the relative er-
ror of the MCA linear model increases.
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Fic. 1. Ratio of the MCA linear model error to that of the
LSE-MCA regression as a function of o for different values of the
angle 6 between predictor EOFs and MCA modes (see text).

b. CCA, LSE-MCA, and RDA

We now present a simple example to illustrate some
issues regarding the truncation of the regression as dis-
cussed in section 5. We construct a two-dimensional,
diagonal example where the correlations of the two el-
ements are specified and examine the error of rank-1
regressions as the variance of one of the elements is
varied. In particular, suppose that

42
0 o2 (42)
The first and second elements are uncorrelated and
have variance 1 and o, respectively, for both x and y.
Note that 0> may or may not exceed 1. Suppose that
YX" is diagonal and given by

YxT—[C1 0 ]
0 co%]

so that ¢, and ¢, are the canonical correlations; ¢; = c,.
The regression matrix is

(43)

a| 44
- 0 02 b} ( )

and the regression error variance is
Iy —Ax|?) =1 =)+ (1 —co* (45

The rank-1 CCA regression selects the part of the
system with highest correlation, which is the first ele-
ment, regardless of . We now show that when the first
element has little variance, the regression based on the
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leading CCA pattern does not minimize squared error.
The rank-1 CCA regression matrix is

ACCA _ a0
! 0 0]

The error variance of the rank-1 CCA regression rela-
tive to the full regression is

(46)

1—-ct+o?

(1-c)+(1- o

47)

On the other hand, LSE-MCA selects the part of the
system with highest covariance. Examination of Eq.
(43) shows that for o < \/c,/c,, the first element has
the highest covariance and the rank-1 LSE-MCA re-
gression matrix is the same as the rank-1 CCA regres-
sion matrix. For o > \/¢,/c,, the second element has
highest covariance and the rank-1 LSE-MCA regres-

sion matrix is
0 0
LSE-MCA _
[0 0]

0 ¢

(48)

and the error variance relative to the full regression is

1+ (1 -cd)o?
A-c)+1A-cdo*

(49)

Comparing Eq. (47) with Eq. (49) shows that the error
variance of the rank-1 LSE-MCA regression is larger
than that of the rank-1 CCA regression when \/c¢;/c, =
0 = ¢,/c, and smaller when o = ¢;/c,. This result agrees
with the intuition that if o is small, we expect the
squared error to be minimized by the rank-1 regression
matrix accounting for the first element, which has high-
est correlation. On the other hand, if o is sufficiently
large, then the rank-1 regression should be based on the
second element.

Figure 2 shows the squared error of the rank-1 re-
gressions as a function of o for ¢; = 0.8 and ¢, = 0.5.
There are three regimes. For o = \/c¢,/c, = 1.26, the
LSE-MCA and CCA rank-1 regressions are the same.
For \/c,/c, = o = ¢;/c,, the error of the LSE-MCA
rank-1 regression is greater than that of the rank-1
CCA regression because the LSE-MCA is selecting the
second element since it explains more covariance.
However, the second element has lower correlation,
and the resulting regression has higher rms error. For
o = ¢y/c, = 1.6, the error of the rank-1 CCA regression
is larger than that of the rank-1 LSE-MCA regression
because the large value of o dominates the rms error. In
this simple two-dimensional example, the RDA rank-1
regression coincides with either the CCA or LSE-MCA
rank-1 regressions, depending on which one has smaller
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F1G. 2. Error of the rank-1 regression relative to that of the full
regression as a function of o for ¢; = 0.8 and ¢, = 0.5. Curves are
offset for legibility.

rms error. In general, RDA-based regression is distinct
from and has smaller rms error than either CCA or
MCA-based regressions of the same rank.

7. Example: Statistical downscaling

General circulation models (GCMs) often have rela-
tively coarse horizontal spatial resolution. Information
about smaller scales can sometimes be extracted from
the coarse-scale GCM output by forming a regression
between GCM output and observations (Widmann et
al. 2003). Such a regression can also be used to remove
systematic model errors (Feddersen et al. 1999). We
apply this procedure to the ensemble mean of a 24-
member set of ECHAM4.5 (Roeckner et al. 1996) T42
ensemble simulations of March-May (1950-2000) pre-
cipitation over the northeast of Brazil (13°S-1°N, 55°-
35°W). With T42 model resolution corresponding to a
2.8° X 2.8° spatial grid, the model domain contains 63
grid points. During this time of the year, precipitation
over the northeast of Brazil is closely related to sea
surface temperature (SST), and the GCM forced with
observed SST skillfully reproduces some aspects of sea-
sonal precipitation interannual variability. Observa-
tional data are taken from a gridded (0.5° X 0.5°) rain-
fall observation dataset (New et al. 2000). Leave-one-
out cross validation is used to select the level of EOF
prefiltering® as well as the number of patterns retained
in the regression; the truncations for each method are
chosen to maximize the sum over grid points of those

8 Predictor and predictand are prefiltered in CCA. Only the
predictor is prefiltered in RDA and PPA. No prefiltering is used
with MCA or LSE-MCA.
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cross-validated correlations greater than 0.3. Results
using rms error as a truncation metric are similar,
though rms error tends to select lower-dimensional
models, as has been noted generally (Browne 2000).

The correlation map for a cross-validated univariate
per gridpoint regression between the gridded observa-
tions and the GCM output interpolated to the observa-
tion grid is shown in Fig. 3a. Although there is a large
region with correlations greater than 0.5, the gridpoint
regression is limited by not using spatial correlation
information. Figures 3b—g show the correlation maps of
regressions based on PCR, CCA, RDA, MCA, LSE-
MCA, and PPA patterns, respectively. All of the spatial
pattern regression methods show overall improvement
compared to the gridpoint regression and are fairly
similar to each other. Their similarity may reflect that
there seems to be only one or two meaningful modes in
the regression that are captured by all the methods. The
CCA regression uses five predictor EOFs and two pre-
dictand EOFs to form a rank-2 regression; RDA and
PPA use rank-1 regressions based on five and three
predictor EOFs, respectively.

The best overall results for correlation skill are ob-
tained with CCA. Although CCA is expected to per-
form better than PCR since PCR is the special case of
CCA with an untruncated predictand, there is no par-
ticular reason to expect CCA to outperform LSE-MCA
or RDA, in general. The differences in skill are mostly
insignificant, in a statistical sense. Both MCA and LSE-
MCA use the same four modes that maximize covari-
ance. Although we expect LSE-MCA to perform better
than MCA since MCA neglects correlations between
predictors, the impact of sampling error on the perfor-
mance of the methods is unknown. One could imagine
poor estimation of the correlations among the predic-
tors outweighing neglecting interpredictor correlations.
In any case, in this example, LSE-MCA does outper-
form MCA, which has the worst performance of the
pattern regression methods. The regression with the
smallest cross-validated rms error is RDA. The rank-1
CCA regression (not shown) has slightly lower overall
correlation than the rank-2 CCA regression, but has
lower cross-validated rms error, in fact, lower than that
of the RDA regression.

8. Summary and conclusions

Two commonly used linear methods for finding
coupled patterns in two datasets are canonical correla-
tion analysis (CCA) and maximum covariance analysis
(MCA), which find projections of the data having maxi-
mum correlation and covariance, respectively. Such
methods are useful for diagnosing relations between
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variables and constructing linear prediction models.
Pattern methods like redundancy analysis (RDA) and
principal predictor analysis (PPA) were developed spe-
cifically for use in linear prediction models and maxi-
mize explained variance and the sum of squared corre-
lations, respectively. In this paper we show that these
methods diagonalize the regression and are singular
value decompositions (SVDs) of the matrix of regres-
sion coefficients for data transformed suitably for each
respective method.

The essential character of the regression does not
change when linear transformations are applied to data,
as long as the transformation of the predictors is invert-
ible. One consequence of the invariance of the regres-
sion is that regression-based prediction minimizes not
only the sum of squared errors but any positive

F1G. 3. Cross-validated correlation between corrected simulation and observed precipita-
tion for (a) gridpoint regression, (b) PCR, (c) CCA, (d) RDA, (¢) MCA, (f) LSE-MCA, and
(g) PPA. Truncation (predictor EOFs, predictand EOFs, regression patterns), gridpoint sum
of correlations greater than 0.3, and rms error are shown.

semidefinite quadratic function of the error. This fact
implies that the regressions developed with each pre-
dictand individually will give the same predictions as
the regression developed with all the predictands simul-
taneously. Consequently, principal component regres-
sion (PCR) in which regressions are developed between
predictor PCs and individual predictands gives the
same prediction model as does the regression devel-
oped between the set of predictands and the predictor
PCs simultaneously, which in turn is the same as CCA
with EOF prefiltering of the predictor and no other
truncations.

Although the regression is invariant under linear
transformations of the data, the meaning of the regres-
sion coefficients changes depending on the transforma-
tion of the data. This connection between the interpre-
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tation of the regression coefficients and transformation
of the data is readily apparent in the univariate case
where differing normalizations of the data determine
whether the regression coefficient measures correla-
tion, explained variance, or covariance. Analogous
transformations in the multivariate case lead to the re-
gression matrix having coefficients that measure the
same quantities. The whitening transformation in which
the data are replaced by its normalized PCs is the mul-
tivariate generalization of normalizing a variable by its
standard deviation.

The structure of the regression matrix is revealed by
the SVD, which finds orthogonal bases so that the re-
gression matrix is diagonal. Depending on the transfor-
mation applied to the data, the singular values measure
correlation, explained variance, explained standardized
variance, or covariance. The singular vectors identify
the projections of the data that optimize these quanti-
ties and correspond to the methods CCA, RDA, PPA,
and MCA, respectively. The SVD of a transformed re-
gression can also be interpreted as the SVD of the un-
transformed regression with particular choices of norm
for the predictor and predictand (Ehrendorfer and
Tribbia 1997).

A common method for constructing a linear predic-
tion model from MCA patterns does not produce a
least squares estimate since correlations between MCA
predictors are neglected. A variation, LSE-MCA, uses
the same MCA patterns which maximize covariance
but minimizes squared error. There are some special
cases when MCA and LSE-MCA are the same, such as
when the predictor and predictand dimensions are the
same and MCA patterns are also EOFs of the predic-
tor. In general, as illustrated in a two-dimensional ex-
ample, the MCA linear model will have larger rms er-
ror than LSE-MCA. In practice, where sampling error
plays a role, the MCA linear model may potentially
gain some benefit by neglecting poorly estimated cor-
relations among the predictors. However, in statistical
downscaling GCM simulated rainfall over the northeast
of Brazil, the MCA model had slightly worse perfor-
mance compared to the other pattern methods.

Since the different coupled pattern methods corre-
spond to decompositions of the same regression matrix,
they all produce the same prediction model when a
complete set of patterns is used. The choice of pattern
method is important to the regression model when the
SVD is truncated, that is, when an incomplete set of
patterns is used. The regression model obtained by re-
taining only the first » pairs of patterns is the rank-r
regression that maximizes mutual information, ex-
plained variance, explained standardized variance, and
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TaBLE 2. CCA, RDA, and PPA expressed as MCA of
transformed data.

CCA(X, Y) = MCA[(XXT) 12X, (YYT)~12Y]
RDA(X, Y) = MCA[(XX") "X, Y]
PPA(X, Y) = MCA[(XXT)~'2X, (Diag YYT) 12Y]

covariance for CCA, RDA, PPA, and LSE-MCA, re-
spectively. We illustrate in a two-dimensional example
that the RDA rank-1 regression is the rank-1 regression
that minimizes rms error while the rank-1 regressions
based on CCA or MCA patterns generally do not.

The difference between reduced-rank regressions
based on the different methods depends on the differ-
ence between the subspaces spanned by the retained
patterns of each method, not differences between indi-
vidual patterns. For instance, although the first r RDA
patterns (assuming r > 1) may be different from the
first r CCA patterns, if they collectively span the same
subspace, regressions based on them will be identical.
This fact may help in understanding why all the meth-
ods produce linear models with comparable skill in the
statistical downscaling example.

The derivation of the pattern methods in the regres-
sion framework makes it easy to compare the methods
and is useful for computation. A practical benefit of this
approach is that an algorithm or computational method
developed for one method is easily adapted for the
other methods by transforming the data. For instance,
Table 2 shows that all the methods can be expressed as
MCA applied to transformed data.

An important issue that has not been examined
closely here is the role of sampling error. The finite
number of samples causes sampling error to affect all
the methods, such that the underlying covariances are
imperfectly known. EOF prefiltering is only one
method for limiting the covariances to information that
can be robustly estimated. Ridge methods are another
approach to treat this problem (Vinod 1976; Hastie et
al. 1995).
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APPENDIX

EOF Prefiltering and CCA Equations
a. EOF prefiltering
Let L = ZT, where Z is a matrix whose columns con-
tain some but not all of the orthogonal eigenvectors of
the predictor covariance matrix XX*. Then XX'Z = ZA,
where A is a diagonal matrix containing the corre-
sponding eigenvalues. The regression matrix relating y
and x’ = Lx is
A’ = (YX'LT)(LXX'L") !
= (YX"Z)(Z"XX"2)"!
= (YX"Z)(Z"ZA) ™!

= YX"ZA . (A1)

The projection P that projects the predictor data onto
the space spanned by the columns of Z is P = ZZ".
Applying the original regression to the projected data is
the same as the regression with the transformed data
because

APx = AZZ'x
= (YXT)(XX")"'ZZ"x
= (YXHZA'Z"x
= A'Lx

=A'x. (A2)

b. Alternative form for CCA

The usual CCA equations for the predictand
weights are obtained as follows. First, from Eq. (17),
A’'A’'T = USSTUT, which means that U is the matrix of
eigenvectors of A’A’T. The eigenvalues and eigenvec-
tors of A’A’T are found by solving the eigenvalue prob-
lem A'/A"" u = s°u, or in terms of the weight q, =
(YYT)—1/2 u,

(YYT)fl/ZA/ArT(YYT)l/qu — quy- (A3)
Then using the definition of A’ in Eq. (13),
(YYT)flﬂA/A/T(YYT)l/Z — (YYT)7I/ZY/X/TX’Y’T(YYT)IQ
= (YY) LYXT(XXT) XY,
(A4)
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The eigenvalue problem in Eq. (A3) is
(YYT)’IYXT(XXT)ﬂXYTqy = szqy, (AS)

which is Eq. (14.11) of von Storch and Zwiers (1999).
The usual CCA equations for the predictor weights fol-
low similarly from A’TA’ = VSTSVT,
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