How To Build a Seasonal Tornado Model

James B. Elsner (@JBElsner)

Department of Geography, Florida State University
Tallahassee, FL

March 10, 2016 SC&C Workshop, Columbia University, New York, NY

Help: Thomas Jagger, Tyler Fricker, Holly M. Widen Money: RPI2.0 (Mark Guishard, John Wardman)

March-May 2015 Southern U.S. Severe Weather Forecast

 $The\ experimental\ outlook\ for\ the\ {\it 2015}\ spring\ tornado\ season\ released\ by\ Columbia\ University\ researchers.$

Credit: John Allen

Why are we doing this?

- Dynamical models can't predict tornadoes
- ▶ They can predict conditions necessary
- But necessary does not imply sufficient
- Statistical models are needed, but how should they be made?
- ► Here I show you a way that is quite flexible

Spatial model (county level) ⇒ Space-time model (grid level)

Model must be spatial

Model must deal with pathological tornado records

Annual number of tornado reports (Kansas)

The number of tornado reports in each cell (T_s) is assumed to follow a negative binomial distribution (NegBin) with mean (μ_s) and parameter r_s .

$$egin{array}{lcl} T_s | \mu_s, r_s & \sim & \mathsf{NegBin}(\mu_s, r_s) \ \mu_s & = & \mathsf{exp}(A_s
u_s) \
otag & = & eta_0 + eta_1 \, \mathsf{lpd}_s + eta_2 \, (t - t_0) + eta_3 \, \mathsf{lpd}_s (t - t_0) + u_s \
otag & = & A_s \, n \end{array}$$

where the mean of the distribution is linked to a structured additive response ν_s and the county area (A_s) . The base-two log of county population density is lpd_s , t is the year, t_0 is the base year set to 1991 (middle year of the record), n is the dispersion parameter, and u_s is the random effects term.

To account for spatial correlation the random effects term follows an intrinsic Besag formulation with a sum-to-zero constraint.

$$|u_i|\{u_{j,j\neq i},\tau\}\sim N\left(\frac{1}{m_i}\sum_{i\sim j}u_j,\frac{1}{m_i}\tau\right),$$

where N is the normal distribution with mean $1/m_i \cdot \sum_{i \sim j} u_j$ and variance $1/m_i \cdot 1/\tau$ where m_i is the number of neighbors of cell i and τ is the precision; $i \sim j$ indicates cells i and j are neighbors. Neighboring cells are determined by contiguity (queen's rule).

The model was used to show that tornadoes are significantly more likely to occur over smooth terrain at a rate of 23%/10 m decrease in roughness.¹

¹Elsner, J. B., T. Fricker, H. M. Widen, et al., The relationship between elevation roughness and tornado activity: A spatial statistical model fit to data from the central Great Plains, *Journal of Applied Meteorology and Climatology*, in the press.

A space-time model

[% Change in Rate/S.D. Increase in NAO]

[% Change in Rate/Deg. C Increase in WCA Temp]

Elsner, J. B., and H. M. Widen, 2014: Predicting spring tornado activity in the central Great Plains by March 1st. *Monthly Weather Review*, **142**, 259–267.

According to Aon, the costliest U.S. thunderstorm outbreak on record occurred in late April 2011 across the Lower Mississippi Valley and cost insurers \$7.7 bn in today's dollars.

Preliminary forecast for 2016

