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Main ideas

Applications of the SVD to:

Diagnosing linear dynamics in weather and climate.

SVD used to
I find the errors that grow the most (weather)
I find the signals that grow the most (ENSO)

How can the singular value decomposition be used to:
I Measure predictability
I Identify “predictable components”.
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Outline

I The SVD.
I Applications to error and signal growth.
I Why are norms important?
I How to measure predictability.
I How to use the SVD to measure predictability.
I Sea surface temperature example.



The singular value decomposition

A = UΣV T m × n

= [u1, . . . ,um]diag(σ1, σ2, . . . , σp)[v1, . . . , vn]
T

=

p∑
i=1

σiuivT
i

U, V are orthogonal.
Σ is diagonal. σ1 ≥ σ2 ≥ . . . σp ≥ 0.
Properties

I A maps a unit sphere to an ellipsoid. Avi = σiui .

I ‖A‖ = max
x

‖Ax‖
‖x‖

= σ1

I ui = eigenvectors of AAT

σ2
i = eigenvalues of AAT
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Example

A = UΣV T

A =

[3
4 2.3
0 3

4

]
, Σ =

[
2.52 0

0 0.223

]
σ1 ≥ |λ1(A)|.
Minimum growth when A is normal



Application: Growth of small errors
(Lorenz, Farrell, Palmer)

Linear dynamics
f = A(a + δ)

f = forecast.
a = initial condition (analysis).
δ = perturbation (analysis error).

Which errors are amplified the most?

max
δ

‖Aδ‖
‖δ‖

= σ1 , Av1 = σ1u1

σ1 � 1 = large amplification of errors
Large errors in u1 = less predictable?
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Examples: Perturbation growth

Weather forecasting model (ψ200 3-day 20x)

Buizza and Palmer, 1995 Lanczos method, adjoint

ENSO model

Xue et al., 1997 finite differencing



Application: Signal growth
(Penland and Sardeshmukh)

Linear dynamics + stochastic forcing.

f = Ai + ε

f = forecast
i = initial condition (no error)
ε = stochastic forcing (model error)

Which initial conditions grow “above the noise”?

max
i

‖Ai‖
‖i‖

= σ1 , Av1 = σ1u1

σ1 � 1 = large amplification of initial condition
Large “signal” in u1 = more predictable?
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Signal growth
ENSO model

initial final

Penland and Sardeshmukh, 1995

Observations projected onto the singular vectors

final
initial



Paradox?

What are the consequences for predictability?
I SVD finds maximum error growth.

Large singular value = less predictability.
I SVD finds maximums signal growth.

Large singular value = more predictability?

Solution: “different” SVDs for different problems.
I Is the “error” SVD consistent with the “signal” SVD?

I Same components, opposite ordering.
I What is the SVD for measuring predictability?

I How is it related to other predictability analysis methods?
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SVD and norms
Usual SVD maximizes

‖Ax‖2

‖x‖2

Cannot apply directly to multivariate problems.
Generalized SVD maximizes

xT MT Mx
xT LT Lx

≡
‖Ax‖2M
‖x‖2L

SVD(MAL−1) = generalized SVD(A)

max
x

‖MAL−1x‖2

‖x‖2
= max

x

xT L−T AT MT MAL−1x
xT x

= max
y

yT AT MT MAy
yT LT Ly

(y = L−1x)

= max
y

‖Ay‖2M
‖y‖2L
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Which norms?
Initial norm

f = A(a + δ) , max
δ

‖Aδ‖M
‖δ‖L

Lorenz (1965) said choose L so that Lδ is “random in that no
direction is . . . preferred over any other direction.” (Sphere)
Translation: choose L so that Lδ is “white” in space.
Pick L so that

Cov(Lδ) = LCov(δ)LT = LCδLT = I

L = C−1/2
δ . (∼ standardizing)

σ2
1 = max

δ

‖Aδ‖2

‖δ‖2L
= max

δ

‖Aδ‖2

δT C−1
δ δ

= SVD(AC1/2
δ )

Singular values measure:
dynamical growth of δ

likelihood of δ
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Forecast errors

f = A(a + δ)

The forecast covariance is

Cf = Cov(f ) = Cov(Aδ) = ACov(δ)AT = ACδAT

= (AC1/2
δ )(AC1/2

δ )T .

Eigenvalue decomposition of Cf = SVD(AC1/2
δ )

Optimal.
(Houtekamer, Palmer, Tribbia, Ehrendorfer)

Eigenvalues of Cf = σ2
i .

Eigenvectors of Cf = ui

Final norm? Energy? Errors in a particular region?

Are there norms so that the SVD measures predictability?
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How to measure predictability

Predictability is . . .
I Relative to a baseline

I usually climatology (historical frequencies).
I Difference between forecast and climatology.

I Univariate predictability ∼ forecast uncertainty
climatological uncertainty

.

I relative error not absolute error
I Should be independent of units or variable weighting.
I Pred(A,B) = Pred(A)+Pred(B), if A and B are independent.
I Pred(A,B) = Pred(B) if A=f(B).
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Measures of predictability

Information theory gives some candidates:

I Mutual information (Leung and North, 1990)
I Predictive information (Schneider and Griffies, 1999)
I Relative entropy (Kleeman, 2002)

On average (over forecasts), they are the same.



Normally distributed variables

Mutual information M

M = − log
det Cf

det Cc

Cf = Cov(f )
Cc = Cov(climatology)
Univariate case:

M = log
σ2

f

σ2
c

= log
forecast variance

climatological variance

Predictability is lost when the forecast is no better than a
random pick from climatology.
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Normalized forecast covariance

Multivariate generalization of
forecast variance

climatological variance

G = C−1/2
c Cf C

−1/2
c

det G = det(C−1/2
c Cf C

−1/2
c ) = det(Cf C−1

c ) =
det Cf

det Cc

M = − log
det Cf

det Cc
= − log det G

Predictability is measured by the eigenvalues of G.
Eigenvectors of G decompose space according to predictability.

maximize eigenvectors
variance principal components (EOFs) Cc

predictability predictable components G
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det Cc
= − log det G

Predictability is measured by the eigenvalues of G.
Eigenvectors of G decompose space according to predictability.

maximize eigenvectors
variance principal components (EOFs) Cc

predictability predictable components G



Linear prediction model

f = Ai + ε

i = a + δ

f = forecast.
i = initial condition (analysis), 〈i〉 = a
δ = initial condition error
ε = model error.

How does predictability (G) depend on
I dynamics A?
I initial condition errors δ?
I model errors ε?
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Linear prediction model
Error dynamics approach

f = A(a + δ) + ε

Cf = AT CδA + Cε

forecast uncertainty uncertainties from IC error model error

“Whiten”

C−1/2
c Cf C

−1/2
c = C−1/2

c ACδAT C−1/2
c + C−1/2

c CεC
−1/2
c

G = AerrorAT
error + C−1/2

c CεC
−1/2
c

Aerror ≡ C−1/2
c AC1/2

δ ← initial and final norms

If there is no stochastic forcing ε = 0,

G = AerrorAT
error

Predictability given by SVD of Aerror.
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Linear prediction model
Signal approach

Averaging over forecasts

f = A(a + δ) + ε

climatology signal uncertainties from IC error model error

Cc = ACaAT + ACδAT + Cε

= Cf

Whiten
C−1/2

c CcC−1/2
c = C−1/2

c ACaAT C−1/2
c + C−1/2

c Cf C
−1/2
c

I = AsignalAT
signal + G

Asignal ≡ C−1/2
c AC1/2

a ← initial and final norms

G = I − AsignalAT
signal

λ(G) = 1− σ2(Asignal)

Predictability determined by SVD of Asignal.
If Ca = Cc , minimum predictability when Asignal is normal.
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Whitening transformation
2D picture
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Paradox?

No model error

G = AerrorAT
error = I − AsignalAT

signal

σ2(Aerror) = 1− σ2(Asignal)

(rms2 = 1 - corr2)

Same singular vectors–opposite ordering.
Minimizing error = maximizing signal.



SST example
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A maps
sea surface temperature at time t
to SST temperature at time t + 7 months.

A is an empirical model, fit to data.
What are the predictable components?



SST example
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SST example
Predictability of 7-month components at other leads.
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Summary

I SVD used in weather and climate applications to diagnose
I error growth
I signal amplification

I Seeming paradox. Error growth bad – signal growth good.
I Defining predictability , defines SVD initial and final norms
I Predictable component analysis

I canonical correlation analysis
I fingerprint methods
I discriminant analysis
I S/N EOFs

I Future work
I Estimating distributions

I Short record
I Imperfect models

DelSole, T., and M. K. Tippett, 2007: Measuring Predictability with Singular Vectors. J. Atmos. Sci., submitted.

DelSole, T., and M. K. Tippett, 2007: Predictability: Recent Insights from Information Theory. Rev. Geophys.,
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