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AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION
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University of Wisconsin

Abstract: In the problem of selecting a linear model to approximate the true un-

known regression model, some necessary and/or su�cient conditions are estab-

lished for the asymptotic validity of various model selection procedures such as

Akaike's AIC, Mallows' Cp, Shibata's FPE�, Schwarz' BIC, generalized AIC, cross-

validation, and generalized cross-validation. It is found that these selection proce-

dures can be classi�ed into three classes according to their asymptotic behavior.

Under some fairly weak conditions, the selection procedures in one class are asymp-

totically valid if there exist �xed-dimension correct models; the selection procedures

in another class are asymptotically valid if no �xed-dimension correct model exists.

The procedures in the third class are compromises of the procedures in the �rst

two classes. Some empirical results are also presented.

Key words and phrases: AIC, asymptotic loss e�ciency, BIC, consistency, Cp, cross-

validation, GIC, squared error loss.

1. Introduction

Let yn = (y1; : : : ; yn)
0 be a vector of n independent responses and Xn =

(x01; : : : ;x
0
n)
0 be an n � pn matrix whose ith row xi is the value of a pn-vector

of explanatory variables associated with yi. For inference purposes, a class of

models, indexed by � 2 An, is to characterize the relation between the mean

response �n = E(ynjXn) and the explanatory variables. If An contains more

than one model, then we need to select a model from An using the given Xn and

the data vector yn. The following are some typical examples.

Example 1. Linear regression. Suppose that pn = p for all n and �n = Xn�

with an unknown p-vector �. Write � = (�01;�
0
2)
0 and Xn = (Xn1;Xn2). It is

suspected that the sub-vector �2 = 0, i.e., Xn2 is actually not related to �n.

Then we may propose the following two models:

Model 1: �n=Xn1�1

Model 2: �n=Xn�
:

In this case, An = f1; 2g. It is well known that the least squares �tting under

model 1 is more e�cient than that under model 2 if �2 = 0. More generally, we

can consider models

�n = Xn(�)�(�); (1.1)
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where � is a subset of f1; : : : ; pg and �(�) (or Xn(�)) contains the components

of � (or columns of Xn) that are indexed by the integers in �. In this case

An consists of some distinct subsets of f1; : : : ; pg. If An contains all nonempty

subsets of f1; : : : ; pg, then the number of models in An is 2p � 1.

Example 2. One-mean versus k-mean. Suppose that n observations are from

k groups. Each group has r observations that are identically distributed. Thus,

n = kr, where k = kn and r = rn are integers. Here we need to select one model

from the following two models: (1) the one-mean model, i.e., the k groups have

a common mean; (2) the k-mean model, i.e., the k groups have di�erent means.

To use the same formula as that in (1.1), we de�ne pn = k,

Xn =

0
BBBBBB@

1r 0 0 � � � 0

1r 1r 0 � � � 0

1r 0 1r � � � 0

� � � � � � � � � � � � � � �
1r 0 0 � � � 1r

1
CCCCCCA

and � = (�1; �2 ��1; : : : ; �k ��1)
0, where 1r denotes the r-vector of ones. Then

An = f�1; �kg, where �1 = f1g and �k = f1; : : : ; kg.

Example 3. Linear approximations to a response surface. Suppose that we wish

to select the best approximation to the true mean response surface from a class of

linear models. Note that the approximation is exact if the response surface is ac-

tually linear and is in An. The proposed models are �n = Xn(�)�n(�); � 2 An;

where Xn(�) is a sub-matrix of Xn and �n(�) is a sub-vector of a pn-vector �n
whose components have to be estimated. As a more speci�c example, we consider

the situation where we try to approximate a one-dimensional curve by a polyno-

mial, i.e., �n = Xn(�)�n(�) with the ith row of Xn(�) being (1; ti; t
2
i
; : : : ; t

h�1
i

)0,

i = 1; : : : ; n. In this case An = f�h; h = 1; : : : ; png and �h = f1; : : : ; hg cor-

responds to a polynomial of order h used to approximate the true model. The

largest possible order of the polynomial may increase as n increases, since the

more data we have, the more terms we can a�ord to use in the polynomial ap-

proximation.

We assume in this paper that the models in An are linear models and the

least squares �tting is used under each proposed model. Each model in An is

denoted by �, a subset of f1; : : : ; png. After observing the vector yn, our concern
is to select a model � from An so that the squared error loss

Ln(�) =
k�n � �̂n(�)k2

n
(1.2)
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be as small as possible, where k k is the Euclidean norm and �̂n(�) is the least

squares estimator (LSE) of �n under model �. Note that minimizing Ln(�) is

equivalent to minimizing the average prediction error E[n�1kzn � �̂n(�)k2jyn],
where zn = (z1; : : : ; zn)

0 and zi is a future observation associated with xi and is

independent of yi.

A considerable number of selection procedures were proposed in the litera-

ture, e.g., the AIC method (Akaike (1970)); the Cp method (Mallows (1973));

the BIC method (Schwarz (1978); Hannan and Quinn (1979)); the FPE� method

(Shibata (1984)); the generalized AIC such as the GIC method (Nishii (1984),

Rao and Wu (1989)) and its analogues (P�otscher (1989)); the delete-1 cross-

validation (CV) method (Allen (1974), Stone (1974)); the generalized CV (GCV)

method (Craven and Wahba (1979)); the delete-d CV method (Geisser (1975),

Burman (1989), Shao (1993), Zhang (1993)); and the PMDL and PLS methods

(Rissanen (1986), Wei (1992)). Some asymptotic results in assessing these se-

lection procedures have been established in some particular situations. Nishii

(1984) and Rao and Wu (1989) showed that in Example 1, the BIC and GIC

are consistent (de�nitions of consistency will be given in Section 2), whereas the

AIC and Cp are inconsistent. On the other hand, Stone (1979) showed that in

some situations (Example 2), the BIC is inconsistent but the AIC and Cp are

consistent. In Example 3, Shibata (1981) and Li (1987) showed that the AIC,

the Cp, and the delete-1 CV are asymptotically correct in some sense. However,

Shao (1993) showed that in Example 1, the delete-1 CV is inconsistent and the

delete-d CV is consistent, provided that d=n ! 1. These results do not provide

a clear picture of the performance of the various selection procedures. Some of

these conclusions are obviously contrary to each other. But this is because these

results are obtained in quite di�erent circumstances. A crucial factor that almost

determines the asymptotic performances of various model selection procedures

is whether or not An contains some correct models in which the dimensions of

regression parameter vectors do not increase with n. This will be explored in

detail in the current paper.

The purpose of this paper is to provide an asymptotic theory which shows

when the various selection procedures are asymptotically correct (or incorrect)

under an asymptotic framework covering all situations described in Examples

1-3. After introducing some notations and de�nitions in Section 2, we study

the asymptotic behavior of the GIC method in Section 3 and other selection

procedures cited above in Section 4. Some numerical examples are given in

Section 5. Section 6 contains some technical details.



224 JUN SHAO

2. Notation and De�nitions

Throughout the paper we assume that (X0
nXn)

�1 exists and that the min-

imum and maximum eigenvalues of X0
nXn are of order n. The matrices Xn,

n = 1; 2; : : : ; are considered to be non-random. The results in this paper are

also valid in the almost sure sense when the Xn are random, provided that the

required conditions involving Xn hold for almost all sequences Xn, n = 1; 2; : : :

Let An be a class of proposed models (subsets of f1; : : : ; png) for selection.
The number of models in An is �nite, but may depend on n. For � 2 An,

the proposed model is �n = Xn(�)�n(�), where Xn(�) is an n � pn(�) sub-

matrix of the n � pn matrix Xn and �n(�) is a pn(�) � 1 sub-vector of an

unknown pn�1 vector �n. Without loss of generality, we assume that the largest

model ��n = f1; : : : ; png is always in An. The dimension of �n(�), pn(�), will

be called the dimension of the model �. Under model �, the LSE of �n is

�̂n(�) = Hn(�)yn, where Hn(�) = Xn(�)[Xn(�)
0
Xn(�)]

�1
Xn(�)

0
:

A proposed model � 2 An is said to be correct if �n = Xn(�)�n(�) is

actually true. Note that An may not contain a correct model (Example 3); a

correct model is not necessarily the best model, since there may be several correct

models in An (Examples 1 and 2) and there may be an incorrect model having

a smaller loss than the best correct model (Example 2). Let

Ac

n = f� 2 An : �n = Xn(�)�n(�)g

denote all the proposed models that are actually correct models. It is possible

that Ac
n is empty or Ac

n = An.

Let en = yn� �n. It is assumed that the components of en are independent

and identically distributed with V (enjXn) = �
2
In, where In is the identity matrix

of order n. The loss de�ned in (1.2) is equal to Ln(�) = �n(�)+(e0nHn(�)en)=n,

where �n(�) = (k�n�Hn(�)�nk2)=n . Note that �n(�) = 0 when � 2 Ac
n. The

risk (the expected average squared error) is

Rn(�) = E[Ln(�)] = �n(�) +
�
2
pn(�)

n
:

Let �̂n denote the model selected using a given selection procedure and let

�
L
n be a model minimizing Ln(�) over � 2 An. The selection procedure is said

to be consistent if

P

n
�̂n = �

L

n

o
! 1 (2.1)

(all limiting processes are understood to be as n!1). Note that (2.1) implies

P

n
Ln(�̂n) = Ln(�

L

n)
o
! 1: (2.2)
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Thus, �̂n(�̂n) is in this sense asymptotically as e�cient as the best estimator

among �̂n(�), � 2 An. (2.1) and (2.2) are equivalent if Ln(�) has a unique

minimum for all large n.

The consistency de�ned in (2.1) is in terms of model selection, i.e., we treat

�̂n as an \estimator" of �Ln (it is a well de�ned estimator if �Ln is non-random, e.g.,

in Example 1). This consistency is not related to the consistency of �̂n(�̂n) as an

estimator of �n, i.e., Ln(�̂n)!p 0. In fact, it may not be worthwhile to discuss

the consistency of �̂n(�̂n), since sometimes there is no consistent estimator of

�n (e.g., min�2An
Ln(�) 6!p 0) and sometimes there are too many consistent

estimators of �n (e.g., max�2An
Ln(�) !p 0, in which case �̂n(�) is consistent

for any �).

In some cases a selection procedure does not have property (2.1), but �̂n is

still \close" to �Ln in the following sense that is weaker than (2.1):

Ln(�̂n)=Ln(�
L

n)!p 1; (2.3)

where !p denotes convergence in probability. A selection procedure satisfying

(2.3) is said to be asymptotically loss e�cient, i.e., �̂n is asymptotically as ef-

�cient as �Ln in terms of the loss Ln(�). Since the purpose of model selection

is to minimize the loss Ln(�), (2.3) is an essential asymptotic requirement for a

selection procedure.

Clearly, consistency in the sense of (2.1) implies asymptotic loss e�ciency

in the sense of (2.3). In some cases (e.g., Examples 1 and 2), consistency is the

same as asymptotic loss e�ciency. The proof of the following result is given in

Section 6.

Proposition 1. Suppose that

pn=n! 0; (2.4)

lim inf
n!1

min
�2An�A

c
n

�n(�) > 0 (2.5)

and Ac
n is nonempty for su�ciently large n. Then (2.1) is equivalent to (2.3) if

either pn(�
L
n) 6!p 1 or Ac

n contains exactly one model for su�ciently large n.

The following regularity condition will often be used in establishing asymp-

totic results: X
�2An�Ac

n

1

[nRn(�)]l
! 0; (2.6)

where l is some �xed positive integer such that E(y1 � �1)
4l
< 1. Note that

condition (2.6) is exactly the same as condition (A.3) in Li (1987) when Ac
n is
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empty; but Li's condition (A.3) may not hold when Ac
n is not empty. If the

number of models in An is bounded (Examples 1 and 2), then (2.6) with l = 1 is

the same as

min
�2An�Ac

n

nRn(�)!1; (2.7)

the condition (A.30) in Li (1987). When An = f�h; h = 1; : : : ; png with �h =

f1; : : : ; hg (e.g., polynomial approximation in Example 3), Li (1987) showed that

condition (2.6) with l = 2 is the same as (2.7). Under an additional assumption

that en is normal, we may replace (2.6) by
P

�2An�A
c
n
�
nRn(�) ! 0 for any

0 < � < 1, which is Assumption 2 in Shibata (1981).

3. The GIC�n Method

Many model selection procedures are identical or equivalent to the procedure

which minimizes

�n;�n(�) =
Sn(�)

n
+
�n�̂

2
npn(�)

n
(3.1)

over � 2 An, where Sn(�) = kyn � �̂n(�)k2, �̂2n is an estimator of �2, and f�ng
is a sequence of non-random numbers � 2 and �n=n! 0. This procedure will be

called the GIC�n method. If �̂2n = Sn(��n)=(n � pn), ��n = f1; : : : ; png, then the

GIC�n with �n !1 is the GIC method in Rao and Wu (1989); the GIC�n with

�n � 2 is the Cp method in Mallows (1973); and the GIC�n with �n � � > 2 is

the FPE� method in Shibata (1984).

Since the GIC�n is a good representative of the model selection procedures

cited in Section 1, we �rst study its asymptotic behavior. Let the model selected

by minimizing �n;�n(�) be �̂n;�n .

Consider �rst the case of �n � 2. Assume that �̂2n is a consistent estimator

of �2. It is shown in Section 6 that

�n;2(�) =

8>><
>>:

kenk
2

n
+

2�̂2
n
p
n
(�)

n
� e0

n
Hn(�)en

n
� 2 Ac

n

kenk
2

n
+ Ln(�) + op (Ln(�)) � 2 An �Ac

n;

(3.2)

where the equality for the case of � 2 An �Ac
n holds under condition (2.6) and

the op is uniformly in � 2 An � Ac
n. It follows directly from (3.2) that �̂n;2 is

asymptotically loss e�cient in the sense of (2.3) if there is no correct model in

An, i.e., Ac
n is empty. If Ac

n is not empty but contains exactly one model for

each n, say Ac
n = f�cng, then �̂n;2 is also asymptotically loss e�cient. This can

be shown by using (3.2) as follows. If pn(�
c
n)!1, then

2�̂2npn(�
c
n)

n
� e

0
nHn(�

c
n)en

n
=

�̂
2
npn(�

c
n)

n
+ op

 
�̂
2
npn(�

c
n)

n

!
= Ln(�

c

n) + op(�
c

n);
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which, together with (3.2), implies that

�n;2(�) =
kenk2
n

+ Ln(�) + op (Ln(�))

uniformly in � 2 An and, therefore, �̂n;2 is asymptotically loss e�cient. If

pn(�
c
n) is �xed, then (2.5) holds (Nishii (1984)), which implies that �Ln = �

c
n

and min�2An�Ac
n
�n;2(�) 6!p 0 and, therefore, Pf�̂n;2 = �

L
ng ! 1, i.e., �̂n;2 is

consistent in the sense of (2.1).

As the following example indicates, however, �̂n;2 may not be an asymptot-

ically loss e�cient procedure when Ac
n contains more than one model.

Example 4. Suppose that An = Ac
n = f�n1; �n2g, i.e., An contains two models

and both models are correct. Assume that �n1 � �n2. Let pn1 and pn2 be

the dimensions of the models �n1 and �n2, respectively. Then pn1 < pn2 and

Qn = Hn(�n2)�Hn(�n1) is a projection matrix of rank pn2�pn1. Since Sn(�ni) =
e
0
nen � e0nHn(�ni)en, �̂n;2 = �n1 if and only if 2�̂2n( pn2 � pn1) > e

0
nQnen.

Case 1. pn1 ! 1. If pn2 � pn1 ! 1, then e0nQnen=( pn2 � pn1) !p �
2 and

Pf�̂n;2 = �n1g ! 1, i.e., the �̂n;2 is consistent. If pn2 � pn1 � q for a �xed

positive integer q, then pn2=pn1 ! 1, in which case Ln(�n2)=Ln(�n1) !p 1, i.e.,

any selection procedure is asymptotically loss e�cient.

Case 2. pn1 6! 1. If pn2� pn1 !1, then we still have e0nQnen=( pn2� pn1)!p

�
2, which implies that �̂n;2 is consistent. Assume that pn2 � pn1 6! 1 and that

for any �xed integer q and constant c > 2,

lim inf
n!1

inf
Q

n
2Qn;q

P

�
e
0
nQnen > c�

2
q

�
> 0; (3.3)

where Qn;q = fall n � n projection matrices of rank qg: Note that condition

(3.3) holds if en � N(0; �2In). From (3.3) and the fact that p
n1 6! 1 and

pn2 � pn1 6! 1, the ratio

Ln(�̂n;2)

Ln(�n1)
= I(�̂n;2 = �n1) +

Ln(�n2)

Ln(�n1)
I(�̂n;2 = �n2) = 1 +WnI(�̂n;2 = �n2)

does not tend to 1, where Wn = e
0
nQnen=e

0
nHn(�n1)en and I(C) is the indicator

function of the set C. For example, when en � N(0; �2In), then pn1Wn=( pn2 �
pn1) is an F-random variable with degrees of freedom pn2 � pn1 and pn1. Hence

�̂n;2 is not asymptotically loss e�cient.

In Example 4, �̂n;2 is asymptotically loss e�cient if and only if Ac
n does not

contain two models with �xed dimensions. This is actually true in general. Let

�
c
n be the model in Ac

n with the smallest dimension.
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Theorem 1. Suppose that (2.6) holds and that �̂2n is consistent for �2.

(i) If Ac
n contains at most one model for all n, then �̂n;2 is asymptotically loss

e�cient in the sense of (2.3). Furthermore, if Ac
n contains a unique model with

�xed dimension for all n, then �̂n;2 is consistent in the sense of (2.1).

(ii) Assume that Ac
n contains more than one models for su�ciently large n. If

X
�2Ac

n

1

[ pn(�)]
m
! 0 (3.4)

for some positive integer m such that E(y1 � �1)
4m

<1, then �̂n;2 is asymptot-

ically loss e�cient. If (3.4) does not hold but

X
�2Ac

n
;� 6=�c

n

1

[ pn(�)� pn(�
c
n)]

m
! 0 (3.5)

for some positive integer m such that E(y1 � �1)
4m

<1, then �̂n;2 is asymptot-

ically loss e�cient.

(iii) Assume that Ac
n contains more than one models for su�ciently large n and

that (3.3) holds. Then a necessary condition for �̂n;2 being asymptotically loss

e�cient is that

pn(�
c

n)!1 or min
�2Ac

n;�6=�
c
n

pn(�) � pn(�
c

n)!1: (3.6)

(iv) If the number of models in Ac
n is bounded, or if m = 2 and An = f�i; i =

1; : : : ; png with �i = f1; : : : ; ig, then condition (3.6) is also su�cient for the

asymptotic loss e�ciency of �̂n;2.

Remark 1. Condition (3.6) means that An does not contain two correct models

with �xed dimensions.

Remark 2. In Theorem 1, the estimator �̂2n is required to be consistent for �2.

A popular choice of �̂2n is S(��n)=(n�pn), the sum of squared residuals (under the

largest model in An) over its degree of freedom. This estimator is consistent if

Ac
n is not empty, but is not necessarily consistent when Ac

n is empty, i.e., there is

no correct model in An. We shall further discuss this issue in Section 4. If there

are a few replicates at each xi, then we can compute the within-group sample

variance for each i and the average of the within-group sample variances is always

a consistent estimator of �2.

Theorem 1 indicates that asymptotically, the GIC�n method with �n � 2

can be used to �nd (1) the best model among incorrect models; (2) the better
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model between a correct model and an incorrect model; but it is too crude to

be useful in distinguishing correct models with �xed dimensions, i.e., it tends to

over�t (select a correct model with an unnecessarily large dimension).

From (3.1), �n;�n(�) is a sum of two components: Sn(�)=n, which measures

the goodness of �t of model �, and �n�̂
2
npn(�)=n, which is a penalty on the use

of models with large dimensions. In view of the fact that the use of �n � 2 tends

to over�t, it is natural to consider a large �n in (3.1), i.e., to put a heavy penalty

on the use of models with large dimensions.

The reason why �̂n;2 may not be asymptotically loss e�cient is that the

minimizer of

�n;2(�)�
kenk2
n

=
2�̂2npn(�)

n
� e

0
nHn(�)en

n
;

which is considered as a function of � 2 Ac
n, may not be the same as the minimizer

of Ln(�) = �
2
pn(�)=n. What will occur if we use a �n that ! 1? Similar to

the expansion (3.2), we have

�n;�n(�)=

8>><
>>:
kenk

2

n
+

�n�̂
2
n
p
n
(�)

n
� e

0

n
Hn(�)en

n
�2Ac

n

kenk
2

n
+Ln(�)+

(�n�̂
2
n�2�

2)pn(�)
n

+op (Ln(�)) �2An�Ac
n;

(3.7)

where the equality for the case of � 2 An �Ac
n holds under condition (2.6). If

max
�2Ac

n

e
0
nHn(�)en

�n�̂
2
npn(�)

!p 0; (3.8)

then, for � 2 Ac
n, �n;�n(�) � kenk2=n is dominated by the term �n�̂

2
npn(�)=n

which has the same minimizer as Ln(�) = e
0
nHn(�)en=n. Hence,

Pf�̂n;�n 2 A
c

n but �̂n;�n 6= �
c

ng ! 0; (3.9)

where �̂
n;�n

is the model selected using the GIC�n and �
c
n is the model in Ac

n

with the smallest dimension. This means that the GIC�n method picks the best

model in Ac
n as long as (3.8) holds, which is implied by a weak condition

lim sup
n!1

X
�2Ac

n

1

[ pn(�)]
m

<1 (3.10)

for some positive integer m such that E(y1 � �1)
4m

< 1. Note that (3.10)

holds if the number of models in An is bounded (Examples 1 and 2) or if m = 2

and An = f�i; i = 1; : : : ; png with �i = f1; : : : ; ig (polynomial approximation in

Example 3).
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For the asymptotic correctness of the GIC�n method, the remaining question

is whether it can assess the models in An � Ac
n. Unfortunately, the GIC�n

tends to select a model with a small dimension and, therefore, may fail to be

asymptotically loss e�cient if models with small dimensions have large values of

Ln(�). More precisely, if there are �n1 and �n2 in An �Ac
n such that

lim
n!1

Ln(�n1)

Ln(�n2)
> 1 but lim

n!1

Ln(�n1) + (�n�̂
2
n � 2�2)pn(�n1)=n

Ln(�n2) + (�n�̂2n � 2�2)pn(�n2)=n
< 1 (3.11)

(which implies limn!1 pn(�n1)=pn(�n2) < 1), then the GIC�n is not asymptoti-

cally loss e�cient.

A necessary condition for �̂
n;�n

to be asymptotically loss e�cient is that

(3.11) does not hold for any �n1 and �n2. Of course, (3.11) is almost impossible

to check. In the following theorem we provide some su�cient conditions for the

asymptotic loss e�ciency of the GIC�n .

Theorem 2. Suppose that (2.6) and (3.10) hold and that �̂2n 6!p 0 and �̂
2
n 6!p 1.

(i) A su�cient condition for the asymptotic loss e�ciency of �̂
n;�n

is that (2.5)

holds and �n is chosen to satisfy

�n !1 and
�npn

n
! 0: (3.12)

(ii) If An contains at least one correct model with �xed dimension for su�ciently

large n, �n !1 and �n=n! 0, then �̂
n;�n

is consistent.

Remark 3. Unlike the case of �n � 2, it is not required in Theorem 2 that �̂2n

be a consistent estimator of �2.

We now apply Theorems 1 and 2 to Examples 1-3.

Example 1. (continued) We use the notation given by (1.1). In this example

(2.4), (2.5), (2.6) and (3.10) hold. Note that Ac
n is not empty and consistency in

the sense of (2.1) is the same as asymptotic loss e�ciency in the sense of (2.3)

(Proposition 1). By Theorem 1, �̂n;2 is consistent if and only if �� = f1; : : : ; pg is
the only correct model. By Theorem 2(ii), �̂

n;�n
is always consistent if �n !1

and �n=n! 0.

Example 2. (continued) Note that n = kr ! 1 means that either k ! 1 or

r !1. Using Theorems 1 and 2, we now show that �̂
n;2 is better when k !1,

whereas �̂
n;�n

with �n satisfying (3.12) is better when r !1.
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It is easy to see that (2.6) and (3.10) hold. Condition (2.5) holds if k is �xed.

If k !1, then (2.5) is the same as

lim inf
k

1

k

kX
j=1

(�j �
1

k

kX
i=1

�i)
2
> 0;

which is a reasonable condition.

Consider �rst the case where k ! 1 and r is �xed. Since the di�erence

in dimensions of the two models in An is k � 1, an application of Theorem

1(i)&(iv) shows that �̂n;2 is always asymptotically loss e�cient. On the other

hand, it can be shown that if �n !1, then Pf�̂
n;�n

= �1g ! 1. Hence �̂
n;�n

is

asymptotically loss e�cient if and only if the one-mean model is correct.

Next, consider the case where r ! 1 and k is �xed. In this case the

dimensions of both models are �xed. By Proposition 1, consistency is the same

as asymptotic loss e�ciency. By Theorem 2, �̂
n;�n

with �n !1 and �n=n! 0

is consistent. By Theorem 1, �̂n;2 is consistent if and only if the one-mean model

is incorrect.

Finally, consider the case where k ! 1 and r ! 1. Since pn=n = r
�1 !

0, consistency is the same as asymptotic loss e�ciency (Proposition 1). By

Theorems 1 and 2, both �̂n;2 and �̂
n;�n

are consistent, but �n has to be chosen

so that (3.12) holds, i.e., �n=r ! 0. For example, if we choose �n = log n (GIC�n

is then equivalent to the BIC in Schwarz (1978)), then �̂
n;�n

is inconsistent if

logn=r 6! 0. This is exactly what was described in Section 3 of Stone (1979).

Example 3. (continued) In this case pn !1 as n!1. Conditions (2.6) and

(3.10) are usually satis�ed with m = 2. If there exists a correct model in An

for some n, then there are many correct models in An and by Theorems 1 and

2, �̂
n;�n

is consistent but �̂n;2 is not. On the other hand, if there is no correct

model in An for all n, then �̂n;2 is asymptotically loss e�cient but �̂
n;�n

may

not, since condition (2.5) may not hold.

In conclusion, the GIC�n method with �n � 2 is more useful in the case

where there is no �xed-dimension correct model, whereas the GIC�n method

with �n !1 is more useful in the case where there exist �xed-dimension correct

models.

To end this section, we discuss briey the GIC�n with �n � �, a constant

larger than 2. It is apparent that the GIC� with a �xed � > 2 is a compromise

between the GIC2 and the GIC�n with �n ! 1. The asymptotic behavior

of the GIC�, however, is not as good as the GIC2 in the case where no �xed-

dimension correct model exists, and not as good as the GIC�n when there are
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�xed-dimension correct models. This can be seen from the proofs of Theorems 1

and 2 in Section 6.

4. Other Selection Methods

In this section we show that some selection methods cited in Section 1 have

the same asymptotic behavior (in terms of consistency and asymptotic loss e�-

ciency) as the GIC�n under certain conditions.

First, consider the GIC�n with the following particular choice of �̂2n:

�̂
2
n =

Sn(��n)

n� pn

; (4.1)

where ��n = f1; : : : ; png. If (4.1) is used, then the GIC2 is the Cp method (Mallows

(1973)) and the GIC�n is the GIC in Rao and Wu (1989). The estimator in

(4.1), however, is not necessarily consistent for �2 if ��n is an incorrect model.

Asymptotic behavior of the Cp (�n � 2) is given in the following result.

Theorem 1A. (i) If �n(��n) ! 0 and pn=n 6! 1, then �̂
2
n in (4.1) is consistent

for �2 and, therefore, the assertions (i)-(iv) in Theorem 1 are valid for the Cp.

(ii) If (2.4) holds, then the assertions (i)-(iv) in Theorem 1 are valid for the Cp.

Note that in Theorem 2, we do not need �̂
2
n to be consistent. Hence we have

the following result for the case where �n !1.

Theorem 2A. Assume that (2.6) and (3.10) hold. Then the assertions (i)-(ii)

in Theorem 2 are valid for the GIC�n with �̂
2
n given by (4.1) and �n !1.

If we use

�̂
2
n = �̂

2
n(�) =

Sn(�)

n� pn(�)

(an estimate of �2 depends on the model �) in (3.1), then we select a model by

minimizing

~�n;�n(�) =
Sn(�)

n

�
1 +

�npn(�)

n� pn(�)

�
:

If �npn=n ! 0, this method has the same asymptotic behavior as the method

minimizing

log
Sn(�)

n
+

�npn(�)

n� pn(�)
;

since log(1 + x) � x as x ! 0. Minimizing ~�n;�n(�) is known as the AIC if

�n � 2 and the BIC if �n = logn.

Let ~�n;�n be the model selected by minimizing ~�n;�n(�) over � 2 An. We

have the following result similar to Theorems 1 and 2.
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Theorem 3. Suppose that (2.6) holds.

(i) The assertions (i)-(iv) in Theorem 1 are valid for ~�n;2 (the AIC ) if either

(2.4) holds or

max
�2An

�n(�)! 0 and
pn

n
6! 1: (4.2)

(ii) Assume that (3.10) holds. Then the assertions (i)-(ii) in Theorem 2 are valid

for ~�n;�n with �n !1.

The delete-1 CV method selects a model by minimizing

CVn;1(�) =
k[In � ~Hn(�)]

�1[yn � �̂n(�)]k2
n

over � 2 An, where ~Hn(�) is a diagonal matrix whose ith diagonal element

is the ith diagonal element of Hn(�). The GCV method replaces ~Hn(�) by

[n�1tr ~H(�)]In = [n�1pn(�)]In, where trA is the trace of the matrix A, and

hence it selects a model by minimizing

GCVn(�) =
Sn(�)

n[1� n�1pn(�)]
2
:

From the identity

1

[1� n�1pn(�)]
2
= 1 +

2pn(�)

n� pn(�)
+

�
pn(�)

n� pn(�)

�2
;

we know that the GCV and the AIC have the same asymptotic behavior if

max
�2An

�
pn(�)

n� pn(�)

�2��
1 +

2pn(�)

n� pn(�)

�
! 0; (4.3)

which holds if and only if (2.4) holds.

Theorem 4. Suppose that (2.6) holds.

(i) The assertions (i)-(iv) in Theorem 1 are valid for the GCV if either (2.4) or

(4.2) holds.

(ii) Assume that

hn = max
i�n

x
0
i(X

0
nXn)

�1
xi ! 0: (4.4)

Then the assertions (i)-(iv) in Theorem 1 are valid for the delete-1 CV.

Condition (4.4) is stronger than condition (2.4). When neither (2.4) nor (4.2)

holds, the GCV and the delete-1 CV may not be asymptotically loss e�cient.

Example 2. (continued) We consider Example 2 in the situation where k is large

but r, the number of replication, is �xed. Since pn=n = r
�1, (2.4) does not hold.
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Assume that limn!1�n(�1) = � > 0, i.e., (4.2) does not hold. Let yij be the jth

observation in the ith group, j = 1; : : : ; r, i = 1; : : : ; k, �yi be the ith group mean, �y

be the overall mean, SS1 =
P

k

i=1

P
r

j=1(yij��y)2 and SSk =
P

k

i=1

P
r

j=1(yij��yi)
2.

The delete-1 CV and the GCV are identical in this case and select the one-mean

model if and only if SS1=(1� n
�1)2 < SSk=(1� r

�1)2. From

Ln(�1)

Ln(�k)
!p

r�

�2
;

SS1

n
!p �

2 +� and
SSk

n
!p

(r � 1)�2

r
;

the delete-1 CV (or the GCV) is not asymptotically loss e�cient if �2=r < � �
�
2
=(r � 1).

The delete-d CV is an extension of the delete-1 CV. Suppose that we split the

n� (1+pn) matrix (yn;Xn) into two distinct sub-matrices: a d� (1+pn) matrix

(yn;s;Xn;s) containing the rows of (yn;Xn) indexed by the integers in s, a subset

of f1; : : : ; ng of size d, and an (n� d)� (1 + pn) matrix (yn;sc;Xn;sc) containing

the rows of (yn;Xn) indexed by the integers in s
c, the complement of s. For any

� 2 An, we estimate �n(�) by �̂n;sc(�), the LSE based on (yn;sc;Xn;sc) under

model �. The model is then assessed by kyn;s � �̂n;s(�)k2, where �̂n;s(�) =

Xn;s(�)�̂n;sc(�) and Xn;s(�) is a d � pn(�) matrix containing the columns of

Xn;s indexed by the integers in �. Let S be a class of N subsets s. The delete-d

CV method selects a model by minimizing

CVn;d(�) =
1

dN

X
s2S

kyn;s � �̂n;s(�)k2

over � 2 An. The set S can be obtained by using a balanced incomplete block

design (Shao (1993)) or by taking a simple random sample from the collection of

all possible subsets of f1; : : : ; ng of size d (Burman (1989), Shao (1993)).

While the delete-1 CV has the same asymptotic behavior as the Cp (Theorem

4), the delete-d CV has the same asymptotic behavior as the GIC�n with

�n =
n

n� d
+ 1: (4.5)

If d=n! 0, then �n ! 2; if d=n! � 2 (0; 1), then �n ! 1
1��

+1, a �xed constant

larger than 2; if d=n! 1, then �n !1.

In view of the discussion (in the end of Section 3) for the GIC� with a �xed

� > 2, we consider only the case where d is chosen so that d=n! 1 (�n !1).

Theorem 5. Suppose that (2.5), (2.6) and (3.10) hold and that

max
s2S

sup
kck=1

����kXn;sck2
d

� kXn;scck2
n� d

����! 0:
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Then the delete-d CV is asymptotically loss e�cient if d is chosen so that

d

n
! 1 and

pn

n� d
! 0: (4.6)

If, in addition, An contains at least one correct model with �xed dimension, then

the delete-d CV is consistent.

Remark 4. Condition (4.6) implies condition (2.4) and is similar to condition

(3.12) in Theorem 2. In fact, pn=(n � d) ! 0 is a very natural requirement for

using the delete-d CV, since n � d is the number of observations used to �t an

initial model with as many as pn parameters.

The PMDL and PLS methods (Rissanen (1986), Wei (1992)) are shown to

have the same asymptotic behavior as the BIC method (which is a special case

of the GIC) under some situations (Wei (1992)). However, these two methods

are intended for the case where en is a time series so that the observations have

a natural order. Hence, we do not discuss these methods here.

In conclusion, the methods discussed so far can be classi�ed into the following

three classes according to their asymptotic behaviors:

Class 1. The GIC2, the Cp, the AIC, the delete-1 CV, and the GCV.

Class 2. The GIC�n with �n !1 and the delete-d CV with d=n! 1.

Class 3. The GIC� with a �xed � > 2 and the delete-d CV with d=n! � 2
(0; 1).

The methods in class 1 are useful in the case where there is no �xed-dimension

correct model. With a suitable choice of �n or d, the methods in class 2 are useful

in the case where there exist �xed-dimension correct models. The methods in

class 3 are compromises of the methods in class 1 and the methods in class 2; but

their asymptotic performances are not as good as those of the methods in class

1 in the case where no �xed-dimension correct model exists, and not as good as

those of the methods in class 2 when there are �xed-dimension correct models.

5. Empirical Results

We study the magnitude of Pf�̂n = �
L
ng with a �xed n by simulation in

two examples. Although some selection methods are shown to have the same

asymptotic behavior, their �xed sample performances (in terms of Pf�̂n = �
L
ng)

may be di�erent.

The �rst example is the linear regression (Example 1) with p = 5; that is,

yi = �1xi1 + �2xi2 + �3xi3 + �4xi4 + �5xi5 + ei; i = 1; : : : ; 40;

where ei are independent and identically distributed asN(0; 1), xij is the ith value

of the jth explanatory variable xj, xi1 � 1, and the values of xij , j = 2; 3; 4; 5,
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are taken from an example in Gunst and Mason (1980) (also, see Table 1 in Shao

(1993)). This study is an extension of that in Shao (1993) which studies the

cross-validation methods only.

Table 1. Selection probabilities in regression problem based on 1000 simula-

tions.

True �0 Model AIC Cp GIC CV1 GCV CVd

(2; 0; 0; 4; 0) 1,4** .567 .594 .804 .484 .587 .934

1,2,4* .114 .110 .049 .133 .112 .025

1,3,4* .126 .113 .065 .127 .117 .026

1,4,5* .101 .095 .057 .138 .097 .012

1,2,3,4* .030 .028 .009 .049 .026 .000

1,2,4,5* .030 .027 .007 .029 .028 .001

1,3,4,5* .022 .026 .008 .030 .026 .002

1,2,3,4,5* .010 .007 .001 .009 .007 .000

(2; 0; 0; 4; 8) 1,4,5** .683 .690 .881 .641 .691 .947

1,2,4,5* .143 .129 .045 .158 .130 .032

1,3,4,5* .116 .142 .067 .138 .143 .020

1,2,3,4,5* .058 .039 .007 .063 .036 .001

(2; 9; 0; 4; 8) 1,4,5 .000 .000 .000 .005 .000 .016

1,2,4,5** .794 .817 .939 .801 .824 .965

1,3,4,5* .000 .000 .000 .005 .000 .002

1,2,3,4,5* .206 .183 .061 .189 .176 .017

(2; 9; 6; 4; 8) 1,2,3,5 .000 .000 .000 .000 .000 .002

1,2,4,5 .000 .000 .000 .000 .000 .005

1,3,4,5 .000 .000 .000 .015 .000 .045

1,2,3,4,5** 1.00 1.00 1.00 .985 1.00 .948

* A correct model

** The optimal correct model

Six selection procedures, the AIC, the Cp, the GIC�n with �̂2n given by (4.1),

the delete-1 CV (denoted by CV1), the GCV, and the delete-d CV (denoted by

CVd), are applied to select a model from 2p� 1 = 31 models. The �n in the GIC

is chosen to be log n = log 40 � 3:8 so that this GIC is almost the same as the

BIC. The d in the delete-d CV is chosen to be 25 so that (4.5) approximately

holds and the delete-d CV is comparable with the GIC. The S in the delete-d

CV is obtained by taking a random sample of size 2n = 80 from all possible

subsets of f1; : : : ; 40g of size 25. For these six selection procedures, the empirical

probabilities (based on 1,000 simulations) of selecting each model are reported

in Table 1, where each model is denoted by a subset of f1; : : : ; 5g that contains

the indices of the explanatory variables xj in the model. Models corresponding

to zero empirical probabilities for all the methods in the simulation are omitted.
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The second example considered is the polynomial approximation to a possi-

bly nonlinear curve (Example 3); that is, we select a model from the following

class of models:

yi = �0 + �1xi + � � �+ �h�1x
h�1
i

+ ei; h = 1; : : : ; pn: (5.1)

In the simulation, n = 40 and pn = 5. Other settings and the selection procedures

considered are the same as those in the �rst example. The values of xi are taken

to be the same as xi2 in the �rst example. We consider situations where one of

the models in (5.1) is correct, as well as the case where the true model is

yi = exp (2xi) + ei

so that none of the models in (5.1) is correct. The results are reported in Table

2.

Table 2. Selection probabilities in polynomial approximation problem based

on 1000 simulations.

True E(yi) Model AIC Cp GIC CV1 GCV CVd

1 h = 1** .718 .728 .910 .699 .731 .969

h = 2* .124 .124 .066 .014 .155 .031

h = 3* .063 .060 .014 .102 .061 .000

h = 4* .040 .036 .007 .024 .033 .000

h = 5* .055 .052 .003 .020 .046 .000

1 + 2xi h = 2** .725 .758 .916 .738 .762 1.00

h = 3* .124 .117 .060 .170 .118 .000

h = 4* .084 .070 .015 .065 .069 .000

h = 5* .067 .055 .009 .027 .051 .000

1 + 2xi + 2x2
i

h = 3** .742 .758 .917 .763 .760 1.00

h = 4* .156 .149 .063 .189 .150 .000

h = 5* .102 .093 .020 .048 .090 .000

1 + 2xi + 2x2
i

h = 3 .000 .000 .000 .000 .000 .006

+3x3
i
=2 h = 4** .821 .835 .935 .834 .839 .994

h = 5* .179 .165 .065 .166 .161 .000

1 + 2xi + 2x2
i

h = 4 .000 .000 .000 .000 .000 .093

+3x3
i
=2 + 2x4

i
=3 h = 5** 1.00 1.00 1.00 1.00 1.00 .907

exp (2xi) h = 5 1.00 1.00 1.00 1.00 1.00 1.00

* A correct model

** The optimal correct model

The following is a summary of the results in Tables 1 and 2.

(1) The procedures in class 2 (the GIC and the CVd) have much better empirical

performances than the procedures in class 1 (the AIC, the Cp, the CV1, and
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the GCV) when there are at least two �xed-dimension correct models. The

probability Pf�̂n = �
L
ng may be very low for the methods in class 1 when the

dimension of the optimal model is not close to pn. This con�rms the asymptotic

results established in Sections 3 and 4.

(2) The performances of two methods in class 2 may be substantially di�erent.

For example, the probability of the GIC selecting the optimal model can be as

low as 0.804 in the �rst example, whereas the CVd selects the optimal model with

probability higher than 0.90 in all cases. On the other hand, the CVd selects an

incorrect model sometimes with a small chance.

6. Proofs

Proof of Proposition 1. We only need to show that (2.3) does not hold,

assuming that (2.1) does not hold. If Ac
n contains exactly one model, then by

(2.4), Ln(�
L
n) !p 0; but by (2.5), Ln(�̂n) 6!p 0. Hence (2.3) does not hold.

Next, assume that Ac
n contains more than one models but pn(�

L
n) 6!p 1. Since

Pf�̂n 6= �
L
ng 6! 0, there exists �n1 2 Ac

n such that �n1 6= �
L
n and Pf�̂n =

�n1g 6! 0. Then

Ln(�̂n)

Ln(�Ln)
� 1 �

�
Ln(�n1)

Ln(�Ln)
� 1

�
I(�̂n=�n1)=

�
e
0
nHn(�n1)en

e0nHn(�Ln)en
�1
�
I(�̂n=�n1) 6!p 0:

Proof of (3.2). Note that

�n;2(�) =
kenk2
n

+ Ln(�) +
2(�̂2n � �

2)pn(�)

n

+
2[�2pn(�)� e0nHn(�)en]

n
+

2e0n[In �Hn(�)]�n
n

:

Hence (3.2) follows from

max
�2An�Ac

n

j�̂2n � �
2jpn(�)

nLn(�)
!p 0; (6.1)

max
�2An�Ac

n

j�2pn(�)� e0nHn(�)enj
nLn(�)

!p 0; (6.2)

and

max
�2An�Ac

n

je0n[In �Hn(�)]�nj
nLn(�)

!p 0: (6.3)

Result (6.1) follows from (6.2), e0nHn(�)en � nLn(�), and the fact that �̂2n �
�
2 !p 0. Results (6.2) and (6.3) can be shown using the same argument in Li

(1987), p.970 under condition (2.6).
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Proof of Theorem 1. The �rst statement in (i) is proved in Section 3. The

second statement in (i) is a consequence of the �rst statement and Proposition

1.

For (ii), it su�ces to show that

�n;2(�) =
kenk2
n

+ Ln(�) + op(Ln(�))

uniformly in � 2 Ac
n, which follows from either

max
�2Ac

n

����e0nHn(�)en

pn(�)
� �

2

����!p 0 (6.4)

or

max
�2Ac

n;� 6=�
c
n

����e0n[Hn(�)�Hn(�
c
n)]en

pn(�)� pn(�
c
n)

� �
2

����!p 0: (6.5)

From Theorem 2 of Whittle (1960),

E

����e0nHn(�)en

pn(�)
� �

2

����
2m

� c

[ pn(�)]
m
; (6.6)

where c is a positive constant. Then for any � > 0,

P

�
max
�2Ac

n

����e0nHn(�)en

pn(�)
� �

2

���� > �

�
� c�

�2m
X
�2Ac

n

1

[ pn(�)]
m
:

Hence (6.4) is implied by condition (3.4). A similar argument shows that (6.5)

is implied by condition (3.5).

The result in (iii) can be proved using the same argument in Example 4. For

(iv), it su�ces to show that pn(�
c
n)!1 is the same as (3.4) and min�2Ac

n
;�6=�c

n

pn(�) � pn(�
c
n) ! 1 is the same as (3.5), which is apparent if the number of

models in Ac
n is bounded. The proof for the case where m = 2 and An = f�i; i =

1; : : : ; png with �i = f1; : : : ; ig is the same as that in Li (1987), p.963.

Proof of Theorem 2. From (6.6) and condition (3.10),

e
0
nHn(�)en

�npn(�)
= Op(�

�1
n )

uniformly in � 2 Ac
n. Hence (3.9) holds. Since Ln(�) > �n(�), (3.7) and

conditions (2.5) and (3.12) imply that �n;�n(�) =
kenk

2

n
+ Ln(�) + op(Ln(�))

uniformly in � 2 An � Ac
n, and if Ac

n is not empty, �n;�n(�
c
n) = op(Ln(�))

uniformly in � 2 An �Ac
n. The result in (i) is established.

If An contains at least one correct model with �xed dimension, then (2.5)

holds and Pf�̂
n;�n

= �
c
ng ! 1: The consistency of �̂

n;�n
follows from the fact

that �Ln = �
c
n.
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Proofs of Theorems 1A, 2A, and 3. First, consider Theorem 1A. Note that

Sn(��n)

n� pn

=
e
0
n[In �Hn(��n)]en

n� pn

+
n

n� pn

�n(��n) +
2e0n[In �Hn(��n)]�n

n� pn

: (6.7)

If �n(��n)! 0 and pn=n 6! 1, then Sn(��n)=(n� pn) is consistent and the result

in (i) follows.

Suppose now that (2.4) holds. For the result in (ii), it su�ces to show

that (6.1) still holds for �̂2n = Sn(��n)=(n � pn). From (6.7), Sn(��n)=(n � pn) =

�
2 + op(1) +Op(�n(��n)). Hence (6.1) follows from the fact that

max
�2An

�n(��n)pn(�)

nLn(�)
� pn

n
:

The proofs for Theorem 2A and Theorem 3 are similar.

Proof of Theorem 4. (i) If (2.4) holds, then (4.3) holds and the result follows

from Theorem 3(i). Now, assume that (4.2) holds. Then pn(�
L
n)=n !p 0 and

pn(�̂n)=n!p 0, where �̂n is the model selected by the GCV. If Ac
n is empty for

all n, then

GCVn(�̂n) =
kenk2
n

+ Ln(�̂n) + op(Ln(�̂n));

GCVn(�
L

n) =
kenk2
n

+ Ln(�
L

n) + op(Ln(�
L

n));

and

0 � GCVn(�̂n)�GCVn(�
L
n)

Ln(�̂n)
=

Ln(�̂n)� Ln(�
L
n)

Ln(�̂n)
+ op(1) � op(1):

This proves that (2.3) holds. The proof for the case where Ac
n is nonempty is

similar to the proof of Theorem 1.

(ii) De�ne

Tn(�) = [yn � �̂n(�)]0 ~Hn(�)[yn � �̂n(�)]:

Then

CVn;1(�) =
Sn(�)

n
+

2Tn(�)

n
+Op

�
hnTn(�)

n

�
:

The result follows if

Tn(�)� �
2
pn(�)

nLn(�)
= op(1) uniformly in � 2 An �Ac

n; (6.8)

E

����Tn(�)
pn(�)

� �
2

����
2m

� c

[ pn(�)]
m

� 2 Ac

n (6.9)
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and

E

����Tn(�) � Tn(�
c
n)

pn(�) � pn(�
c
n)
� �

2

����2m � c

[ pn(�) � pn(�
c
n)]

m
� 2 Ac

n (6.10)

for some c > 0 and positive integer m such that E(y1 � �1)
4m

<1. Let

Wn(�) = [In �Hn(�)] ~Hn(�)[In �Hn(�)]:

When � 2 An �Ac
n,

Tn(�) = e
0
nWn(�)en + 2e0nWn(�)�n + �

0
nWn(�)�n: (6.11)

From Theorem 2 of Whittle (1960),

E

����e0nWn(�)en �E[e0nWn(�)en]

����2l � c[trW2
n(�)]

l � ch
l

n[trWn(�)]
l
: (6.12)

Note that

trWn(�) = tr ~Hn(�)[In �Hn(�)] = pn(�) � tr ~H
2
n(�) � pn(�): (6.13)

By (2.6), (6.12) and (6.13),

P

�
max

�2An�Ac
n

����e0nWn(�)en �E[e0nWn(�)en]

nRn(�)

���� > �

�
�c�

�2l
X

�2An�A
c
n

1

[nRn(�)]l
!0:

Then (6.8) follows from (6.11), �0nWn(�)�n � hn�n(�) � hnRn(�) and the fact

that (2.6) implies

max
�2An�Ac

n

����Ln(�)

Rn(�)
� 1

����!p 0:

Results (6.9) and (6.10) follow from Theorem 2 of Whittle (1960), the identity

(6.13), and the fact that

tr ~H
2
n(�) � hnpn(�) and tr[ ~H

2
n(�) � ~H

2
n(�

c

n)] � 2hn[ pn(�) � pn(�
c

n)]

when � 2 Ac
n.

Proof of Theorem 5. It follows from the proof in Shao (1993), Appendix that

under the given conditions,

CVn;d(�) =
Sn(�)

n
+
�nTn(�)

n
+ op

�
�nTn(�)

n

�

uniformly in � 2 An, where �n is given by (4.5) and Tn(�) is given by (6.11).

Then the result follows from the given conditions and result (6.9).
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COMMENT

Rudolf Beran

University of California, Berkeley

Professor Shao's welcome asymptotic analysis of standard model selection

procedures divides these into three categories: those that perform better when

one or more correct models have �xed dimension under the asymptotics; those

that do better when no correct model has �xed dimension; and intermediate

methods. Adopting the premise that model selection is intended to reduce es-

timation risk under quadratic loss, my discussion will draw attention to two

points:

� GIC�n selection estimators with limn!1 �n = 1 can have arbitrarily high

asymptotic risk when the signal-to-noise ratio is large enough.

� GIC�n selection estimators with either �n = 2 or limn!1 �n = 1 are not

asymptotically minimax unless the signal to noise ratio converges to zero.

They are dominated, in maximum risk, by a variety of procedures that taper

the components of the least squares �t toward zero.

I will develop both points in a signal recovery setting that is formally a special

case of Shao's problem. Suppose that Xn = fXn;t : t 2 Tng is an observation

on a discrete signal �n = f�n;t : t 2 Tng that is measured with error at the time

points Tn = f1; : : : ; ng. The measurement errors are independent and are such

that the distribution of each component Xn;t is N(�n;t; �
2).

For any real-valued function f de�ned on Tn, let ave(f) = n
�1P

t2Tn
f(t).

The time-averaged quadratic loss of any estimator �̂n is then

Ln(�̂n; �n) = ave[(�̂n � �n)
2]

and the corresponding risk is

Rn(�̂n; �n; �
2) = ELn(�̂n; �n):

Model selection and related estimators typically have smaller risk when all

but a few components of �n are small. With enough prior information, this fa-

vorable situation may be approximated by suitable orthogonal transformation of

Xn before estimation. This transformation leaves the Gaussian error distribu-

tion unchanged. A model selection or other estimator constructed in the new

coordinate system may be transformed back to the original coordinate system

without changing its quadratic loss. Thus, in signal recovery problems, the fXn;tg
might be Fourier, or wavelet, or analysis of variance, or orthogonal polynomial

coe�cients of the observed signal.
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Let u 2 [0; 1]. We consider nested model selection, in which the candidate

estimators have the form �̂n(u) = f�̂n;t(u) : t 2 Tng, with �̂n;t(u) = Xn;t whenever

t=(n+1) � u and �̂n;t = 0 otherwise. The value of u will be chosen by the GIC�n

method in Shao's Section 3. Let �̂2n be a consistent estimator of �2 that satis�es

lim
n!1

sup
ave(�2n)=�

2�r

Ej�̂2n � �
2j = 0 (1)

for every r 2 [0;1). Such variance estimators may constructed externally using

replication or internally by methods such as those described in Rice (1984). The

GIC�n selection criterion is

�̂n(u; �n) = ̂n(u) + �n�̂
2
nn

�1[(n+ 1)u]I ;

where ̂n(u) = n
�1P

t=(n+1)>uX
2
n;t and [�]I is the integer part function. Let ûn

be the smallest value of u 2 [0; 1] that minimizes �̂n(u; �n). Existence of ûn is

assured because the criterion function assumes only a �nite number of values.

The model selection estimator �̂n(ûn) will be denoted by �̂n;�n .

Proposition 1. In the signal-plus-noise model, with �̂
2
n satisfying (1), the fol-

lowing bounds hold for every r 2 [0;1):

lim
n!1

sup
ave(�2n)=�

2�r

Rn(�̂n;2; �n; �
2) = �

2min(r; 1): (2)

If limn!1 �n =1, then

lim
n!1

sup
ave(�2

n
)=�2�r

Rn(�̂n;�n ; �n; �
2) = �

2
r: (3)

The least squares estimator Xn satis�es

lim
n!1

sup
ave(�2

n
)=�2�r

Rn(Xn; �n; �
2) = �

2
: (4)

This proposition will be proved at the end of the discussion. Let us consider

some implications:

(a) If �n is a voltage signal, then ave(�
2
n) is the time-averaged power dissipated

by this signal in passing through a unit resistance. Consequently, ave(�2n)=�
2

is the time-averaged signal-to-noise ratio in our signal recovery problem. The

maximum risks in Proposition 1 are computed over subsets of �n values that are

generated by bounding the signal-to-noise ratio from above.

(b) For r = 0, the limiting maximum risks in Proposition 1 do not distinguish

between the performance of �̂n;2 and �̂n;�n with limn!1 �n = 1. Theorems 1

and 2 in Shao's paper indicate that the latter estimators may perform better
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in some (but not all) circumstances where the signal-to-noise ratio converges to

zero.

(c) As long as the signal-to-noise ratio does not exceed 1, both �̂n;2 and �̂n;�n

with limn!1 �n =1 have the same asymptotic maximum risk. Once the signal

to noise ratio exceeds 1, then �̂n;�n has greater asymptotic maximum risk than

�̂n;2 or even the least squares estimator Xn.

(d) For all values of r, the asymptotic maximum risk of �̂n;�n with limn!1 �n

= 1 coincides with that of the trivial estimator �̂n = 0. This does not mean

that �̂n;�n is trivial.

(e) For all values of r, the asymptotic maximum risk of �̂n;2 equals the smaller

of the asymptotic maximum risks of Xn and �̂n;�n with limn!1 �n = 1. This

argument strongly promotes the use of �̂n;2 over these two competitors unless one

is con�dent that the special circumstances of remark b hold.

How well do model selection estimators perform within the class of all esti-

mators of �n? An answer that complements Proposition 1 is

Proposition 2. In the signal-plus-noise model, with �̂
2
n satisfying (1), the fol-

lowing equality holds for every r 2 [0;1):

lim
n!1

inf
�̂n

sup
ave(�2

n
)=�2�r

Rn(�̂n; �n; �
2) = �

2
r=(r + 1): (5)

This result follows from Pinsker's (1980) general lower bound on risk in signal

recovery from Gaussian noise. It may also be derived from ideas in Stein (1956)

by considering best orthogonally equivariant estimators in the submodel where

ave(�2n)=�
2 = r. To be asymptotically minimax, an estimator �̂n must satisfy

lim
n!1

sup
ave(�2

n
)=�2�r

Rn(�̂n; �n; �
2) = �

2
r=(r + 1):

Simplest among asymptotically minimax estimators is the James-Stein (1961)

estimator

�̂n;S = [1� �̂
2
n=ave(X

2
n)]

+
Xn;

where [�]+ denotes the positive part function and �̂
2
n is an estimator of �2 that

satis�es (1). For every positive, �nite r and �2, �2r=(r+1) < �
2min(r; 1). Hence,

for large n, the James-Stein estimator dominates, in maximum risk, any of the

three estimators discussed in Proposition 1. Figure 1 reveals the extent of this

domination.
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contains the nested model selection estimators discussed earlier. It contains as

well candidate estimators that selectively taper the coordinates of Xn towards

zero. Choosing ĝn;mon to minimize R̂n(g) over g 2 Gn;mon generalizes precisely

choosing ûn to minimize �̂n(u; 2) over u 2 [0; 1]. Because the class of candidate

modulators Gn;mon contains all constant functions on [0; 1]Tn , it turns out that

ĝn;monXn is asymptotically minimax, unlike �̂n;2:

lim
n!1

sup
ave(�2

n
)=�2�r

Rn(ĝn;monXn; �n; �
2) = �

2
r=(r + 1):

Thus, on the one hand, ĝn;monXn dominates, for every r > 0, the nested

model selection estimators treated in Proposition 1. On the other hand, because

Gn;mon is richer than the class of all constants in [0; 1]Tn , the maximum risk of the

estimator ĝn;monXn asymptotically dominates that of the James-Stein estimator

over large classes of submodels within ave(�2n)=�
2 � r. For further details on

these points, on other interesting choices of Gn, and on algorithms for computing

ĝn, see Beran and D�umbgen (1996).

In short, when quadratic risk is the criterion and the signal-to-noise ratio is

not asymptotically zero, data-driven tapering of Xn is superior to model selection

for estimating �n. This �nding is not entirely surprising, since the components of

Xn could be Fourier or wavelet coe�cients computed from the original data; and

tapering is known to reduce the Gibbs phenomenon that is created by truncating

a Fourier series.

Proof of Proposition 1. Fix r and suppose throughout that ave(�2n)=�
2 � r

for every n. Result (4) is obvious. Let

Vn;1(u) = n
�1=2

X
t=(n+1)>u

[(Xn;t � �n;t)
2 � �

2]

Vn;2(u) = n
�1=2

X
t=(n+1)>u

�n;t(Xn;t � �n;t)

for every 0 � u � 1. Let k � k denote the supremum norm on [0; 1]. By

Kolmogorov's inequality, there exist �nite constants C1 and C2 such that

supave(�2n)=�2�r EkVn;ik � Ci for i = 1; 2 and every n � 1.

First step. Recall the de�nition of ̂n(u) and let �n(u) = n
�1
P

t=(n+1)>u �
2
n;t.

Then

̂n(u) = �n(u) + �
2(1� n

�1[(n+ 1)u]I) + n
�1=2

Vn;1(u) + 2n�1=2Vn;2(u): (6)

Consequently,

k�̂n(�; 2) � �n(�)� �
2(1 + �)k = oE(1): (7)
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The notation oE(1) represents a term rn for which limn!1 supave(�2
n
)=�2�r Ejrnj =

0: Moreover, since

Ln(�̂n(u); �n) = �n(u) + �
2
n
�1[(n+ 1)u]I + n

�1=2
Vn;1(0)� n

�1=2
Vn;1(u); (8)

it follows that

kLn(�̂n(�); �n) + �
2 � �̂n(�; 2)k = oE(1): (9)

On the one hand, from the de�nition of �̂n;2, (9), and (7),

Ln(�̂n;2; �n) = min
0�u�1

[�n(u) + �
2
u+ �

2]� �
2 + oE(1)

� min(�n(0) + �
2
; 2�2)� �

2 + oE(1)

� �
2min(r; 1) + oE(1):

Hence,

lim sup
n!1

sup
ave(�2n)=�

2�r

Rn(�̂n;2; �n; �
2) � �

2min(r; 1): (10)

On the other hand, if �2n;t = r�
2 for every t 2 Tn, then, starting as in the

preceding paragraph,

Ln(�̂n;2; �n) = min
0�u�1

[�n(u) + �
2
u+ �

2]� �
2 + oE(1)

= �
2 min
0�u�1

(r + (1� r)u) + oE(1)

= �
2min(r; 1) + oE(1):

Hence,

lim sup
n!1

sup
ave(�2

n
)=�2�r

Rn(�̂n;2; �n; �
2) � �

2min(r; 1): (11)

Result (2) follows from (10) and (11).

Second step. From (6) and the de�nition �̂n(u; �n),

k�̂n(�; �n)� �n(�)� �
2(1� �)� �n�̂

2
nn

�1[(n+ 1)�]Ik = oE(1): (12)

This implies

min
0�u�1

�̂n(u; �n)� min
0�u�1

f�n(u) + �
2(1� u) + �n�̂

2
nn

�1[(n+ 1)u]Ig = oE(1);

and so

min
0�u�1

�̂n(u; �n) � �
2(r + 1) + oE(1):

Since �n !1, an argument by contradiction using this bound, (1), and (12)

establishes ûn = oE(1). Then, from (8),

Ln(�̂n;�n ; �n) = �n(ûn) + oE(1): (13)
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Consequently,

lim sup
n!1

sup
ave(�2

n
)=�2�r

Rn(�̂n;�n ; �n; �
2) � �

2
r:

On the other hand, setting �2n;n = nr�
2 and �

2
n;t = 0 otherwise in (13) yields

lim inf
n!1

sup
ave(�2

n)=�
2�r

Rn(�̂n;�n ; �n; �
2) � �

2
r:

Result (3) now follows.
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COMMENT

J. Sunil Rao and Robert Tibshirani

Cleveland Clinic Foundation and University of Toronto

In an impressive series of papers over the last few years, Jun Shao has shed

new light on the behaviour of linear model selection procedures from an asymp-

totic point of view. This new paper ties together much of this work and in

one broad sweep, he develops a framework for comparing the majority of model

selection procedures in current use. He is to be congratulated.

Shao's framework is the following. In a linear model setting with parameter

vector �, he lets � index possible subsets of �, denoted by �(�). He de�nes a

true model �Ln to be the submodel minimizing the averaged squared prediction

error. Then for any model selection procedure producing an estimated subset

�̂n, he asks whether the procedure is consistent, that is whether

Pf�̂n = �
L

ng ! 1: (1)

We wonder whether he is asking the right question. Our concern is twofold.

First, while consistency seems a reasonable objective we often want our procedure

to produce accurate estimates in terms of mean squared (or prediction) error.

The two objectives are not equivalent, as over�tting or under�tting can have

very di�erent e�ects on prediction accuracy.
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Secondly, rather than focus on a �xed subset, it seems more natural to focus

the selection procedure on a complexity parameter. In particular, we construct

the cost-complexity criterion

C�(�) = RSS(�) + �k; (2)

where RSS(�) is the residual sum of squares for some model � (more precisely

for some �(�) but notationally supressed for clarity) and k is the number of non-

zero elements in �. For a �xed � > 0 we can �nd the parameter � minimizing

C�(�). In practice, we use a procedure like cross-validation to �nd the value of �̂

producing the smallest estimated prediction error, and then for our �nal model

we choose the � minimizing C
�̂
(�).

The parameter � roughly indexes model size. Hence in the above procedure

cross-validation is examining the performance of a given model size, as opposed to

a given model. Model size is likely to be a more \portable" quantity than a �xed

model, in going between training and validation samples. This cost-complexity

approach is the basis of the pruning procedure in the CART work (Breiman et

al. (1984)), and was studied in the linear model setting by Rao (1994).

To examine these issues, we reran 100 realizations of the simulation study of

Shao's Table 1, producing our own Table 1. We have included in our table the

number of under�t and over�t models and the model errorME = (���̂n)0(���̂n)
where � = X� and �̂n = X(�̂n)�̂(�̂n). This model error associated with each

selection procedure is averaged over the 100 realizations. Along with some of the

selection procedures studied by Shao, we have included the full least squares �t,

leave-d out cross-validation for a number of di�erent values d, and the adaptive

cost complexity parameter (CCP) approach, using leave-out 25 cross-validation

to choose � in the range [log n; n= log n]. This range is chosen to guarantee

consistency of the procedure. The estimators were applied to the four scenarios

given by Shao, and a �fth one at the bottom of the table. The results show:

1. Methods with high correct selection probabilities do not always give accurate

predictions. In particular, CVd with large d (25 or 30) sometimes under�ts

badly, resulting in high model error. The value 25 (chosen by Shao) seems

unusually large to us when the sample size is 40: we wonder what Shao's

recommendation is for the practitioner?

2. In the last case the full model beats all model selectors. We feel that the full

model should be included in any comparison of such procedures.

3. The adaptive CCP method looks to be the overall winner, performing well in

terms of both correct model selection and model error.

The area of model selection is very complex, with many aspects not yet (in

our view) well understood. Our discussion was meant to raise more questions, in
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Table 1. Shao's Example 1 indicating over�tting, under�tting counts, num-

ber of times true model selected, and ME for the selection procedure (100

realizations of the simulation).

True Model Procedure number number number ME

over�t under�t correct

� = (2; 0; 0; 4; 0)0 full model 100 0 0 5.231

Cp 41 0 59 3.943

BIC(� = logn) 17 0 83 3.031

GIC(� = n= logn) 1 0 99 2.174

CVd(d = 1) 78 0 22 4.026

CVd(d = 20) 30 0 70 3.113

CVd(d = 25) 22 0 78 2.809

CVd(d = 30) 18 0 82 2.276

Adaptive CCP 4 0 96 2.386

� = (2; 0; 0; 4; 8)0 full model 100 0 0 5.231

Cp 28 0 72 4.373

BIC(� = logn) 10 0 90 3.792

GIC(� = n= logn) 0 0 100 3.309

CVd(d = 1) 73 0 27 4.427

CVd(d = 20) 23 0 77 3.573

CVd(d = 25) 24 0 76 3.784

CVd(d = 30) 15 1 84 4.002

Adaptive CCP 4 0 96 3.563

� = (2; 9; 0; 4; 8)0 full model 100 0 0 5.231

Cp 18 0 82 4.734

BIC(� = logn) 5 0 95 4.389

GIC(� = n= logn) 0 1 99 4.412

CVd(d = 1) 39 3 58 5.560

CVd(d = 20) 14 1 85 4.682

CVd(d = 25) 12 0 88 4.380

CVd(d = 30) 8 7 85 7.083

Adaptive CCP 5 0 95 4.389

� = (2; 9; 6; 4; 8)0 full model 0 0 100 5.231

Cp 0 0 100 5.231

BIC(� = logn) 0 0 100 5.231

GIC(� = n= logn) 0 6 94 6.608

CVd(d = 1) 0 8 92 7.849

CVd(d = 20) 0 1 99 5.441

CVd(d = 25) 0 6 94 6.843

CVd(d = 30) 0 40 60 18.627

Adaptive CCP 0 0 100 5.231

� = (1; 2; 3; 2; 3)0 full model 0 0 100 5.169

Cp 0 68 32 5.717

BIC(� = logn) 0 85 15 6.238

GIC(� = n= logn) 0 100 0 13.689

CVd(d = 1) 0 63 37 8.728

CVd(d = 20) 0 84 16 8.616

CVd(d = 25) 0 93 7 12.114

CVd(d = 30) 0 100 0 20.488

Adaptive CCP 0 85 15 6.748
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the hopes that researchers like Jun Shao will continue to apply their considerable

talents to shed light on this important area.

Department of Biostatistics, Cleveland Clinic Foundation.

Department of Preventive Medicine and Biostatistics, University of Toronto, Toronto, Ontario

M5S 1A8, Canada.

COMMENT

Mervyn Stone

University College London

This paper skilfully clari�es a number of important questions concerning

model selection for least-squares prediction with squared error loss. It also sug-

gests some problems that have not yet been decently formulated.

Professor Shao has responsibly concentrated on sorting out the logic and

technical kernel of some necessary mathematics. I will exercise discussant's li-

cense to range irresponsibly over the wider framework where intuition and con-

jecture can be countenanced.

(1). The paper focuses on selection within a given set of linear models: it

does not consider the question of choice in the `given'| a possibility that must

be sensitive to scienti�c context. In my 1974 paper, I considered cross-validatory

choice of a linear model for the rotation-averaged shape of the Earth, for which

there can be no scienti�c limit to pn| the number of Legendre polynomials in

what must regarded as a \soft science" approximation to the true shape. But

in another example of earthy statistics|geodetic survey|the appropriate linear

model is unambiguously `given' by the topology of the triangulation points (with,

incidentally, no room for further selection within the model). I think the �rst case

| of potentially unlimited pn|is more representative of statistical practice with

linear models than is the case where pn is `given'. All of which raises the following

lurking questions when we do �x pn: Could the least-squares measure Ln(�
L
n)

(whose value is crucial in the paper's consideration of asymptotic validity) be

appreciably reduced by enlarging the model? | and, even if it were not, should

we not admit such extension by considering other predictors that avoid the least-

squares pitfall of over-parametrization. Of course, the asymptotics may then

prove unmanageable!

(2). Selection for prediction is not as censorious, about not picking the min-

imal correct model, as any method that wants to pin down the truth in some
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\hard science". Shao's use of the loss ratio (2.3), as in Li (1987), sets the math-

ematics in the permissive direction (whereas his tables of selection probabilities

seem tangential to the main message of the paper). But it is not clear, from

the theorems proved, whether this is a \distinction without a di�erence" i.e.

whether, in those cases where a method has asymptotic validity (in the sense of

(2.3)), it does this only by asymptotically selecting the minimal correct model

(if there is one)|ruling out any trade-o� between `bias' (in �n) and `variance'

represented by the second term in Ln.

(3). I would like to have a clearer intuition about the necessity status of

condition (2.6). Li referred to his stronger version of this condition as \reason-

able". My rough verbalisation of (2.6) is: \For every incorrect model �, either

pn(�)!1 or, if
p
�n(�)! 0, it does so slower than 1=

p
n|with a further com-

bined condition on the rates of these limits when the number of incorrect models

goes to in�nity". (The square roots keep things on the observation scale.) That

(with reference to Theorem 1(i)) things would get worse for �̂n;2 if we were to

make the incorrect models get nearer the truth faster then 1=
p
n o�ends my cur-

rent intuition. But I am open to persuasion. In his challenging 1988 paper|for

the case of pn �xed, more than one true model, and a criterion given by the prob-

ability of selection of the minimal correct model|Shao imposed the condition

that �n(�) be bounded away from zero for incorrect models, on the reasonable

grounds that this was an identi�ability condition \very minimal for asymptotic

analysis". Its present relaxation could, I think, have been taken further.

(4). The �ndings for delete-1 and delete-d crossvalidatory choice are most

interesting. In 1973, I conjectured that \delete-1" would be superior|on the

grounds that the n delete-1 predictors came closer to the whole-sample predic-

tor and that their assessment still used the whole sample. Shao's (1988) paper

made the \shocking discovery" that, under the conditions he imposed, recti�ca-

tion of the inconsistency of delete-1 crossvalidatory choice (with respect to the

probability of selection of the minimal correct model) required that d=n ! 1!

This result has been picked up and risks becoming a stable myth of the form

\Delete-d (large) Good, Delete-1 Bad.". For example, chemometrician Clementi

(1995) refers to Shao (1988) in this unconditional remark: \statisticians agree

that group formation [i.e. delete-d in some pattern] is better that LOO [leave one

out] one theoretical grounds". I hope that both statisticians and practitioners

will read this new work of Shao's which gives a well-balanced overview of the

present position about the asymptotics.

(5). As far as I can see, Shao's work has revealed something of a cleavage

between what the asymptotics say about prediction and the idea that we should in

many problems be able to bene�t from some trade-o� between bias and variance.

Perhaps the clear-cut selection of a linear model (setting some parameters to
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zero that require only Tukey's attening or Stein's shrinkage) goes too far for

the trade-o� to show itself (except to a small extent with the designedly variance

sensitive CVd in Tables 1 and 2). Or is there a need for alternative asymptotics?

(6). I have already indicated why I think further work is required for the

soft science case where interest lies in predictive e�ciency. The problem is that,

with models � indexed by three controlling parameters n, pn(�), �n(�), there

are many ways of going to in�nity (even for the problem in probability of limit

laws for sums of i.i.d. random variables, there is a spectrum that extends from

central limit theorems to those for moderate and large deviations). The further

problem for the practitioner is to know which of these di�erent routes to in�nity

is the one that will o�er guidance for the �nite problem in hand.

25 Hawtrey Drive, Ruislip Middx, London HA4 8QW, UK.

COMMENT

Ping Zhang

University of Pennsylvania

1. Introduction

Model selection is a di�cult problem for two reasons: First, related to the

problem are fundamental philosophical issues such as the existence of a true

model and the ultimate goal of statistical modeling. Second, the topic is so

broad that precise de�nition of the model selection problem seems both techni-

cally implausible and practically unnecessary. Ironically, applications of model

selection, especially linear model selection, are ubiquitous in many areas of empir-

ical research. To some extent, we could even argue that most statistical problems,

from hypothesis testing to nonparametric function estimation, are related to the

idea of model selection. The potential scope of a general model selection prob-

lem therefore goes far beyond variable selection in linear regression, which is the

subject treated in the paper under discussion. Despite the limitation in scope,

Professor Shao's rigorous treatment of the subject has not only uni�ed and im-

proved many existing results, but also clari�ed misconceptions and brought new

insights into the behavior of a large class of model section methods. The role

of model dimension, to my knowledge, is previously not well understood (c.f.,

Example 2). Professor Shao is to be commended for taking on such a di�cult

subject. The work under discussion is a much needed service to the statistical

community. There is no doubt in this investigator's mind that Professor Shao's

work will soon become a standard reference in the model selection literature.
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2. AIC vs. BIC

As statisticians, we should always bear in mind that mathematical results

do not automatically render themselves statistical interpretations. The main

conclusion in Shao's paper is that GIC�n with �n = 2 and �n !1 (which I shall

refer to as AIC-like and BIC-like criteria respectively) represent two classes of

model selection criteria whose asymptotic behavior are fundamentally di�erent.

The validity of each class is associated with the structures of the unknown true

model. An implicit assumption in this argument is therefore the existence of a

true model. According to Shao's results, BIC-like criteria would perform better

if the true model has a simple structure (�nite-dimension) and AIC-like criteria

would do better if the true model is a complex one (in�nite-dimension). The

results are undisputable so far as the mathematics is concerned. In practice,

however, there is a ip side to this interpretation. An argument can be made in

favor of BIC-like criteria regardless of the true model. First of all, one should

realize that statistical models are mostly used in areas where the existence of a

true model is doubtful. Even if a true model does exist, there is still ample reason

to choose simplicity over correctness knowing perfectly well that the selected

model might be untrue. The practical advantage of a parsimonious model often

overshadows concerns over the correctness of the model. After all, the goal

of statistical analysis is to extract information rather than to identify the true

model. In other words, the parsimony principle should be applied not only to

candidate �t models, but the true model as well. Theoretically, this is in line

with the argument of Rissanen (1986b), where a BIC-like criterion is shown to

be optimal from an information theoretic point of view.

3. The Role of Loss Function

The point, of course, is that optimality (e.g., loss-e�ciency) is a concept that

depends on the objective. Shao argues repeatedly that the GIC�n criterion with

2 < �n <1 does not merit further attention because the asymptotic properties

of the corresponding GIC�n criterion is dominated by either �n = 2 or �n !1.

This, however, is the result of using Ln(�) as an all purpose loss function. The

�n;�n criterion can be viewed as a sample estimate of Ln(�) if and only if �n = 2.

Intuitively, it is unfair to measure the performance of other GIC�n criteria using

a loss function that is derived mainly for the case of �n = 2. In fact, if one is

willing to modify the loss function, it is possible to show that any 2 < �n < 1
is loss-e�cient. To see this, let us de�ne a new loss function

~Ln(�) =
1

dN

X
s2S

k�n;s � �̂n;s(�)k2; (1)

where the notations are the same as in Section 4 of Shao's paper. The loss

function in (1) is equivalent to the conditional prediction error of predicting d
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future data points with n � d current data points. The delete-d CV criterion,

i.e., CVn;d(�) in Shao's notation, is a sample estimate of ~Ln(�). It is natural

to expect, and I would be surprised if it is not the case, that CVn;d(�) is loss-

e�cient under the modi�ed loss function ~Ln(�). Suppose that this were true.

Then following Shao's argument, the GIC�n criterion with �n = n=(n � d) + 1

can be shown to be loss e�cient if one uses ~Ln(�) as the loss function. Notice

that 2 < �n <1 if d is chosen to be proportional to n.

Finally, if one uses the accumulated prediction error of Wei (1992) to replace

Ln(�), then, contrary to Shao's conclusion, GIC�n with �n = log(n) can be shown

to be loss-e�cient. The moral here is that one should not take theory out of its

context. The choice of loss function has a tremendous bearing on the asymptotic

properties of the corresponding model selection criterion. Occasionally, casual

interpretation and generalization of theoretical results can be misleading to the

novice reader. I am basically in agreement with Shao regarding the distinction

between �n = 2 and �n ! 1, except for minor di�erences in the interpretation

of results. However, I disagree with Shao's claim that the case 2 < �n < 1 is

uninteresting (see Zhang (1992)). What we have demonstrated in the previous

paragraph is that every member of the GIC�n class with 2 < �n < 1 can be

asymptotically optimal, provided that we de�ne optimality properly. Likewise,

we should be able to di�erentiate and to justify di�erent GIC�n criteria when

�n ! 1 at di�erent rates. This latter problem, however, is rarely discussed in

the literature.

4. Extensions

The challenge of the model selection problem is that, without assuming the

existence of a true model, it is rather di�cult to assess the merit of a proposed

method objectively. Each method has some merit in its own right. For example,

the Bayesian approach has the philosophical advantage that one is not forced to

choose a single model out of a set of possible models. The classical argument

of Akaike (1973) states that the best model should be the one that yields the

highest predictive power. Rissanen (1986c) asserts that the best model should

be the simplest one that is capable of fully describing the data. These di�erent

approaches seem to have nothing in common. The general consensus is, however,

that most of the existing model selection criteria give rise to a quanti�cation of

the parsimony principle. They di�er in their capacity to balance goodness-of-�t

and model complexity.

In Shao's work, the GIC�n criterion is used as a prototype class of model

selection procedures that, when �n varies, represents di�erent levels of trade-o�

between goodness-of-�t and model complexity. A natural extension of GIC, in

Shao's notation, is

GIC�(�) = Sn(�) + �n�̂
2
na( pn(�)); (2)
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where a( p) is an arbitrary function of p. The GIC�n criterion corresponds to

a( p) = p. George and Foster (1994) show that the GIC� criterion in (2) with

a( p) = log( p) has some minimax property under a newly de�ned loss function.

Hartigan (personal communication) �nds that GIC� with a( p) = p
2 has a similar

interpretation. Still more general extensions of GIC�n can also be found in the

literature. For example, Wei (1992) proposes what he calls an FIC criterion

FIC(�) = �̂
2
n

�
n+ log det(Xn(�)X

0
n(�))

	
; (3)

where ��2Xn(�)X
0
n(�) is the Fisher information matrix under the model indexed

by �. Note that (3) cannot be written in the form of (2) since the penalty term in

(3) is not necessarily a function of model dimension pn(�). As a general theory,

it would be nice if the current results in Shao's paper can be extended to criteria

such as (2) and (3).

5. Linear Models for Panel Data

Panel data, i.e., longitudinal records taken from a randomly selected group

of panelists, arise frequently in econometrics and other social sciences (Hsiao

(1986)). The general format of the observed data is (xi; zt; yit); i = 1; : : : ; N ; t =

1; : : : ; T , where xi is a vector of independent variables measuring the demographic

attributes of the ith panelist; zt is a vector of variables that measures changes

in the environment; and yit is a response variable observed at time t from the

ith panelist. What sets panel data apart from conventional data is that the

observations vary not only across individuals (as in cross-sectional survey data),

but also across time (as in aggregate time series records). Di�erent types of

models are often needed to describe the two types of variation. Suppose that we

�t a linear model of the following form:

yit = �+ xi� + zt� + �it; (4)

where �it are i.i.d. (0; �2) across both i and t. Apparently, variable selection

under model (4) can be accomplished by using any of the criteria established for

ordinary regression models. A closer look at the situation suggests, however, that

conventional model selection methods may not be appropriate for the purpose of

panel data analysis.

Take the predictive approach for example. For panel data, it is often more

relevant to predict aggregate statistics rather than individual values of future

observations. Let gt denote a summary statistics of yit; i = 1; : : : ; N . Let ĝt be a

predictor of gt based on data up to time t�1. De�ne the accumulated prediction

error as

APE �
TX

t=t0

kĝt � gtk2:
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Under ordinary regression models (i.e., N = 1), it has been shown that APE with

least squares predictors is asymptotically equivalent to the BIC criterion (Wei

(1992)). Hence the results in Shao's paper apply to APE as well. For panel data

(i.e., N > 1), depending on the target function gt, the asymptotic properties of

APE can be rather di�erent.

For simplicity, suppose that the covariates xi and zt are iid random vectors

following the standard multivariate normal distribution. When gt is the cross-

sectional sample mean, i.e., gt = �yt = N
�1PN

i=1 yit; Zhang (1996) shows that

APE � N
�1�1(T ) + �

2 dim(�)N�1 log(T ); (5)

where �1(T ) is an approximate measure of goodness-of-�t. An interesting ob-

servation is that (5) does not penalize cross-sectional model complexity since

dim(�) does not appear in the expression. More to the point, this case is likely

to be covered by Professor Shao's theory because (5) is, qualitatively speaking,

a member of the GIC�n class.

Next, suppose that we wish to predict the cross-sectional variance, i.e., gt =

N
�1PN

i=1(yit � �yt)
2
: A result of Zhang (1996) implies that

APE � N
�1�2(T ) + 4�2(�2 + k�k2)N�1 log(T ); (6)

where �2, as before, is a measure of goodness-of-�t. Contrary to the previous

case, we note that (6) does not penalize cross-time complexity. Furthermore, (6)

is not a member of the GIC�n class and Shao's results do not apply. The result

for general gt is more complicated (see Zhang (1996)).

In the past two sections, we have demonstrated that some important model

selection criteria do not �t into the framework of Shao's paper. Our purpose is

not to show that there are pathological exceptions to an otherwise nice theory.

Instead, we believe that Professor Shao's results can be extended to much broader

contexts. The key here, as we pointed out at the beginning, is to establish a

general de�nition of what a model selection problem is and what one means by

optimality.

Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia, PA 19104-

6302, U.S.A.
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REJOINDER

Jun Shao

I would like to thank the Editor and an Associate Editor for organizing

this discussion. I am also grateful to discussants for providing very insightful

discussions, useful additional results, and directions for further research. As

the discussants pointed out, model selection is a very complicate and di�cult

problem. I hope that more discussions of this kind will be seen in the future and

that the current paper will serve as a starter for theoretical research in assessing

various existing model selection procedures and in developing new methods. In

the following I focus on some major issues raised in the discussion, instead of

replying to each discussant separately. I shall adopt the same notation that I

used in the main paper.

1. Criteria of Assessing Model Selection Procedures

Any theoretical study in assessing some statistical procedures must be based

on one or several criteria. For example, the most commonly used criteria in an

estimation problem include the mean squared error (or, more generally, the risk),

consistency, asymptotic e�ciency, admissibility, etc. Model selection is far more

complicated than an estimation problem and using a single criterion may not be

su�cient in many situations.

I stated in Section 1 that the goal of model selection is to minimize the

squared error loss Ln(�) = k�n � �̂n(�)k2=n over models � 2 An. Ideally,

the loss function Ln should be used to assess model selection procedures. But

using Ln (or the mean squared error) to assess model selection procedures is

very di�cult or impossible. Criterion (2.3) (called asymptotic loss e�ciency)

guarantees that when the sample size n is large, Ln(�̂n) is close to min� Ln(�)

(unfortunately, we do not know how large is large, which is a limitation of all

asymptotic analysis). It is a good starting point for theoretical research in this

area, although many other issues need to be worried about. The scenario is very

similar to an estimation problem in which one is not able to assess the �nite-

sample mean squared error but considers consistency and asymptotic e�ciency

instead. Consistency is an asymptotic analog of admissibility in the sense that

we should not encourage the use of inconsistent (inadmissible) procedures unless

there are speci�c reasons, but usually there are many consistent (admissible)

procedures that have to be further assessed.

Rao-Tibshirani wondered why I also consider criterion (2.1), the consistency.

Criteria (2.1) and (2.3) are related and are equivalent in some cases (Proposition

1). Criterion (2.3) focuses on the loss Ln(�̂n), whereas criterion (2.1) emphasizes
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the frequency of �̂n = �
L
n , where �̂n is the model selected using a model selection

procedure and �
L
n is the optimal model that minimizes Ln(�). If �Ln is non-

random, then criterion (2.1) is the same as the consistency in an estimation

problem where �̂n is viewed as an estimator of �Ln . In some problems (e.g.,

Examples 1 and 2), the optimal model can be de�ned as the correct model with

the smallest dimension and, therefore, criterion (2.1) does not depend on any

loss function. On the other hand, criterion (2.3) is loss-dependent, which will

be further discussed later. For these reasons, it is of interest to study model

selection procedures under both criteria (2.1) and (2.3).

For a �xed sample size n, criteria (2.1) and (2.3) are di�erent as pointed out

by Rao-Tibshirani, but I think that a model selection procedure having a high

frequency of choosing the optimal model should usually be fairly good in terms

of the loss Ln. I am very grateful to Rao-Tibshirani for their simulation results

that complements my simulation study. From their Table 1, one can �nd that

except for the case where the full model is the only correct model, the GIC with

� = n= logn and the delete-25 CV perform fairly well in terms of the average

loss Ln, although they may not be the best.

Theoretical research based on other criteria is called for. Beran adopted an

asymptotic minimax criterion. Perhaps we may consider the convergence rates

of consistent model selection procedures. For example, if we can show that

1� min� Ln(�)

Ln(�̂An )
= Op(an) and 1� min� Ln(�)

Ln(�̂Bn )
= Op(bn);

where �̂
A
n and �̂

B
n are models selected by model section procedures A and B,

respectively, and an and bn are two positive sequences of numbers satisfying

an=bn ! 0, then procedure A is better than procedure B.

2. Loss Function

Criterion (2.3) depends on the loss function

Ln(�) = �n(�) +
e
0
nHn(�)en

n
;

where �n(�) is a squared \bias" term and e0nHn(�)en=n is a \variance" term

related to the complexity of model �. Zhang raises the question of using a loss

function that puts heavier penalty on the complexity of models. Indeed, we may

consider the following loss function

~Ln(�) = �n(�) +
(�n � 1)e0nHn(�)en

n
;

which is equivalent to the loss function in Zhang with certain choice of �n. Note

that �n � 1 can be viewed as a penalty parameter on the complexity of a model
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and that Ln(�) is simply ~Ln(�) with �n � 2. The cost-complexity criterion in

Rao-Tibshirani with a �xed � is also closely related to the loss function ~Ln.

Theorem 6. Assume that (2:6) and (3:4) hold and that �̂2n is consistent for �2.

(i) If �n !1, then the GIC�n is asymptotically ~Ln-loss e�cient, i.e.,

~Ln(�̂n;�n)

min� ~L(�)
!p 1:

(ii) The same conclusion holds for �n � � (a �xed constant), provided that An

contains at most one correct model for all n.

The proof of this result is given in the end.

Theorem 6(ii) indicates that if we consider the loss function ~Ln with �n � �,

then the GIC�n with �n � � > 2, which is also known as the FPE� method,

plays the same role as the Cp method in the case where Ln is used as the loss

function. But the FPE� is still not asymptotically loss e�cient if An contains

more than one correct models.

Theorem 6(i) indicates that the GIC�n with �n ! 1 is asymptotically ~Ln-

loss e�cient, which is natural since the same �n is used in the loss function and

the GIC. But why is the GIC�n with �n ! 1 also asymptotically loss e�cient

when the squared error loss Ln is used (Theorem 2)? The following result answers

this question.

Theorem 7. (i) If there exists a �xed-dimension correct model (in An or not in

An) and �n=n! 0, then asymptotic Ln-loss e�ciency is the same as asymptotic
~Ln-loss e�ciency, i.e.,

P

n
�
L

n = �
~L
n for su�ciently large n

o
= 1;

where �
L
n and �

~L
n are the optimal models under the loss functions Ln and ~Ln,

respectively.

(ii) If Ac
n is empty for all n and

(�n�̂
2
n � 2�2)pn(�

L
n)

nLn(�Ln)
!p 0;

then
Ln(�

L
n)

Ln(�
~L
n)
!p 1 and

~Ln(�
L
n)

~Ln(�
~L
n)
!p 1:

Thus, if there is a �xed-dimension correct model, asymptotic loss e�ciency

with di�erent loss functions ~Ln are equivalent and the GIC�n with �n ! 1 is

asymptotically loss e�cient regardless of which loss function is used. To respond
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to Zhang's comment on the FPE� with 2 < � < 1, I �nd that my comment

(in the end of Section 3) on the relative performance between the FPE� and the

GIC�n is valid even if Ln is replaced by ~Ln; however, my comment on the relative

performance between the FPE� and the GIC2 applies only to the case where the

squared error loss is used.

3. Signal-to-Noise Ratio

Several discussants addressed the problem of signal-to-noise ratio. When n

is �xed and the ratio k�k=� ! 0, all model selection procedures will fall apart,

since we cannot distinguish the zero components and the non-zero components

of �. The GIC�n with a large �n is more sensitive to the signal-to-noise ratio

than the GIC�n with a small �n, which is numerically illustrated by the last two

cases in Table 1 of Rao-Tibshirani. What can we do when k�k=� is very small?

Perhaps a di�erent asymptotic framework should be adopted as Stone suggested.

We may consider di�erent convergence or divergence rates of n, pn(�), and �n(�)

to provide an asymptotic analysis that can o�er the best guidance for a given

practical situation.

4. GIC2 versus GIC�n

Beran, Stone, and Zhang discussed the choice between the GIC2 (or the

Cp) and the GIC�n (or the choice between the delete-1 CV and the delete-d

CV). Asymptotic minimaxity cannot distinguish these two methods when r = 0

(Beran). Under criteria (2.1), (2.3) and the asymptotic settings considered in the

current paper, the GIC�n with a large �n is preferred, because the only situation

where the GIC2 is possibly better is when there is no �xed-dimension correct

model and the squared error loss Ln is used. As I discussed above, however, the

GIC2 is less sensitive to the small signal-to-noise ratio, although it also breaks

down as k�k=� ! 0. We may need to consider other criteria in making a choice.

5. Choices of �n

Even when we decide to adopt the GIC�n with �n ! 1, we still need to

choose a particular �n. This issue is not addressed in the current paper and

seems to be a di�cult problem. A promising adaptive method is introduced by

Rao-Tibshirani. Their method amounts to �nding a suitable �n by minimizing

an objective function via methods such as the cross-validation. We may even use

this method to assess the GIC2 and the GIC�n . Properties of this method need

to be investigated.

6. Condition (2.6)

Stone questioned condition (2.6) in his comment (3). My �rst reaction is

that (2.6) is a weak condition if we focus on the case where n ! 1 and k�k=�
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is �xed. As I discussed in the end of Section 2, in several important cases (2.6)

is the same as (2.7): n�n(�) + �
2
pn(�) ! 1 for all � 2 An � Ac

n. If pn(�) is

bounded, then very likely �n(�) is bounded away from 0. My second reaction

to Stone's comment (3) is that if �n(�) tends to 0 faster than n
�1, then it is

hard to distinguish models and all model selection procedures may break down

(it hurts the GIC�n with a large �n more, I believe). This is very similar to the

situation where we �x n and let k�k=� tend to 0.

7. Other Research Problems

The discussants pointed out various other directions for research in this area.

For example, Zhang's extended GIC; Rao-Tibshirani's adaptive method of choos-

ing �; Zhang's extension of model selection to panel data; the use of di�erent

asymptotic settings (Stone); the choice between the Cp and the GIC�n (Beran,

Stone, and Zhang); the use of shrinkage estimators (Beran and Stone), etc. In

some of these problems we may need to start with empirical studies. I hope that

more researchers will work on these problems that are pertinent to applications

of model selection.

8. Proofs

Proof of Theorem 6. Using the conditions of the theorem we can establish

�n;�n(�) =
kenk2
n

+ ~Ln(�) + op

�
~Ln(�)

�
;

where the op is uniformly in � 2 An�Ac
n and is uniformly in � 2 An if �n !1.

Then the results in (i) and (ii) follow from

0 �
�n;�n(�

~L
n)� �n;�n(�̂n;�n)

~Ln(�̂n;�n)
=

~Ln(�
~L
n)� ~Ln(�̂n;�n)

~Ln(�̂n;�n)
+ op(1) � op(1);

where the inequalities follow from �n;�n(�
~L
n) � �n;�n(�̂n;�n) and ~Ln(�

~L
n) �

~Ln(�̂n;�n).

Proof of Theorem 7. If there is a �xed-dimension correct model, then lim infn
min�2An�A

c
n
�n(�) > 0 (see Nishii (1984)). Hence the result in (i) follows from

the fact that for su�ciently large n, both �
L
n and �

~L
n are the same as the model

that minimizes �n(�), � 2 An, and has the smallest dimension. Result (ii)

follows from

0 �
~Ln(�

L
n)� ~Ln(�

~L
n)

~Ln(�Ln)
� Ln(�

L
n)� Ln(�

~L
n)

Ln(�Ln)
+

(�n�̂
2
n � 2�2)[ pn(�

L
n)� pn(�

~L
n)]

nLn(�Ln)

� (�n�̂
2
n � 2�2)[ pn(�

L
n)� pn(�

~L
n)]

nLn(�Ln)
= op(1):
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