
Multimodel Ensemble forecasts
Calibrated methods

Michael K. Tippett

International Research Institute for Climate and Society
The Earth Institute, Columbia University

ERFS Climate Predictability Tool Training Workshop
May 4-9, 2009



Ideas

I Extract useful information from ensembles
I Simple ways of combining ensembles from different

models

Methods that depend on model performance.



Calibration methods

I Forecast probabilities are constructed taking into account
model performance.

I Historical observations and hindcasts are necessary.
I Correct some aspects of the ensemble information and use

them to construct probabilities.



Independent calibration

First consider methods that use equal weighting across models
or individual model performance, independent of the behavior
of other models.



Spread correction

Given the mean of the forecast pdf,
construct a distribution about that mean based on past model
performance.

I The forecast mean may come one of the methods
discussed previously.

I Goal is to treat problems with ensemble spread.



Historical ensemble

Ideally, the verifying observation is indistinguishable from an
ensemble member.

Historical ensemble = mean + (Past obs - past means)

Number of historical ensemble member = number of hindcasts.

Historical ensemble is constant from year to year.
Varies according to start and lead.



Historical Gaussian distribution

Forecast distribution is a Gaussian distribution with mean
specified.

Variance estimate from (Past obs - past means)

Not optimal if the mean is poorly calibrated.

Forecast variance may be greater than the climatological
variance.

A forecast with zero mean would indicate enhanced probability
not of the normal category but of the above and below
categories.



Historical Gaussian distribution (2)

A “signal-noise” decomposition.

First compute the correlation r between the mean and
observations.

The signal-to-noise ratio S is

S =
r2

1− r2 =
signal variance
noise variance

Noise variance = (variance of forecast mean) / S



Historical Gaussian distribution (2)

Normalize forecast mean so that variance of forecast mean = 1

Forecast distribution is Gaussian with normalized forecast
mean and variance 1/S

Climatology distribution has mean zero and variance equal to
the sum of the signal and noise variances.

In the limit that r → 0, the forecast distribution equals the
climatological distribution. No predictability.

For r > 0 the forecast distribution is strictly narrower than the
climatological distribution.



Nonhomogeneous Gaussian regression
Gneiting et al. 2005, Wilks 2006

In the historical Gaussian distribution, the forecast variance is
constant from year to year. Depends only on start and lead.

In NGR, forecast variance is a constant plus term that is
proportional to the ensemble variance.

Constant of proportionality is found based on past performance.
Choose constant to optimize the skill of past forecasts.

For instance, optimize the continuous ranked probability skill
score.



Separate regression

Perform regressions between each model and observations.
Average the separate regressions.
Model the uncertainty using a Gaussian distribution.
Equivalent to multiple linear regression with the assumption
that the models are independent.
Avoids assigning negative weights to model with positive skill.



Categorical probability calibration
Generalized linear model

Develop a regression between forecast mean and event
occurrence (binary).

Generalized linear model.
“Probit”



Categorical probability calibration
Bayesian optimal weighting

Rajagopalan et al 2002, Robertson et al 2004

Weights are assigned to ensemble probabilities and
climatological probabilities.

Weights are chosen to optimized the log-likelihood of the
observations. Proportional to average “ignorance”.

Resulting probabilities are between the ensemble probabilities
and climatological probabilities.

Cannot sharpen probabilities.



Joint calibration

Multimodel ensemble methods where the calibration of a model
to observations depends on the behavior of other models.

Advantage
I Incorporates information about all the possible relations

between observations and models.
Disadvantage

I Incorporates information about all the possible relations
between observations and models.

I Many parameters to estimate from little data!
I Over-fitting.



“Super-ensembling”

Multiple regression between the ensemble means of each
model and observations.

A forecast distribution about the result of the MLR can be
constructed from past performance.



“Super-ensembling”

Problem 1: collinearity. Predictors are highly correlated.

Data is well fit, but regression coefficients are highly sensitive to
the data and tend to have large errors.

Poor predictions!

Problem2: Overfitting. Poor predictions!



Fixes

Reduce the number of predictors.
I PCA on model predictors. Retain components that explain

the most variances. Components are uncorrelated.

Ridge regression. Bayesian interpretation (Delsole 2004).
Prior is:

I model weighting is 1/N.
I equal model weighting
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Example: precip, MLR in sample
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Example: precip MLR cross-validated
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Example: precip separate regressions
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Example: precip PCR

1980 1985 1990 1995 2000 2005
150

160

170

180

190

200

210

220

230

240
JJA prcp correlation = 0.00079

 

 
obs
regression
cv regression
sep regres
pcr
model



Example: t2m
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Example: t2m, MLR in sample
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Example: t2m MLR cross-validated
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Example: t2m separate regressions
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Example: t2m PCR
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Summary

I Independent calibration
I Base spread on historical performance rather than

ensemble.
I Correct models separately and combine equally.

I Joint calibration
I MLR – collinearity, overfitting.
I separate regression
I Ridge regression
I PCR (across models)

I Be honest! Cannot pick predictors using the complete data
set. Need independent data.
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ECHAM CA MOS
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ECHAM GML MOS
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