

Quantifying hail hazard from convective overshooting

Heinz Jürgen Punge^(1,2), Kristopher M. Bedka⁽³⁾, Michael Kunz^(1,2)

Institute of Meteorology and Climate Research, KIT, Karlsruhe, Germany
Willis Research Network, London, UK
NASA Langley Research Center, Hampton, VA

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Karlsruher Institut für Technologie

Hail in Europe

- One of the most costly natural hazards
- 2013 and 2014: largest loss events > 2 bn USD
- No continental scale climatology
- Diverging trends and projections for future climate

Hail reports

Large hail occurs in all parts of Europe

ESWD: 12,282 reports in period 2004-2014

APR – SEP: 95%

Hail climatology: Insurance (agriculture)

Data source : Groupama in Malaval L., 1995

Hagelgefahr in Österreich 1975 - 2003

Durchschnittliche Hagelhäufigkeit

European hail climatology?

Overshooting cloud tops as a proxy

- Intrusions of the thunderstorm cloud above the equilibrium level
- Indicate very strong convective updraughts
- Unstable
- Detected as cold pixels in IR satellite imagery (see talk K. Bedka)

Meteosat (MSG) -SEVIRI instrument cloud top temperatures 28 July 2013, 13-17 UTC; 15 min. time step

Overshooting cloud tops as a proxy

- Intrusions of the thunderstorm cloud above the equilibrium level
- Indicate very strong convective updraughts
- Unstable
- Detected as cold pixels in IR satellite imagery (see talk K. Bedka)

Meteosat (MSG) -SEVIRI instrument cloud top temperatures 28 July 2013, 13-17 UTC; 15 min. time step

Overshooting cloud top frequency

- MSG-SEVIRI
- Detection algorithm by K. Bedka
- 15 min. time step
- April-September
- 2004-2014
- 0.1° grid
- 700,000 OTs

Filter Approach: Eliminate OTs where hail is less likely

1. Evaluate atmospheric conditions for each large hail event reported in the European Severe Weather Database (ESWD) from ERA-INTERIM reanalysis 2. For each variable v_i, define **lower** and **upper** thresholds :

 $v_i^{\text{low}} = p_5(v_i) - [p_{10}(v_i) - p_5(v_i)]$ $v_i^{\text{high}} = p_{95}(v_i) + [p_{95}(v_i) - p_{90}(v_i)]$

where p_k is the kth percentile of the distribution

- 3. Evaluate conditions at OT occurrences v_i^{OT}
- 4. Filter OTs below/above thresholds (22% in total)

Lower thresholds $(v_i^{OT} < v_i^{low})$ for: height of PV=2 tropopause, dew point @ 2m, total column water vapor, eq. potential temperature @ 850hPa, zero degree height

Upper thresholds $(v_i^{OT} > v_i^{high})$ for: height of PV=2 tropopause, temperature @ 700hPa humidity @ 300hPa, eq. potential temperature @ 500hPa, zero degree height

Percentage of OTs filtered for:

Low dew point temperature

High freezing level

Retained OTs

OT-based hail climatology: Iberian Peninsula

OT-based hail climatology: Sweden

This work, 2016

QBSERVATIONS MÉTÉOROLOGIQUES SUÉDOISES

PUBLIÉES PAR

L'INSTITUT CENTRAL DE MÉTÉOROLOGIE

VOL. 59

2.1ÅME HÅBIR; VOL. 45

1917

FRÉQUENCE DE LA GRÊLE EN SUÈDE 1865-1917

Tab. 19. Nombre des jours de grêle et de jours de tonnerre observés 1881-1915.

Antal observerade hageldagar och åskdagar 1881–1915.

_	Janv.	Povr.	Mars	Avril	Mai	Julo	Juillet	Aoûi	Sept.	Oct.	Nov.	Déc.	Annéo Àr
	Jours de grêle. Hageldagar.												
Norrland	48	25	60	217	783	918	413	334	312	1 136	51	29	3316
Sympland	54	56	185	809	2044	1412	800	613	596	417	129	48	7163
Götaland	297	222	685	2079	3306	1584	885	847	1077	1656	1054	69z	14384
[Uppsala obs. 1878-1916	1	0	4	20	34	31	14	16	9	8	T	0 X	139
Suéde, Sverige	399	303	930	3105	6133	3914	2098	1794	1985	2199	1234	769	24863
	Jours de tonnerre. Askdagar.												
Norrland	29	11	26	1 77	1075	4291	8318	4520	553	68	6	11	18985

OT-based hail climatology: The Alpine region

Maps of hail frequency in Switzerland (Schweizer Hagel), Austria (Svabik, 2013), Germany (Puskeiler, 2013), France (Vinet, 2001), Italy (Prodi, 1974), Slovenia (Skok, 2014)

Hazard map based on OT detections

OT-based hail climatology: Maghreb

Summary

- Satellite-based overshooting cloud top (OT) data is used as a proxy for hail frequency
- Obtained climatology agrees well with existing, national-scale climatologies

Limitations

- Available resolution limits reproduction of individual events
- Time period insufficient for trend analysis
- Analyzed summer half year only