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Principal component analysis and regression

Key idea of PCA: data compression
I Many (colinear) variables are replaced by a few new

variables.
I The new variables are optimally chosen to approximate the

original variables.

[Assumption: “important” components have large variance]

How is PCA useful in regression problems?



Pop quiz

I What is the variance of a PC (time-series)?
I What is the correlation between PCs?

Fact about regression
I (Easy) If y = ax is regression between x and y , and x and

y have unit variance, what does a measure?
I (Hard) Linear (invertible) transformations of the data

transform the regression coefficients the same way.

y = Ax

y ′ = Ly , x ′ = Mx

y = Ax → y ′ = Ly = LAx = LAM−1Mx = (LAM−1)x ′

(LAM−1) = regression coefficient matrix between x ′ and y ′
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Example: Philippines

Problem: predict gridded April-June precipitation over the
Philippines from proceeding (January-March) SST.
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Example: Philippines

Problem: predict gridded April-June precipitation over the
Philippines from proceeding (January-March) sea surface
temperature.

Details:
I Data from 1971-2007 (37 years).
I 194 precipitation gridpoints.
I 1378 SST gridpoints.

What is the problem?



PCA and regression

For climate forecasts, the length of the historical record
severely limits the number of predictors

If the predictors are spatial fields such as SST or the output of a
GCM, the number of grid point values (100’s, 1000’s) is large
compared to the number time samples (10’s for climate)

Need to represent the information in the predictor spatial field
using fewer numbers.

I Spatial averages e.g., NINO 3.4.
I Principal component analysis (PCA).

I Weighted spatial average.
I Weights are chosen in an optimal manner to maximize

explained variance.



Example: PCA of SST

EOF 1 – Correlation with NINO 3.4 = -0.96
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Example: PCA of SST

EOF 2
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Example: PCA of SST

EOF 3
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Principal component regression

PCR
I ŷ = a1x1 + a2x2 + . . . amxm + b
I Predictors xi are PCs.

In this example:
I y = observed precipitation at a gridpoint.
I PCs of SST anomalies.

How many PCs to use?

Predictor selection problem.



Principal component regression

PCR
I ŷ = a1x1 + a2x2 + . . . amxm + b
I Predictors xi are PCs.

In this example:
I y = observed precipitation at a gridpoint.
I PCs of SST anomalies.

How many PCs to use?

Predictor selection problem.



Example: Philippines

Two models: climatology or ENSO PC as predictor.

Use AIC to select model.
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Example: Philippines

I This model
seems to have
some skill
(cross-validated)

I Why the negative
correlation?
[Later]

I How are the two
skill measures
related
in-sample?
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PCA and regression

Is there any benefit to using PCA on the predictand as well as
the predictors?

Is there any benefit to predicting the PCs of y rather than y?

Perhaps. One could imagine a spatial average (like a PC) being
more predictable than a value at a gridpoint.
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PCA and regression

I Predicting the PCs of y leads to a different predictor
selection problem

I Before: select a model for each gridpoint?
I Now: select a model for each PC?



Example: Philippines

36 PCs of y . (Why?)

Use AIC to select model. ENSO or climatology.
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Example: Philippines
First 2 EOFs of AMJ precipitation:
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Example: Philippines

I Correlations of
gridpoint and
pattern
regressions are
similar.

I Normalized error
of gridpoint and
pattern
regressions are
similar.
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Example: Philippines

Pattern regression is:

P̂Cy1 = 0.61 PCx1

P̂Cy2 = −0.36 PCx1

What do these numbers mean? (Hint: PCs have unit variance.)
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Example: Philippines

Reconstructing the spatial field:

Predicted rainfall = Climatology + P̂Cy1EOFy1 + P̂Cy2EOFy2

Difference between prediction and climatology (anomaly) is:

Predicted anomaly =

P̂Cy1EOFy1 + P̂Cy2EOFy2 = 0.61 PCx1EOFy1 − 0.36 PCx1EOFy1

= PCx1(0.61 EOFy1 − 0.36 EOFy1)

Is this simpler? Why?



Example: Philippines

One pattern of rainfall goes with one pattern of SST.
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What is the time series of the pattern?



Example: Philippines

Define the pattern to be

P ≡ 1√
0.612 + 0.362

(0.61 EOFy1 − 0.36 EOFy1)

(Why this scaling of P?) The time series of the pattern P is:

TS =
1√

0.612 + 0.362
(0.61 PCy1 − 0.36 PCy1)

What is the variance of TS? (Hint: PCs are independent.) Key

Predicted anomaly = PCx1(0.61 EOFy1 − 0.36 EOFy1)

= 0.71 PCx1P

T̂S = 0.71 PCx1

What is 0.71? Hint: TS and PCx1 have unit variance.
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In summary,
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In general, any pattern regression can be decomposed into
pairs of patterns related by the correlation of their time series.

Canonical correlation analysis (CCA) is an example of such a
decomposition.
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Pattern regression



y1
y2
.
.
.
yl

 =



a11 a12 . . . a1m
a21 a22 . . . a2m
. . . . . .
. . . . . .
. . . . . .

al1 al2 . . . alm





x1
x2
.
.
.

xm


I l predictand PCs
I m predictor PCs
I l ×m regression coefficients.

A = Cov (PCy , PCx)
[
Cov

(
PCx , PCT

x

)]−1



Pattern regression

y = Ax

A = Cov (PCy , PCx)
[
Cov

(
PCx , PCT

x

)]−1

What is Cov
(

PCx , PCT
x

)
? Why?

Hint: PCs are . . . .

A = Cov (PCy , PCx)

What do the elements of A measure?

A = Corr (PCy , PCx)
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Pattern regression

y = Ax

A =


Corr(PCy1, PCx1) Corr(PCy1, PCx2) . . . Corr(PCy1, PCxm)
Corr(PCy2, PCx1) Corr(PCy2, PCy2) . . . Corr(PCy2, PCxm)

. . . . . .

. . . . . .

. . . . . .
Corr(PCyl , PCx1) Corr(PCyl , PCx2) . . . Corr(PCyl , PCxm)


In general, each predicted PC of y depends on all the PCs of x .

What if A were diagonal? Is it likely that A is diagonal?
Angle.
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Pattern regression

I To decompose the regression into pairs of patterns,
diagonalize A.

I Many ways to diagonalize A. The singular value
decomposition (SVD) is:

A = USV T

where U and S are orthogonal and S is diagonal.
(orthogonal matrix = columns are unit vectors = preserves angles and

magnitudes)

Substituting
y = Ax = USV T x

or
y ′ = Sx ′

where y ′ = UT y and x ′ = V T x
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Diagonalized pattern regression

What can we say about the new variables

y ′ = UT y and x ′ = V T x?
I y ′ and x ′ have unit variance and are uncorrelated (like

PCs).
I PCs have unit variance and are uncorrelated.
I Orthogonal transformation of PCs gives new uncorrelated

(angle) variables with unit variance (magnitude).
I Each new predictand related to just one new predictor.

I y ′ = Sx ′ S is diagonal,
I What do the values of S measure?

(Hint: what is the regression coefficient for two variables with
unit variance?)



Diagonalized regression and CCA

This procedure is the same as canonical correlation analysis.
I Regress PCs (uncorrelated unit variance) of y and y .

y = Ax

I Use SVD of A to get diagonal relation: y ′ = Sx ′.
I New variables (canonical variates) are linear (orthogonal)

combinations of the PCs.
I New variables have unit variance and are uncorrelated.
I Associated patterns are linear combinations of EOFs.

(Generally not orthogonal).
I Elements of S are correlations (canonical correlations).



More CCA

CCA is usually described as finding linear combinations of the
x ’s and the y ’s which have maximum correlation.

Did we do that???

Finding maximum correlation between linear combinations of x
and y is the same as finding maximum correlation between
linear combinations of x ′ and y ′. Why?

This means we can look at the correlation between linear
combinations of x ′ and y ′.
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More CCA components

Look for the linear combination of x and y that maximizes
correlation but is uncorrelated with the first component means

I looking for the linear combination of x ′
i and y ′

i i = 2, 3, . . .
that maximizes correlation. Why?

I Previous argument give that it is S2.



CCA and regression

Knowing CCA is regression is useful . . .
I What happens if many (compared to sample size) PCs are

included in a CCA calculation? What happens to the
canonical correlations?

I How can the number of PCs included in CCA be decided?
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Other pattern regression methods

Other diagonalizations of the regression coefficient matrix A
(based on variants of the SVD) give other diagonalized pattern
regressions with components that optimize other quantities.

E.g., Redundancy analysis give components that maximize
explained variance.

Maximum covariance analysis (MCA) finds components with
maximum covariance. However, the regression between these
patterns is generally not diagonal–no simple relations between
pairs of patterns.



Summary

I PCA compresses data and is useful in regressions. In
PCR, PCs are the predictors.

I It can be useful to use PCs as predictands, too.
I Diagonalizing regressions between PCs decomposes the

regression in pairs of patterns.
I CCA diagonalizes the regression and find the components

with maximum correlation.


