

Evaluating theories for severe convective weather using numerical simulation

George H. Bryan NCAR

Workshop on Severe Weather and Climate
15 March 2013

Main Points

- There are reasons why global warming (as currently proceeding) could lead to fewer tornadoes
- Numerical modeling of tornadic storms can be used to evaluate ideas ... but it requires a lot of computer resources, and hasn't been explored fully

Main Points

- There are reasons why global warming (as currently proceeding) could lead to fewer tornadoes
- Numerical modeling of tornadic storms can be used to evaluate ideas ... but it requires a lot of computer resources, and hasn't been explored fully

Details ...

A Hypothesis (commonly presented to media)

- Temperature increases,
- and relative humidity stay roughly the same,
- therefore water vapor mixing ratio increases,
- therefore storms have stronger updrafts (more CAPE),

therefore more tornadoes will occur.

A Hypothesis (commonly presented to media)

- Temperature increases,
- and relative humidity stay roughly the same,
- therefore water vapor mixing ratio increases,
- therefore storms have stronger updrafts (more CAPE),

[I don't disagree with any of these points]

therefore more tornadoes will occur.

[I would call this a reasonable hypothesis that needs evaluation]

Other Ingredients

• SPC's Significant Tornado Parameter, STP (Thompson et al 2003)

 "A majority of significant tornadoes (F2 or greater damage) have been associated with STP values greater than 1"

Other Ingredients

SPC's Significant Tornado Parameter, STP (Thompson et al 2003)

- "A majority of significant tornadoes (F2 or greater damage) have been associated with STP values greater than 1"
- Assuming fixed RH, increasing temperature yields higher LCL
 - Suggests fewer tornadoes
 - +10 m for every +1 °C (assuming fixed RH)
 (in "STP units", that's roughly equivalent to -500 J/kg CAPE)

Other Counter Points

- More water vapor means more condensate (e.g., liquid water)
 - thus more evaporation, stronger "cold pools"
 - thus fewer tornadoes
 - perhaps more severe convective winds (e.g., derechoes)?
- Uncertain role of tornadogenesis "triggers"
 - Descending reflectivity cores (DRC) and Rear-flank gust front surges (RFGFS) occur just before tornadogenesis in welldocumented events
 - Note: both are related to condensate (which is increasing)

Numerical Simulations

• Nonhydrostatic, cloud-resolving models (e.g., WRF) run with grid spacing of O(10 m), can produce tornadoes:

Gray shading: pressure perturbation; Color volume shading: reflectivity; Color at surface: θ perturbation (Visualization by Leigh Orf, Central Michigan Univ)

- Hypotheses can be tested in controlled conditions
- For example, an evaluation of 0-1 km wind-vector difference (ΔU):

Maximum Circulation at z = 1 km (60-90 min average)

Experimental Setup

The Control environment: (based on North American climatology)

CAPE: 2500 J/kg

CIN: 20 J/kg

Surface T / Td: 27 °C / 20 °C

Surface θ_e : 350 K

 $\Delta\theta_e$: 25 K

LCL: 1025 m

LFC: 1500 m

Wind profile: "L-shaped"

 $0-6 \text{ km } \Delta U = 24 \text{ m s}^{-1}$

 $0-1 \text{ km SRH} = 116 \text{ m}^2 \text{ s}^{-2}$

Note: STP = 1.5

Experiment: Change entire temperature profile by a fixed value (-4, -2, 0, +2, +4 K) Use the same RH profile

CAPE: varies from 1300 to 4500 J/kg

LCL: varies from 990 to 1050 m

STP: varies from 1.6 (coldest sounding) to 0.8 (warmest sounding)

Other details:

- $-\Delta x = \Delta x = 250 \text{ m}$
- Δz varies from 25 m to 500 m
- Morrison double-moment microphysics
- roughness length $z_0 = 10$ cm

Maximum vertical velocity

Total surface rainfall

Maximum surface windspeed

Minimum potential temperature perturbation

Maximum near-surface vertical vorticity

Work to be Done

- True tornado-resolving resolution (~10 m)
- An "ensemble" of simulations would be best
 - Vary initial conditions to get different realizations
 - Vary some "physics" parameters (e.g., raindrop breakup, surface roughness)

Summary

- Increasing temperature, with constant RH, might lead to fewer tornadoes
 - more condensate, higher LCL, stronger cold pools
- Numerical model simulations are a tool that can sort out the pros (greater CAPE) and cons (higher LCL)
 - these simulations confirm more rain, stronger convective winds
 - tornadoes: inconclusive (so far)