Linear Model Selection by Cross-Validation

JUN SHAO*

We consider the problem of selecting a model having the best predictive ability among a class of linear models. The popular leave-
one-out cross-validation method, which is asymptotically equivalent to many other model selection methods such as the Akaike
information criterion (AIC), the C,, and the bootstrap, is asymptotically inconsistent in the sense that the probability of selecting
the model with the best predictive ability does not converge to 1 as the total number of observations n = co. We show that the
inconsistency of the leave-one-out cross-validation can be rectified by using a leave-n,-out cross-validation with n,, the number of
observations reserved for validation, satisfying n,/n — 1 as n = co. This is a somewhat shocking discovery, because n,/n = 1 is
totally opposite to the popular leave-one-out recipe in cross-validation. Motivations, justifications, and discussions of some practical
aspects of the use of the leave-n,-out cross-validation method are provided, and results from a simulation study are presented.
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1. INTRODUCTION

Cross-validation is a method for model selection according
to the predictive ability of the models. Suppose that 7 data
points are available for selecting a model from a class of
models. The data set is split into two parts. The first part
contains n, data points used for fitting a model (model con-
struction), whereas the second part contains n, = n — 1. data
points reserved for assessing the predictive ability of the
model (model validation). Strictly speaking, model validation
is carried out using not just n,, but all the n = n, + n. data.
There are (},) different ways to split the data set. Cross-val-
idation, as its name indicates, selects the model with the best
average predictive ability calculated based on all (or some)
different ways of data splitting.

Clearly, the computational complexity of this method in-
creases as 1, increases. That is why the simplest cross-vali-
dation with n, = 1 has been the main focus of researchers’
attention over the past 30 years. Discussions and theoretical
studies about the cross-validation method with n, = 1 under
various situations can be found, for example, in Allen (1974),
Stone (1974, 1977a,b), Geisser (1975), Wahba and Wold
(1975), Efron (1983, 1986), Picard and Cook (1984), Herz-
berg and Tsukanov (1986), and Li (1987).

Throughout this article I assume that the number of pre-
dictors in each model under consideration does not change
as n increases. In this case, it is known to many statisticians
(although a rigorous statement has probably not been given
in the literature) that the cross-validation with n, = 1 is
asymptotically incorrect (inconsistent) and is too conserva-
tive in the sense that it tends to select an unnecessarily large
model.

There are other methods for model selection, such as the
Akaike information criterion (AIC) (Akaike 1974; Shibata
1981), the C, (Mallows 1973), the jackknife, and the boot-
strap (Efron 1983, 1986). All these methods are asymptot-
ically equivalent to the cross-validation with n, = 1 (Stone
1977a; Efron 1983), however, and thus they share the same
deficiency; that is, they are inconsistent.

In this article I show that in the problem of selecting linear
models, this deficiency of the cross-validation with n, = 1
can be rectified by using a cross-validation with a large n,
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(depending on n). Our result is somewhat surprising; to have
an asymptotically correct cross-validation procedure, we need
to select n, having the same rate of divergence to infinity as
n;thatis, n,/n—>1lasn—> . The reason why such a large
n, is needed is explored, after taking a close look at the
asymptotic behavior of the cross-validation procedures.

When n, is large, the amount of computation required to
use the cross-validation may be impractical. We consider a
“balanced incomplete” cross-validation; that is, only a much
smaller part of (}; ) splits are made according to a systematic
manner. Two other alternatives—a Monte Carlo approxi-
mation and an analytic approximation to the leave-n,-out
cross-validation—are also considered. Their performances
are examined in a simulation study.

The issue of using more than one observation at a time
in validation against leave-one-out was also raised by other
researchers. Herzberg and Tsukanov (1986) did some sim-
ulation comparisons between the cross-validation procedures
with 1, = 1 and n, = 2. They found that the leave-two-out
cross-validation is sometimes better than the leave-one-out
cross-validation, although the two procedures are asymp-
totically equivalent in theory. See also Geisser (1975), Bur-
man (1989), and Zhang (1991). In the context of jackknife
variance estimation for nonsmooth statistics (such as the
sample quantiles), Shao and Wu (1989) showed that the in-
consistency of the leave-one-out jackknife variance estimator
can be rectified by using a leave-n,-out jackknife. The dif-
ference is that here we require that n,/n — 1, whereas in
Shao and Wu (1989) the rate of n, diverging to infinity was
related to the smoothness of the given statistic.

It should be noted that the story is quite different in the
cases where the number of predictors in one of the models
under consideration increases as # increases. In such cases,
Li (1987) showed that under some conditions, the leave-one-
out cross-validation is consistent and is asymptotically op-
timal in some sense.

2. MODEL SELECTION AND PREDICTION ERROR

Consider a linear model

y=x8+e, 2.1
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where y is a response variable, x is a p vector of covariates
(predictors), x' denotes the transpose of x, 8 is a p vector of
unknown parameters, and e is a random error with mean 0
and variance o%. Because some of the components of 8 may
be 0, a more compact model might be

y=x".B,t e, (2.2)

where « is a subset of d, distinct positive integers that are
less or equal to p and B, (or x,) is the d, vector containing
the components of 8 (or x) that are indexed by the integers
in a. There are 27 — 1 possible different models of the form
(2.2), each of which corresponds to a subset « and is denoted
by M. The dimension (or size) of M, is defined to be d,,
the number of predictors in M. Let A denote all nonempty
subsets of {1, ..., p}. If we know whether each component
of 8 is 0 or not, then the models M, can be classified into
two categories:

« Category I: At least one nonzero component of 8 is not
in 8,.

« Category II: 8, contains all nonzero components of 8.

Clearly, the models in Category I are incorrect models, and
the models in Category II may be inefficient because of their
unnecessarily large sizes. The optimal model, denoted by
M, , is the model in Category II with the smallest dimension.
Note that model selection under this framework is the same
as variable (predictor) selection. Selecting a model from Cat-
egory I means missing at least one important predictor,
whereas selecting the most compact model from Category
II means eliminating all the variables that are unrelated to
the response variable.

In statistical analysis, model selection is carried out by
using data pairs (y;, x;), i = 1, ..., n, satisfying

Vi=xiB+e,

with iid errors ey, .
estimator of 8, is

.., €,. Under model M, the least squares

B = (XX XLy,

where 'y = (y;, ..., y») is an n X 1 response vector, X,
= (Xja, . - - » Xna)' is @an n X d, matrix assumed of full rank
for any a € A, and x,, is the d, vector containing the com-
ponents of x; that are indexed by the integers in a. Denote
X,witha = {1,...,p} by X.

We mainly consider the case of deterministic predictors.

When x,, . . ., X, are random, the results are still valid almost
surely for given sequences x;, Xa, . . ., provided that (a) for
givenx;,...,X,, €, ..., & are iid with mean 0 and variance

o2; and (b) all the conditions on Xy, . . . , X, stated in Theo-
rems 1 and 2 in Section 3, hold almost surely for given se-
quences X;, Xz, . ...

Suppose that z; is the future value of the response variable
to be predicted when the prediction variable is equal to x;.
Using model M, fitted based on the data (y;, x;),i=1,...,
n, the average squared prediction error is

1 -
- E (zi - x;’aBa)z'
oy

- . — —
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Given y, the conditional expected squared prediction error
1S

1 o
o + o 2 (xXiB8 = XiaB)’.

The overall unconditional expected squared prediction error
(conditional on x, . . ., X, for random predictor case) is

L..= o2+ n'dya?+ Aun, 2.3)
where
Ann=n"'8'X'(1, — P)XB,
P, = Xu(X.X.) "X,

is the projection matrix under model /, and I; is the identity
matrix of order k. Note that T, ,, consists of two components:
the variability of the future observations and n'd,ot + Agp,
which reflects the error in model selection and estimation.
When M, is in Category II, X8 = X, 8, and hence

Top=0+ n~'d,o?. 2.4)

Because P, is the projection matrix of a submatrix X, of X,
A, > 0 for any fixed n if M, is in Category I.

Assuming that p is the same for every n and that » is large,
some asymptotic results can be established under the follow-
ing condition:

liminf A,, >0 for M, in Category L. 2.5)

n—*oo

For any M, in Category I and J, in Category II with d,
= d,, the ratio T, /T, , may be arbitrarily close to 1, al-
though T, ,/ T, > 1 for all n. Iflim,.Tan/ Ty . = 1, then,
asymptotically, models ., and , have no difference in
terms of their predictive ability. Because liminf, . .o/ Ty
> 1ifand only if liminf,—. A, » > 0, (2.5) is a type of asymp-
totic model identifiability condition and is very minimal for
asymptotic analysis.

3. THE CROSS-VALIDATION METHOD: MOTIVATION
AND THEORY

Similar to other model selection methods, the cross-vali-
dation method selects a model by minimizing estimated I',, ,
over all a. Suppose that we split the data set into two parts:
{(yi, x;), i € s} and {(y;, x;), | € s°}, where s is a subset
of {1,..., n} containing #, integers and s¢ is its complement
containing 7, integers, n, + n. = n. The model M, is fitted
using the construction data {(y;, x;), i € s°} and the pre-
diction error is assessed using the validation data {(y;, x;),
i € s}, treated as if they were future values. The average
squared prediction error is

ot lys = Fasell®
= 17" 1 (L, — Qus) (s — XosB 12, (.1

where ||la]| = (a’a)!/2 for a vector a; y, is the n, vector con-
taining the components of y indexed by i € s; X, is the n,
X d, matrix containing the rows of X, indexed by i € s;
Vo5 is the prediction of y, using the construction data
and the least squares method under model M,, Q.
= Xos (X5 X) ' X3 8. is the least squares estimator of 8,
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using all n observations; and the equality follows from a
straightforward matrix algebra.

There are (},) different subsets s of size n,. For each model
M, the cross-validation estimate of T, , is obtained by av-
eraging the quantities in (3.1) over all or some different sub-
sets s of size n,. The model selected by cross-validation is
then the model that minimizes the cross-validation estimates
over all « € A. I shall call this method the leave-n,-out
cross-validation, abbreviated as CV(n,). The error rate of
using the CV(n,) for selecting the optimal model M, is

P (the selected model is not M,). 3.2)

3.1 The CV (1) Method

From the computational point of view, the simplest
CV(n,) is the one with n, = 1; that is, the CV(1). Letting s
= {i} and averaging the squared prediction errors over all
i, I conclude from (3.1) that the CV (1) estimate of I',,, is

. 1
Ccv _
Fa,n -

n

Z [(1 - wia)—l(yi - x’l’aétx)]z’
where w;, is the ith diagonal element of the projection matrix
P,. Under the conditions

X'X =0(n) and (X'X)'= on™), 3.3)
and

lim max w,, =0 forany o« € A,

n—+w i=sn

3.4

it is shown in the Appendix that if M, is in Category I, then
ISn = Tan + 0,(1), (3.5)

and if M, is in Category II, then
IS =n'ee+2n'do? —n'e'Pe+ o,(n7"), (3.6)

where e = (e, ..., €,)’. Because n~le’e converges to o2
almost surely, I'S) is consistent for I',,,. But this does not
ensure that the error rate given in (3.2) vanishes as n = .
As pointed out by Stone (1977b), this type of consistency is
not of great interest, because if M, is in Category II, then
T,, —> o2, which is independent of a. In fact, when (2.5),
(3.3), and (3.4) hold, the model selected by using CVv(1),
denoted by Mcv, satisfies

lim P(Mcy is in Category I) = 0.

n-»oo

3.7

But if M, is not of size p, then
lim P(./ncv = m*) # 1.

n—+owo

If M, is in Category II but M, # M, then, by (3.6),
P(M, is preferable to M, by the CV(1))

(3.8)

= PQ2(d, — d,,)o? < €e'(P, — P, )e) + o(1), (3.9)

where a, is the subset corresponding to M, and d, > d,,.
If e is distributed as N(0, o°I,,)), then the probability in (3.9)
equals

Pk < x*(k)) + o(1),

- - —— _—
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where k = d, — d,, and x2(k) is the chi-square random
variable with k degrees of freedom. Clearly, P(2k < x2(k))
#0forany k= 1.

In view of (3.7) and (3.8), the CV(1) is asymptotically
incorrect and is too conservative in the sense that it may
select a model of excessive size, unless the optimal model is
the one with size p.

Let me explain why the CV (1) is asymptotically incorrect.
From (2.4), the difference between two models in Category
11 appears in the second-order term 7 ~td_ o?, aterm of order
n~'. From (3.6), the term in T'C}, affected by the model dif-
ference is

n~'do? + bun,
where

dun=n"'d.a> —n"'e'Pee (3.10)

is the error in assessing the differences of the models in Cat-
egory Il by using CV(1). Note that the error é,, has mean
0 but has the same order of magnitude as n'd,s*. Hence
the CV (1) fails to distinguish the models in Category I1. The
story is different for the models in Category I. From (2.3),
the term in T, , that distinguishes the models is A, ,, a term
that does not vanish as n = co. From (3.5), the error in
assessing the models in Category I by CV(1) is T — Ton
=0,(1),aterm of lower order than A, ,, and hence the result
(3.7) holds.

3.2 The Balanced Incomplete CV(n,) Method

In this section I show and explain why the deficiency of
CV (1) can be rectified by the CV(n,) with a large n,. It is
impractical and also unnecessary to carry out the validation
for all different splits when 7n, > 1. Let B be a collection of
b subsets of {1, ..., n} that have size n,. B is selected ac-
cording to the following “balance” conditions: (a) every i, 1
< i < n, appears in the same number of subsets in B; and
(b) every pair (i, j), | <i <j < n, appears in the same
number of subsets in B.

The cross-validation estimate of T, , is then obtained by
averaging the quantities in (3.1) over the subsets s € B. This
method will be called the balanced incomplete CV(n,), ab-
breviated as BICV (n,), because B is in fact a balanced in-
complete block design (BIBD) if each subset is treated as a
“block” and each i as a “treatment.” Examples of BIBD can
be found in John (1971). The repetition size b > nis usually
a linear function of n; that is, b = O(n). The BICV(n,)
selects a model by minimizing

1

PEY = — 3 lys = Jasel?

”b SEB

over all « € A.
The following result shows that the BICV (#n,) is asymp-
totically correct if n, = oo and n,/n —> 1.

Theorem 1. Suppose that (2.5), (3.3), and (3.4) hold and
1
lim max || — 2 xixi — 1 > XX} ” =0. (3.11)
n—~w SE€B Ny jes ¢ jEsC
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Suppose also that n, is selected so that

n,/n—->1 and n.=n-—n,—> . (3.12)

Then we have the following conclusions:
(a) If M, is in Category I, then there exists R, = 0 such that

BV = p=le’e + A, + 0,(1) + R,. (3.13)
(b) If M, is in Category II, then

IBICY = p-le’e + n;'d,o? + 0,(n:"). (3.14)
(c) Consequently,

lim P(the selected model is M, ) = 1. (3.15)

n—-aoc

The proof of Theorem 1 is given in the Appendix. The
following is an explanation of why the BICV (#,) improves
over the CV(1) and why n, should be chosen according
to (3.12).

Efron (1986) pointed out that the CV(1) estimates the
expected squared prediction error based on a sample of size
n — 1, rather than »n; that is, f‘ff; estimates I, ,—1, not I, ..
This has been neglected by most researchers, because the
difference between T, ,_, and I, , is asymptotically inap-
preciable. The difference between I, and T, , is not neg-
ligible if and only if #./n does not tend to 1. Recall that the
cross-validation selects a model in two steps: (1) fitting a
model using 7, data, not n data, and (2) validating the fitted
model using n, data. Naturally, the BICV(n,) estimates
I, .. This is also justified by (3.14).

We do not necessarily need a very accurate model fitting
in step (1) of the cross-validation, but we do need an accurate
assessment of the prediction error in step (2), because the
overall purpose of cross-validation is to select a model and
the selected model will then be refitted using the full data
set for the prediction purpose. From this standpoint, we do
not need to use an n, close to # in step (1). It is actually wise
to use a relatively small 7., because for the models in Category
11,

Ton = o’ +nitd,e?

is flat (as a function of «) if n. is large. Therefore, it is difficult
to find the minimum of T, ,, with a large 7., using a small
n, for validation. Using the CV (1) method can be compared
to using a telescope to see some objects 10,000 meters away,
whereas using the BICV (7,) method is more like using the
same telescope to see the same objects only 100 meters away.
Of course, the latter method can see the differences among
these objects more clearly. But n, = oo is still needed to
ensure the consistency of the model fitting in step (1).

The previous argument shows heuristically the necessity
of having a large n, and a relatively small n.. Hence the
result in Theorem 1 is not so surprising as it seems at first
glance. But why is n,/n — 1 needed?

By considering the following special case, I show that if
n,/n does not converge to 1, the same problem occurs as
when CV (1) is used.

Suppose that a particular B can be selected such that

1 1
— > xxij=— 2 x;x; forall s€B. (3.16)

ny i€s ¢ iesc

-
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An example is when
X = block diagonal (1,...,1),
where 1 is an m vector of 1s. Under (3.16), it can be shown,

by some algebraic calculations, that

- 1 .
Fz.lr(l:v =7 z ||YS - Xa,sﬂa” 2

ny SEB
2
n+ n, n -
- o S— X& a,
n2b Eﬁ an (Y sB8)
1 3 |12
==y - X.6.l
n
n+n . 4
— 2 Wia( Yi — xiaﬂa)z' (3'17)
nc(n - 1) i

If M, is in Category II, then, by (3.17),
BV = p7le'e — n'e'Pe
+n Y (n = 1) (n+ n)ldeo? + 0,(1)]
=n"le'e + n;'d,o* + eam,
where
tan = nz(n— 171 + n)d,o?
(3.18)

Similar to the é,, in (3.10), the ¢, , in (3.18) is the error in
assessing the model difference by using the BICV (n,), be-
cause the term in T, ,,_that distinguishes the models in Cat-
egory I1is n;'d,a?. If n,/n does not converge to 1, then ¢, ,
has the same order of magnitude as n;’ d.c?, because

—nle'Pe + 0,(n;').

ean/(n7'd,0?) = % [1 — (duo?)'e'Poe] + 0,(1). (3.19)

Therefore, like the CV (1), the BICV (n,) with n,/n not con-
verging to 1 cannot distinguish the models in Category II
and thus is inconsistent. From (3.19), the only situation
where ¢,, is of a lower order than n;'d,c? is when n./n
— (Q; that is, n,/n — 1.

This example shows that the condition n,/n — 1 is nec-
essary for the consistency of the BICV(n,).

3.3 Other CV(n,) Methods

Using the BICV (n,) requires a “balanced” collection B
of subsets. If such a B is not available or is hard to obtain,
the following two alternatives may be used.

331 A Monte Carlo CV(n,). A simple and easy
method is to use Monte Carlo. Randomly draw (with or
without replacement) a collection & of b subsets of {1, ...,
n} that have size n, and select a model by minimizing

N 1 R
F‘lf'(l:CV = ;Z——E Z ”ys - y«x,s‘HZ-

v seR

(3.20)

This method will be called the Monte Carlo CV(n,), abbre-
viated as MCCV (n,). The Monte Carlo cross-validation was
also considered in Picard and Cook (1984), because (3.20)
is obtained by randomly splitting the data b times and av-
eraging the squared prediction errors over the splits.

- o : r
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This yields the following result, which is similar to Theo-
rem 1. The proof is given in the Appendix. The probability
statements in Theorem 2 are with respect to the joint prob-
ability corresponding to y and the Monte Carlo selection of
the subsets.

Theorem 2. Suppose that (2.5), (3.3), (3.4), and (3.12)
hold and

1 1
— Z X;X; — — 2 XiX|

v jes C iesc

max (3.21)

SER

= Op(l)a

where R contains b subsets selected randomly with b satis-
fying

b~'n;?n* - 0. (3.22)

This yields the following conclusions:

(a) If M, is in Category I, then there exists R, = 0 such
that

. 1
ey = Yy > ehes+ Ann+ 0,(1) + R,y (3.23)
v seR

where e, = y; — X,0.
(b) If M, is in Category II, then

- 1
Mecy = — S ehe, + ns'lde? + 0,(nc'). (3.24)
vV seER

(c) Consequently, (3.15) holds.

Condition (3.22) imposes some restrictions on b and n,..
The fewer data used in model construction, the more splits
are needed. (3.12) and (3.22) imply that b = o0 as n = co.
If n, is selected such that n;2n — 0, then b = n is enough
for (3.22).

3.3.2 Ananalytic approximate CV(n,). Another alter-
native to the BICV (#,) is the leading term in ['2'¢Y:

- 1 -
P =~y - XAl

M X Jp— 5 \2
me(n = 1y 2 ek T X 323)

This method will be called the approximate CV(n,), abbre-
viated as APCV(n,). From (3.17), T'A5¢Y = T'BIV exactly
in the special case where (3.16) holds. Under (2.5), (3.3),
(3.4), and (3.12), results (3.13)-(3.15) hold with T'BICV re-
placed by T'45CY. In fact, from the proof of Theorem 1 in
the Appendix, (3.13) holds for T'AFYY, with R, being the
second term on the right side of (3.25); and when M, is in
Category II,

- 1 n+
P2 =~ e/(1, — P)e + % d.o? + 0,(D)].

(n—1)
The APCV (n,) is consistent and requires less computation
than does either the BICV (#,) or the MCCV (n,). But unlike
the BICV (n,) and the MCCV (n,), the APCV (n,) depends
on the special nature of the linear models, and its extension

—— - -
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to other models is not straightforward. Also, from the sim-
ulation study in Section 5, it seems that the performance of
the APCV (n,) is not as good as that of the MCCV (n,), which
indicates that to have a good performance, the APCV(n,)
requires a larger n than the MCCV (n,).

4. FURTHER DISCUSSIONS

4.1 Model Selection From a Given Class

In the previous sections I considered the selection of a
model from all possible models

@={M, a€A}.

@ is a very large class if p is large. From computational and
other practical considerations, sometimes we may restrict
our attention to a smaller class of models ¢, C €. For ex-
ample, @, may contain only two models. It is clear that
the CV(n,)—for example, BICV(n,), MCCV(n,) and
APCV (n,)—can be used to select the best model within €.
That is, if @, contains some models in Category II, then the
probability that the CV(n,) selects the model in @, and in
Category II with the smallest size tends to 1 as n —> 00. If
all the models in @, are in Category I, then the CV (n,) selects
the model that minimizes A, ,, provided that the R, in (3.13)
or (3.23) satisfies

R, = 0,(1). 4.1)

Condition (4.1) will be discussed later.

A similar situation is where some predictors, which should
be included in the model, are overlooked by the data analyst.
Then the CV (#,) selects the best model within €.

4.2 Computation Algorithms

It is possible that using a good algorithm may preclude
the need to compute T'BISY (or T'MSCY and T'45°Y) for all
27 — | subsets « when selecting a model from €. For eyfample,
a backward selection may be used: Suppose that I'25Y is
first computed for the subset v = {1, ..., p} and all the
subsets o withd, = p — L. If

in P> P2,
then the computation may be stopped and model /M, is se-
lected. This is because if /M. is not the optimal model, then
P( min DBV > BICV) > 0.
a:dy=p—1
A forward selection can be used similarly. Further discussion
of computation algorithms is beyond the scope of this article.

4.3 Extensions

One advantage of the cross-validation method over other
methods is that its extension to more complicated models,
such as nonlinear regression and generalized linear models,
is straightforward. One simply uses

1
1

2 Q(ys’ S’a,s‘)9

n”b s€L
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where Q(+, +) is a loss function, ¥, is the prediction of y,
based on the construction data under model M, L = B for
BICV(n,), and .L = R for MCCV(n,).

4.4 Conditions (3.11) and (3.21)

Condition (3.11) is a technical condition required for the
consistency of BICV (n,). I illustrate here that it is a reason-
ably weak condition.

This condition requires some degree of resemblance be-
tween the validation data {(;, x;), { € s} and the construc-
tion data {(y;, x;), i € s°}. Note that x;x; is the Fisher
information matrix about 8 contained in the pair (y;, x;).
Then condition (3.11) requires that

1 1
— 2 XX} —— 2 XX},

vjes R i€es®

4.2)

which is the difference between the average Fisher infor-
mation matrices based on the validation and construction
data, vanishes as n = co uniformly over all splits used in
cross-validation; that is, all s € B.

Clearly, (3.11) is implied by
1 1
— 2 XX —— 2 xix; |l =0

v jEs ¢ iest

lim max

n—+co alls

But (4.3) is much stronger than (3.11) because it requires
that the differences of the form (4.2) be small uniformly over
all subsets s and that B contains much fewer subsets.

As an example, suppose that the (#, v)th element of
X;X} is a; = a;,, and that for any (u, v), {a;, i=1,2,...}
is a sequence of nonincreasing numbers satisfying

M3

i a;, =&+ 0(m™?)

]

i=1

for some 6 > 0. For any subset s,

| S 1 I s
— 2 as<—2as=—2a=(+0(n")
C j=nyt1 ¢ jest R i=1
and
1 2z nf{l 2 n, (12
- 2 ai‘i’:_('Zai—E)_l(_zai_s)
€ j=pny+1 c ni=1 e \ My i=t

= Zo(n ) + :— O(n7%) = O(n7'n'"%),

if n,/n — 1. It is easy to select an n, satisfying (3.12) and
n'~%/n. - 0. Hence

lim max
n>oo alls

lza;—£’=0.

ne i€s*

Similarly, it can be shown that

1
lim max —Eai—£’=0,
n—~co alls |My i€s
and thus (4.3) holds.
Ifx,, ..., x,are random, then (3.11) holds in probability

under weak conditions. Suppose that {x; } is a sequence of

. —— -
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iid random vectors satisfying E(x}x;)**" < oo witha 7 > 0.
Then, using a Berry—Esseen inequality (e.g., Shorack and
Wellner 1986, thm. 3, p. 849), it can be shown that for any

s,
l 1 ' —(l+71)
Pll|—> xxi —— X xixi || >¢] = O(n; ).
v jEs ¢ jest
Then
1 ’ 1 ’ —(1+71)
P{ max _inx,"_ z X;X; >e¢ =0(bnc )
SEB v jEs ¢ jest

Hence (3.11) holds for almost all x,, X,, . . ., if for some 4

>0,

bn; ) < p= (49, 4.9
For example, n. can be chosen to be the integer part of
n3/4. Then (3.12), (3.22), and (4.4) hold for b = O(n) and
any 7 > % This choice of n, is used in the simulation study
in Section 5.

The discussion for condition (3.21) is similar.

Table 1. The Values of x,

Xai Xai X4i Xs
.3600 .5300 1.0600 .5326
1.3200 2.5200 5.7400 3.6183
.0600 .0900 .2700 2594
.1600 .4100 .8300 1.0346
.0100 .0200 .0700 .0381
.0200 .0700 .0700 3440
.5600 .6200 2.1200 1.4559
.9800 1.0600 2.8900 4.0182
.3200 .2000 .7600 .4600
.0100 .0000 .0700 .1540
1500 .2500 .5000 6516
.2400 .2800 .5900 .0611
1100 .3500 .4000 1922
.0800 1300 .2800 .0931
.6100 .8500 .4900 .0538
.0300 .0300 .2300 .0199
.0600 .1100 .5000 .0419
.0200 .0800 .2500 .1093
.0400 .2400 .0800 .0328
.0000 .0200 .0400 .0797
.0900 .1800 .5900 .1855
.0200 .1600 .2400 1572
.0200 11100 .2100 .0998
.0500 .2400 .4300 .2804
1100 .3%00 .2900 .2879
.1800 1100 .4300 .6810
.0400 .0900 .2300 3242
.8500 1.3300 2.7000 2.6013
1700 .3200 .6600 4469
.0800 1200 .4900 .2436
.3800 .1800 .4900 .4400
1100 1300 .1800 .3351
.3900 .3800 .9900 1.3979
.4300 .4600 1.4700 2.0138
.5700 1.1600 1.8200 1.9356
1300 .0300 .0800 .1050
.0400 .0500 .1400 .2207
.1300 .1800 .2800 .0180
.2000 .9500 .4100 1017
.0700 .0600 .1800 .0962
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Table 2. Probabilities (Based on 1,000 Simulations) of Selecting Each Model

Model Category cv(1) McCV(n,) APCV(n,)
8=1(20,04,0y 1,4 Optimal 484 934 501
1,2,4 I 133 .025 116
1,3, 4 I 127 026 .085
1,4,5 1 138 012 172
1,2,3,4 1 .049 .000 .038
1,2,4,5 It .029 .001 .039
1,3,4,5 " .030 002 .037
1,2,3,4,5 H .009 .000 012
B=1(20,04,8) 1,4,5 Optimal 641 047 651
1,2,4,5 1 158 032 161
1,3,4,5 il 138 .020 131
1,2,3,4,5 1l 063 .001 057
B=1(209,04, 8 1,4,5 I .005 016 .000
1,2,4,5 Optimal 801 965 818
1,3,4,5 I .005 .002 .000
1,2,3,4,5 i 189 017 182
8=1(2964,8) 1,2,3,5 I .000 .002 .000
1,2,4,5 I .000 .005 .000
1,3,4,5 I 015 .045 .001
1,2,3,4,5 Optimal 985 948 999

4.5 Condition (4.1)

From the proof of (3.13) in the Appendix, for the
BICV (n,),

R 1 .
R, =T - P ly — XaBal1%. (4.5)

Note that

n+n = n
AR . ! 2 — .
=D Z Wil Vi = XiaBa) Op(nc max wm) . (4.6)
Then by (A.6), (A.7), and (A.9) in the Appendix, (4. 1) holds
if the right side of (4.6) is of the order 0,(1), which is equiv-
alent to [by (3.3)]
n;' max x;x; = o(1).
Note that (4.7) holds if {|x;||} is bounded. For random
iid x;, (4.7) holds almost surely if E(xx;)? < o and n,
= p3/4,
The discussion for the MCCV (n,) or the APCV (n,) is
similar.

4.7

5. A SIMULATION STUDY

Now the finite sample performance of the cross-validation
method is studied by simulation. The following model is
considered:

y; = Bixy + Baxy + B3xs + Baxai + Bsxsi + e,

where i = 1, ..., 40, ¢; are iid from N(O, 1), xi; is the ith
value of the kth prediction variable xi, x;; = 1, and the
values of xi;, k=2, ...,5,i=1,..., 40, are taken from

an example in Gunst and Mason (1980) (see Table 1). Some
of the B, may be 0. Therefore, some prediction variables are
selected from five possible variables {x, ..., Xs}, and the
model with the best predictive ability is chosen. Note that
there are 31 possible models, and each model will be denoted
by a subset of {1, ..., 5} that contains the indices of the
variables x; in the model.

Three cross-validation methods are considered: the CV (1),

S - -

the MCCV (n,), and the APCV (n,) given in Section 3.3 with
n, = 25 (n. = 15 ~ n**). For the MCCV(n,), b = 2n is
used. Table 2 gives the empirical probabilities (based on 1,000
simulations) of selecting each model in several different cases.
The results in Table 2 can be summarized as follows:

1. In terms of the probability of selecting the optimal
model, the MCCV (n,) has the best performance among the
three methods under consideration, except for the case where
the largest model (the model with all the S # 0) is the optimal
model. The APCV (n,) is slightly better than the CvV(l) in
all the cases.

2. The probability of selecting a model from Category I
(incorrect model) is negligible for all three methods in all
cases under consideration.

3. As expected, the CV(1) tends to select unnecessarily
large models. The probability of selecting the optimal model
by using the CV (1) can be very low (e.g., <.5). The more
zero components the 8 has, the worse performance the CV(1)
has. On the other hand, the performance of the MCCV (n,)
is stable and is much better than the CV (1) in the cases
where the optimal model is not the largest model.

4. The performance of the APCV (n,) is only slightly better
than the CV(1), although the APCV (n,) is consistent and
the CV (1) is inconsistent. This indicates that to have a good
performance, the APCV(n,) may require a larger sample
size than the MCCV (n,).

APPENDIX: PROOFS
A.1 Proof of (3.5) and (3.6)
From (1 - Wja)_z =1+ 2wia + O(W%u)y

1 1
I‘S,X = ; z rlza + ;l_ z [zwia + O(W%a)]rlza’ (Al)

where 7, = yi — X/oB.. Let £, and {,,, be the first term and the
second term on the right side of (A.1). Then (3.5) follows from {
< O(max;w;,) ., and

Ea.n = n—le’(!n - Pa)e + Aa,n + 2n_lel(ln - Pa)xﬂ
=n"le'e + A, + 0,(1),

T I
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because E(e'P.e) = d,o? and E[e'(I, — P)X8)? = a8'X'(1,
— P)XB = O(n). If M, is in Category II, then {,, = 2n"'d,0?
+ 0,(n"') and &, = n”"e’'(I, — P.)e. Hence (3.6) holds.

A.2 Proof of Theorem 1

From (3.1) and the balance property of B,

zivb S Iy, - = n 'y - XA.l2

SEB

=t.a=n"'ee+ A, + 0,(1),

where the last equality follows from the proof of (3.5). Hence (3.13)
follows by letting R, be as given by (4.5).
From condition (3.11), for s € B,

1 1 1 1

SXLX, = X X = [— XX = — x:,,xxa,s]

n n, nin. ny

(%)
=o =},
n
which together with (3.3) implies that
(X5 Xas) ™ ——(X.,.Xa.)'l = 0( )(X Xes) s

and, therefore,

P, =2 Q,,,, + 0( ’;‘)Pa,,, SE B, (A2)
where P, = X,(X.:Xas) 'X.;. From (A.2) and condi-
tion (3.12),

Q. = [ﬁ + o(i‘)]l’.,,:, sE B. (A.3)
n n
From the balance property of B,
1 n—1
n.,b sgﬂ PosQo s = [; m] 2 Widl b,
where r,, = y, — X,,8.. Then, by (A.3) and (3.12),
Cn , [ 7 AV
= —_— + — —_—
nb s [” o(”)] nb g FasQutes
n. n+n.
= l + ial ias '4
ol )]nc(n—n Z wller (A
where
Co = ny(n+ n)nz2. (A.5)
Define
Ua,s = (I - Qa,.s')(ln9 + cnPu.s)(In, - Qa.s)s
=—" E a,s(ln, - Qa,s)—an,:(In., - Qn.s)_lra,s;
n SEB
and
1
B, =— Z r:x,s(ln, - Qa;)_l(ln, - Uu,s)(ln., - Qa,s)-lra,s-
n"b SEB
Then, by (3.1),
BV = 4, + B,. (A.6)
From the balance property of B and (A.4),
= Fas 2+ P « 2
o= g Z Il 45 3 IPrd
1 < n+n
==y - XuBall?+ |1+ < i i
2 1Y = XA+ 14 o 2| TS Sk a)

—_—
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Assume that M, is in Category IL. Then, by (A.7) and the fact that

Zi wiarlza = daaz + op(l), we have
1 n, n+n. )
== - — + 1
As ne(l ..)e+[l+o( )] n(n—1D [d.o 0,(1)]
, oy Guo? 1
=-—-e'e+ + 0l — |-
ne n,

It remains to show that B, = o,,(nC 1. From (A.3),

(T, = Qus)Pas(ln, — Qo) = | 1 = "; + o(%‘)]m,,(ln, - Q)

Hence

Q) = [1 + 0(1)]Pus = + P,

n 2
(n_c) (Ino - Qa,s)Pa,.v(ln., - P

for s € B when 7 is sufficiently large. Then
n 2
A A F L
(4

Also, by (A.3),

U, = {I.., - [-n— + 0<ic)]Pa,s](L.v + cpPus)
n n

x {1, - [ﬁ + o(i‘)]P,,,s]
n n
= In,—nv as)(ln,+cn a:)( —ﬂPa:)
n n
+ (':l )] (1 + ¢)Pa, + 2[ ( ) (1 ——)(1 + ¢)Pas
S Lt (e
n 2
=1, + [0(—)] (1 + c,)P,y,
n
because
2
{2203
n n n
Then, by (A.8),
(i"a - Qa,s)_l(ln., - Uu,s)(ln., - Qn,s)_l
n 2
= [0(-;)] (1 + )Ly, = Qus) "Prs(Ip, = Qus) ™
< o()(1 + ¢,)P,ys.
Therefore,
1 1
B. < o()(1 + cn)(ﬁ L ) - ""(Z) )
because from the previous proof,
1
1Pl = ( ) .
sgﬂ ,r ne

This proves (3.14).

- 7 o ’ r
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A.3 Proof of Theorem 2

Assume that M, is in Category IL. Let B, be as given in the proof
of Theorem 1, with B replaced by &. Then (A.9) can be established
using conditions (3.21) and (3.22) and the same argument as that
in the proof of Theorem 1. Let ¢, be as given by (A.5),

Cn
Ag = $Pas€s,
l n"b sz:ﬁ eSP o
2(1 + ¢p) , -
a2 & T z esxa,s(ﬁa - Ba)y
v SER
and
1+c¢, 5 ~rt 5
Aa3 = n b Z (ﬁu - ﬂu) Xa,sxa,:(ﬂu - Ba)'
v SER
Then
. 1
MY = S eles + A — A + Az + 0p(nc').  (A10)
ny SER
Using condition (3.21), (A.2) holds with B replaced by R. Then
C n n\ ¢
A = = Z e'Q.es + 0| — L ‘P.ses. (A1l
l "vbseﬁ""eQJe op(n)"vbsezﬁe o ( )

Denote the two terms on the right side of (A.11) by B, and B..
Let Ex and Vg be the expectation and variance with respect to the
random selection of R. Using the equality

1 n\-!
B(;Za)=(1) Za
SER n, all s
we obtain that

Eﬂ(Bul - Aa2 + AaS)

en| ny—1 ne

= .~ 'Pa +___— ia 12
n, [n(n—l)e € n(n—l)?we]
_ 2(1 + ¢,)

1+¢
e'Pe+ " Ze'P.e

ecnln d.o’n n 1+¢
== [—; ePe+———+ o,,(——%)] ———¢'P.e
n, {n n

2

18

g

+ op(nc’)- (A.12)

(4

Using the inequality

i 1
Vﬁ(- 5 a,) <LEa
b SER b

and letting ¢, = O[n?/(n2b)], we obtain that
Va(neBat) < tiEs(€:Que;)
2 2
< 2t,.Eye[(2 W.-c.e?) + ( 2 Wik e,-) ]

ies i,jEs it

2 n\-! 2
< 21,,[(2 w,«,,e,?) + ( ) > ( 2 Wil e,-) ]
i ny alls \i,jEs,i%j

= 26,[0,(1) + O,(1)] = Op(tn), (A.13)
Va(nAa) < ta(Ba — B.) En(X s Xus)(Ba — B2)
= Op(tn) (A.14)

—— -
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and
Va(nedas) < tnEsl(Ba — B.) X Xes (B — B
< (B — BoY X0 Xo(Ba — B = Opltn)s

where wy, is the (i, j)th element of P,,, (A.13) follows from the fact
that for any s,

2
E( E W,‘jae[ ej) =

I, JESs,i*j

2 4 4
z Wijaa = po,
i,JESi*]

and (A.14) follows from EEx(X LseesXas) < a*X " X,.. Because 7,
— 0 under (3.22),

Va(Ba — Aaz + Auz) = 0p(n2"). (A.15)

Hence (3.24) follows from (A.10)-(A. 12), (A.15), and the fact that
Ee'P, e, = d,o” implies B.; = 0,(nzt).
The proof for (3.23) is similar.

[Received May 1991. Revised November 1991.]
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