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Ideas

A forecast is completely desribed by a pdf
What is a pdf and where do I get one?

I Regressions
I OLS Gaussian
I GLM Poisson

I Ensembles
I Extract information from ensembles to construct forecast

probabilities.



Climatological distribution

I Let Y be the quantity of interest, e.g., seasonal rainfall at
some location.

I The climatological distribution of Y is the probability
density function p(y) estimated from past observations.

I For seasonal forecasts, often based on a recent 30-year
period.

I For parametric distribution, estimate parameters, e.g.,
mean and variance of Gaussian.

p(y)∆y = Prob(y < Y < y + ∆y)∫ b

a
p(y) dy = Prob(a < Y < b)∫ ∞

−∞
p(y) dy =??
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Climatological distribution

I Let Y be the quantity of interest, e.g., seasonal rainfall at
some location.

I The climatological distribution of Y is the probability
density function p(y) estimated from past observations.

I For seasonal forecasts, often based on a recent 30-year
period.

I For parametric distribution, estimate parameters, e.g.,
mean and variance of Gaussian.

Useful to define the
cumulative density function (cdf).

F (y) ≡
∫ y

−∞
p(y ′) dy ′

Prob(a < Y < b) = F (b)− F (a)
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Climatological distribution: Example

I June-Aug temperature in Trieste.
I Period 1980-2009 30 years.

I mean = 23.7
I std = 1.1

I Answer questions like Prob(Y < 25) = 88%

Compute percentiles.
q%-tile = Yq so that

Prob(Y < Yq) = q%

More accurate than “counting”

Terciles

Prob(Y < 23.2) = 33%

Prob(Y < 24.2) = 66% 19 20 21 22 23 24 25 26 27 28 29
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Climatological distribution: Example

I June-Aug temperature in Trieste.
I Period 1980-2009 30 years.

I mean = 23.7
I std = 1.1

I Answer questions like Prob(Y < 25) = 88%

Compute percentiles.
q%-tile = Yq so that

Prob(Y < Yq) = q%

More accurate than “counting”

Terciles

Prob(Y < 23.2) = 33%

Prob(Y < 24.2) = 66%
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Forecast distribution

If the forecast is uncertain, as seasonal forecasts are, it is
reasonable to describe it with a pdf.
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Forecast distribution
If the forecast is uncertain, as seasonal forecasts are, it is
reasonable to describe it with a pdf. Or a cdf.
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Forecast distribution: Example–modest skill

Forecast distribution tells the probability of exceeding any value.
Terciles:
Prob(Y < 23.2) = 18.2%
Prob(Y > 24.2) = 48.7%
Prob(23.2 < Y < 24.2) = 33.1%

19 20 21 22 23 24 25 26 27 28 29
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
JJA temperature in Trieste 1980−2009



Forecast distribution: Example–high skill

Forecast distribution tells the probability of exceeding any value.
Terciles:
Prob(Y < 23.2) = 2.0%
Prob(Y > 24.2) = 73.1%
Prob(23.2 < Y < 24.2) = 25%
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Should issue “narrow” forecast pdfs?



Probability forecasts

The forecast pdf (cdf) contains all the information about the
forecast.

I Mean.
I Uncertainty
I Probabilities of exceeding, not exceeding between two

values.
At a specific location, users may want to know the probability of
exceeding some fixed value that is relevant to their application.

I Prob seasonal rainfall exceeds 100mm.
I Prob the longest dry spell is less than 12 days



Probability forecasts
When looking at many regions, with differing climatologies, it
may be convenient to formulate probability forecasts in terms of
percentiles.
Probability of temperature being above the 66%-tile. “Above”
tercile category

Tercile Classes Above_Normal Forecast Lead Time in Months 1. months Month Forecast Issued Jun 2010

180˚W 150˚W 120˚W 90˚W 60˚W 30˚W 0˚ 30˚E 60˚E 90˚E 120˚E 150˚E 180˚
Longitude

60
˚S

30
˚S

0˚
30

˚N
60

˚N
La

tit
ud

e

30 40 50 60 70 80
Tercile Probability



Probabilistic forecasts

I Where do forecast pdf’s (or at least categorical
probabilities) come from? [Today]

I Are they any good? [Next week]
I Are they what they say they are? (reliability)

Do they reflect the forecast uncertainty?
When the forecast probability of an event is 50%, does the
event happen 50% of the time?

I Are they better than nothing (climatology)? (resolution)
Forecasting the P(heads) = 50%, reliable, not so
interesting.



Probability forecasts and
regression



Conditional expectation

Suppose x and y are random variables.
I y forecast quantity
I x predictor

The best (mean square error sense) forecast of y given x is

E [y |x ]

(| = “conditional on”, y |x = “y conditional on x”)

I E [y |x ] is the expected value of y given the value of x .
I p(y) is the climatological distribution.
I p(y |x) is the forecast distribution (with mean E [y |x ])

What if x and y are independent?

By definition, E [y |x ] sounds like a good forecast.
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Regression = conditional expectation

Suppose x and y have a joint normal distribution.
I x has a Gaussian distribution.
I y has a Gaussian distribution (climatological).
I (x , y) has a 2-D Gaussian distribution.

The forecast distribution p(y |x) is Gaussian and

y |x ∼ N
(

ax + b, (1− ρ2)σ2
y

)
where

a =
σxy

σ2
x

, b = µy − aµx , ρ =
σxy

σxσy

Or
y |x = ax + b + ε

with ε ∼ N
(
0, (1− ρ2)σ2

y
)
. Variance is constant.



Moral

When you compute a regression E [y |x ],
you get a forecast pdf p(y |x).

Not trivial to get a good estimate of the prediction error.
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Regression example

IRI temperature forecast.
Probability of temperature being above the 66%-tile. “Above”
tercile category

Tercile Classes Above_Normal Forecast Lead Time in Months 1. months Month Forecast Issued Jun 2010
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What if the forecast quantity is not Gaussian?

(Can seasonal precipitation really have a Gaussian distribution? )
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Box-Cox Transformation

A power transformation to make the data “more” Gaussian.

y− →


yλ − 1

λ
λ 6= 0

log y λ = 0

λ is chosen to maximize a likelihood function.

I This “fixes” the examples shown before.
I Transform data.
I Use Guassian methods–regression.
I Compute pdfs or probabilities.
I Invert transform.



What if the forecast quantity is really not Gaussian

I 1’s and 0’s. Binomial distribution.
I Count data. Poisson distribution.

Generalized linear models.
I Conditional expectation is modeled as a nonlinear function

of the predictors.

E(y |x) = g(xβ)

Coefficients β are estimated by maximum likelihood.



Poisson regression example: Fire
y = # of fires in the Indonesian province Kalimantan Tengah.
x = NINO 4 two months before.

E [y |x ] = λ = log(ax + b) , p(y |x = n) =
e−λ(x)λ(x)n

n!
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Poisson regression example: Tropical cyclone

y = #TC genesis events
x =

I absolute vorticity
I relative humidity
I relative SST
I vertical shear

fit to 40-yr climatology



Probability forecasts and
ensembles



Constructing probability forecasts from ensembles

I Sample some methods of extracting information from the
ensemble.

I Assume some aspects of the ensemble information are
correct and use them.

Next week, how to correct ensemble defficiencies.

Can use model output at predictor in regressions.



“Counting” method

Pool ensemble members from different models.

P(event) = Ensemble frequency of event

Example:
JJA average temperature averaged over 2N - 32N, 64E - 93E.

P(T > 26.3◦C) =
# ensemble members with T > 26.3◦C

# ensemble members

I Assumes the ensemble members are equally like samples
of the future state.

I Does not account for model bias.



“Counting” method

Pool ensemble members from different models.

P(event) = Ensemble frequency of event

Example:
JJA average temperature averaged over 2N - 32N, 64E - 93E.

P(T > 26.3◦C) =
# ensemble members with T > 26.3◦C

# ensemble members

I Assumes the ensemble members are equally like samples
of the future state.

I Does not account for model bias.



“Counting” method

Pool ensemble members from different models.

P(event) = Ensemble frequency of event

Example:
JJA average temperature averaged over 2N - 32N, 64E - 93E.

P(T > 26.3◦C) =
# ensemble members with T > 26.3◦C

# ensemble members

I Assumes the ensemble members are equally like samples
of the future state.

I Does not account for model bias.



Model has a warm bias. Forecasts of T > 26.3 are 100%, 93%,
87%.
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Measures of ensemble "goodness"

I Relation of ensemble mean with observations, e.g.,
correlation

I Are the observations like ensemble members? Rank
histogram.

Compute rank histogram
I For each verification, pool ensemble members and

observation.
I Sort by value from smallest to largest.
I Record the rank of the observation.

Smallest, largest, 5th, etc.
I Make a histogram of the observations ranks.
I If the observations are like ensemble members, histogram

should be flat. All ranks equally likely.



Correlation between ensemble mean and observations is 0.46.
Rank histogram indicates that the observations are almost
always below the ensemble.
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“Counting” method

Refinement: Define event with respect to model climatology.

P(T > 0.4◦+climatology) =
# ensemble members with Tanom > 0.4◦

# ensemble members

climatology = model climatology (historical)

I Accounts for bias of multimodel ensemble mean.
I Does not account for bias of individual models, bias in

spread.



Model and observation anomalies.
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Correlation between ensemble mean and observation still 0.46.
Rank histogram indicates better spread.
Sample size is small.
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“Counting” method

A way to account for errors in mean and spread:

Define event with respect to model percentiles.

P(T > 85-th percentile) =
# ensemble members with T > 85%

# ensemble members

percentile = model percentile (historical)



Model and observation percentiles
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Correlation between ensemble mean and observation still 0.46.
Rank histogram indicates better spread.
Sample size is small.
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Two DEMETER models with different mean biases.
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Correlation between ensemble mean and observation is 0.72.
Model 1 correlation = 0.68. Model 2 correlation 0.70.
Rank histogram indicates bias.

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30
rank histogram

rank of the observation in the ensemble



Pooled models with multimodel climatology removed.
Additional spread due to different means.
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Correlation between ensemble mean and observation still 0.72.
Rank histogram indicates bias.
Observation tends to be too warm compared to the ensemble.
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“Counting” methods

How to account for bias of individual models?
Pool anomalies of each model ensemble.
Define events in terms of anomalies

P(event) = Ensemble frequency of event

Accounts for mean biases of individual models.



Pooled anomalies.
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Correlation between ensemble mean and observation still 0.72.
Rank histogram indicates reduced bias.
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What if one model has significantly more variability than
another?
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Correlation between ensemble mean and observation still 0.72.
Rank histogram indicates ensemble spread is too large.
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“Counting” methods

Pool standardized anomalies of each model ensemble.
Define events in terms of standardized anomalies

P(event) = Ensemble frequency of event

Accounts for mean biases and spread biases of individual
models.



Pooled standardized anomalies.
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Correlation between ensemble mean and observation still 0.72.
Rank histogram indicates less bias in ensemble spread.
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Sampling error

I Even if the models are perfect, ensemble size limits
accuracy of probabilities.

I P(event) = 0 may occur simply because the event is rare
compared to the ensemble size, not because it is
impossible.

I The only time a probabilistic forecast can be “wrong” is
when it is deterministic. Must avoid P = 0 or P = 1.



Rare event 1972 forecast zero probability but event occurred.
Brier skill score 0.46.
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Continuous pdf

Replace ensemble with a continuous pdf f
I Parametric – e.g., Gaussian with mean µ and variance σ2

from ensemble
I Nonparametric – kernel density estimator

Example. p(T ) Gaussian.

f =
1√
2πσ

e
(T−µ)2

2σ2

Prob(T > T0) = F (T0) = 1− 1√
2πσ

∫ T0

−∞
e

(T−µ)2

2σ2 dT

Probabilities vary continuously with thresholds.
Probability of rare events is not zero.
Direct access to forecast pdf.



1972 forecast probability is small but not zero.
Brier skill score 0.52 (increased from 0.46).
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Using a Generalized Linear Model to remove noise
Form a GLM regression between

I ensemble based probabilities
I ensemble mean.

Predict the probabilities from the ensemble mean.



Regression curve relating ensemble mean and probability of
exceeding 85%ile.
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GLM.
Brier skill score 0.48.
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Summary

I Climatological distribution describes the observational
record.
(Trends?)

I The forecast pdf is a complete description of the forecast
information.

I In regression, the conditional distribution is the forecast
distribution.

I OLS for Gaussian data.
I Poisson for count data.

I Ensembles provide samples from the forecast distribution.
I Model biases.
I Small ensemble size.


