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Ideas

I Linear regression.
I Goodness of fit.
I Overfitting.
I Selection bias.
I Cross validation.
I PCA, PCR.
I Multivariate regression and CCA.



Linear regression models

ŷ = Ax + b

I y = the predictand, the quantity to be predicted. E.g.,
rainfall, temperature.

I ŷ = the prediction from the regression model.
I x = the predictor.
I A = regression coefficient(s).
I b = constant = 〈y〉 − A〈x〉

Linear relation between predictor and predictand.

Generalized linear models can be used for nonlinear relations



Linear regression models

Select A so that the sum of squared errors (y − ŷ) is minimized.

min
〈
‖y − Ax‖2

〉
= min

n∑
i=1

‖y(ti)− Ax(ti)‖2

n samples, for instance, at different times.



Univariate linear regression model
When x and y are scalars,
Regression finds the line Ax + b that minimizes the sum of
squared vertical differences between the line and the data.
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Nonlinear relations.
Line fits the data poorly.
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Nonlinear relations.
Line fits the data poorly. GLM (Poisson regression) does well.
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Goodness of fit
SSE = sum of square errors =

∑
(y − ax − b)2
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Goodness of fit
SSE depends on the magnitude of the data.
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Goodness of fit

Normalize SSE by a quantity proportional to the variance of the
predictand.

SSA = sum of squared anomalies =
∑

(y − b)2

SSE
SSA

= fraction of variance unexplained = "noise"

Related to the linear correlation r by

SSE
SSA

= 1 − r2

r2 = fraction of explained variance = "signal"



Goodness of fit
Correlation does not depend on the magnitude of the data.
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Goodness of fit
Regression and correlation sensitive to outliers.
Assumption of Gaussian distributions.
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Multiple linear regression

ŷ = a1x1 + a2x2 + . . . amxm + b

I y = the predictand, the quantity to be predicted. E.g.,
rainfall, temperature.

I ŷ = the prediction from the regression model.
I x1, x2, . . . , xm = the m predictors.
I a1, a2, . . . , am = regression coefficients.
I b = constant = 〈y〉 − a1〈x1〉 − a2〈x2〉 − . . . am〈xm〉



Data and number of predictors

Simple counting arguments show that at least n = m + 1 data
points are required to estimate the m + 1 parameters of the
regression model.

But with n = m + 1 data points and any m predictors the data
can fit perfectly.

Such a regression, while fitting the data perfectly, would likely
have little skill on independent data.

Overfitting. Using a model with so many parameters that
random features of the training data are reproduced as the
expense of predictive skill in independent data.



Example: Splitting the data to check for overfitting
I m predictors are used to form a regression using n/2 data

points.
I Apply the regression equations to the n/2 data points not

used in developing the regression.
I Check goodness of fit in the independent data.

training verification



Example
m = 20 predictors
n = 42 samples

Predictors are unrelated to the predictand. (Random numbers).
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Example
m = 20 predictors
n = 80 samples

Predictors are unrelated to the predictand.
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Example
m = 20 predictors
n = 160 samples

Predictors are unrelated to the predictand.
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Example
m = 20 predictors
n = 320 samples

Predictors are unrelated to the predictand.
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Rule of thumb

The more data, the harder to overfit.

5–10 samples per predictor.

n ≈ (5 × m) – (10 × m)



Key points

The skill of a regression based forecast should be computed on
independent data.

I Independent of the data used to compute the regression
coefficients. Over-fitting.

I Independent of the data used to select the predictors.
Selection bias.



Selection Bias: Example

A flawed procedure
I Choose predictor that are well-correlated with the

predictand using the entire data set.
I Compute the regression coefficients using the first half of

the data.
I Apply the regression to the second half of the data to

compute the skill.

Sounds good, but if the predictors are selected from a large
pool of predictors using all the data, skill appears better than it
really is.



Selection Bias: Example
m = 10 predictors
n = 50 samples

Predictors are unrelated (r2 = 0) to the predictand as before,
but were selected based on their correlation with the predictand
in the entire data set.
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Selection Bias: Example
m = 10 predictors
n = 50 samples

Predictors are unrelated (r2 = 0) to the predictand as before,
but were selected based on their correlation with the predictand
in the first half of the data set.
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Avoiding selection bias (1)
3 independent data sets:

I Estimate regression models on data set 1.
I Select a “best” model on the basis of skill on data set 2.
I Evaluate skill of “best” model on data set 3.

Example: Select 2 predictors from a pool of 100.
One predictor has r2 = 0.5, the rest are unrelated.
Each data set has 25 samples.
“Best” model r2 = 0.45
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Avoiding selection bias (2)

2 independent data sets:
I Estimate regression models on data set 1.
I Select a “best” model on the basis of an in-sample criteria

like AIC or BIC.
I Rewards model fit but penalizes model complexity.

I Evaluate skill of best model on data set 2.



Cross-validation

A method for mimicking real forecasts.

An alternative to splitting the data.

I Remove some number k of samples from the data set.
I Compute the model on the remaining n − k samples.
I Use that model to predict the left-out samples.

I Sometimes a set of k contiguous in time samples are left
out and only the middle one is predicted to deal with
temporal correlation.

I Repeat.

Often k = 1.



Data reduction and PCA
For climate forecasts, the length of the historical record
severely limits the number of predictors

What if the predictors are spatial fields such as the SST or the
output of a CGCM?

The number of grid point values (100’s, 1000’s)is large
compared to the number time samples (10’s for climate)

Need to represent the information in the spatial field using
fewer numbers.

I Pick a few “representative” grid points
I Hard to do, Noisy.

I Spatial averages e.g., NINO 3.4. All India Rainfall.
I Principal component analysis (PCA). Also called EOF.

I Weighted spatial average.
I Weights are chosen in an optimal manner to maximize

explained variance.



Example: PCA of tropical SST
Weight (EOF) 1
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Explains 26% of the total variance of the SST field.
Computed in the Data Library web interface.



Example: PCA of tropical SST
Weight (EOF) 2
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Example: PCA of tropical SST
Weight (EOF) 3
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Explains 7.4% of the total variance of the SST field.
Computed in the Data Library web interface.



PCR

Principal component regression (PCR).
I ŷ = a1x1 + a2x2 + . . . amxm + b
I Predictors xi are PCs.



Multivariate linear regression



y1
y2
.
.
.
yl

 =



a11 a12 . . . a1m
a21 a22 . . . a2m
. . . . . .
. . . . . .
. . . . . .

al1 al2 . . . alm





x1
x2
.
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.
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I l predictands
I m predictors
I l × m regression coefficients.

Useful fact. Each row of regression coefficients can be
computed separately. Generally not true for the columns.



Multivariate linear regression

How to interpret the regression coefficients?

A =



a11 a12 . . . a1m
a21 a22 . . . a2m
. . . . . .
. . . . . .
. . . . . .

al1 al2 . . . alm


Which coefficients are important? Which are marginal?

Hard. Unless A is diagonal.



Multivariate linear regression

To interpret the regression coefficients, transform x and y so
that the regression matrix is diagonal.

y ′ = A′x ′

A′ =



a11′ 0 0 0 0 0
0 a′

22 0 0 0 0
0 0 0 . 0 0
0 0 0 0 . 0
0 0 0 0 0 0
0 0 0 0 0 a′

lm


Univariate regressions. Easier to understand.

y ′
i = a′

iix
′
i



Multivariate linear regression & CCA

Many ways to diagonalize A.

Canonical correlation analysis (CCA).
I the regression coefficients are correlation coefficients,
I the new variables are uncorrelated,

New variables
I maximize correlation
I are linear combinations of old variables,
I correspond to spatial patterns.

PCR is a special case of CCA.



CCA: Example

I JJAS rainfall
I JJAS Pacific SST
I Data 1961-2001
I Use 4 rainfall PCs and 3 SST PCs.



CCA: Example
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CCA: Example

Pair 2
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CCA: Example

Pair 3
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Summary

I Use regression to model linear relations.
I Minimize squared error.
I Correlation measures variance explained. Goodness of fit.
I Train regression and validate skill in separate data sets.
I Need many more samples than predictors to avoid

overfitting.
I Selection bias.
I Cross validation.
I PCA, PCR.
I Multivariate regression and CCA.


