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Summary objective (i) To develop a temperature- and rainfall-driven model of malaria transmission capable

of prediction. (ii) To use the model to examine the relationship between the intervention timing and

transmission intensity on the effectiveness of indoor residual spraying (IRS).

methods A dynamic model of malaria transmission was developed from existing models of malaria

transmission dynamics. The model was used to retrospectively predict actual malaria cases from

Hwange district in Zimbabwe using actual meteorological and IRS timing and coverage data. Simula-

tions of alternative intervention scenarios (timing and coverage) examined the effectiveness of earlier and

later interventions, at higher and lower coverage levels in epidemic and non-epidemic years.

findings The model was able to predict actual malaria cases in Hwange over a four-and-a-half-year

period with a lead time of 4 months (e.g. January rainfall and temperature predicts April malaria) and a

correlation coefficient of 0.825 (r2 ¼ 0.6814). The IRS simulations show that the marginal benefits of

increasing IRS coverage are higher in high-transmission (HT) years relative to lower transmission years.

This implies that over a period of years, maximum impact could be achieved with a given quantity of

insecticide by increasing coverage in HT years. However, the model also shows that earlier spraying is

more effective in all years, especially so in epidemic years, and that IRS has limited impact if it is carried

out too late in relation to peak transmission.

conclusion Temperature- and rainfall-driven models of malaria transmission have the potential to

predict malaria epidemics. Early intervention based on prior knowledge of the magnitude of the

malaria season can be more effective and efficient than carrying out routine activities every year.

Malaria control planners need improved access to the technology that would allow them to better

predict malaria epidemics and develop Malaria Early Warning Systems (MEWS). MEWS can then be

linked to intervention planning to reduce the devastating impact of malaria epidemics on popula-

tions.
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Introduction

Many studies have sought to examine the effectiveness or

impact of indoor residual spraying (IRS) as a vector control

measure against malaria (Curtis & Mnzava 2000; Charl-

wood et al. 2001; Romi et al. 2002; Sharp et al. 2002).

There is a growing body of literature demonstrating that

IRS is a cost-effective intervention against malaria (Good-

man et al. 1999, 2001; Guyatt et al. 2002; Conteh et al.

2004). However, in an operational setting, effectiveness of

IRS can be compromised by insecticide under-dosing

(Masendu et al. 2002) or replastering of walls after

spraying (Mnzava et al. 1998). Additional factors, so far

not investigated, which may affect the effectiveness and

cost-effectiveness of IRS are differences in the timing of

intervention and the local transmission intensity. These

questions warrant investigation as IRS is considered an

appropriate intervention in epidemic-prone areas (Roll

Back Malaria 2005) where, by definition, transmission

intensity exhibits a high degree of inter-annual variability

and where timeliness of interventions is critical in prevent-

ing or mitigating epidemics. Moreover, the development of
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malaria early warning systems (MEWS) may enable

epidemics to be predicted with sufficient lead time that

intervention efforts can be targeted in space and time to

achieve maximum impact. This paper examines the

relationship between the timing of the intervention (in

relation to the epidemic), inter-annual transmission

intensity and the impact of residual spraying using a

dynamic weather-driven model of malaria transmission

to simulate effectiveness and thus identify optimal inter-

vention scenarios.

Methods

Model development and overview

A dynamic model of malaria transmission, driven by

temperature and rainfall was developed from existing

models of the relationship between temperature and

entomological variables such as gonotrophic and sporo-

gonic cycle length (Detinova 1962; Lindsay & Birley 1996)

and malaria transmission (Macdonald 1952; Saul et al.

1990). Model development was carried out using mete-

orological and epidemiological data from the Western

highlands of Kenya where malaria is unstable and prone to

epidemics. The meteorological data are a time series of

dekadal (collected every 10 days) minimum and maximum

temperature (used to calculate arithmetic mean) and daily

rainfall in mm. The malaria cases are daily inpatient

malaria cases recorded at Kapsabet hospital in the Nandi

District.1 A basic spreadsheet model structure was devel-

oped according to existing information on malaria trans-

mission dynamics (e.g. published models and parameter

values) and driven by the Kenyan meteorological data. The

output of this model (malaria cases) was compared with

the epidemiological data and altered iteratively to remove

bugs and improve correlation between model output

(predicted cases) and actual cases (epidemiological data).

Once a satisfactory model had been developed using the

Kenyan data,2 the same model was re-run using meteoro-

logical data from Zimbabwe, to simulate malaria case data

from Hwange district in Zimbabwe.

The Zimbabwe meteorological data was only available on

a monthly as opposed to dekadal basis and so the model was

adjusted accordingly. This was done by reducing the number

of model calculations in each year to account for the fewer

data points. Most interim stages of the model (submodels –

see below) were not affected by this as they utilize variables

which are either assumed to change only on a monthly basis

or are governed by processes that vary with temperature.

Monthly temperature and rainfall data from Hwange

Meteorological Station from January 1993 to December

1997, 1 year before malaria case data were available, were

fed into the model. A small number of initial infections was

assumed so that the model reached a stable state by 1994.

Initial values of model variables were set on the basis of

available data from the study area and the literature. Where

this was not available, reasonable initial values were

chosen and then varied one at a time to fit and scale the

model with the case data. Uncertainty analysis was carried

out on unknown variables. The model was run and its

ability to predict malaria cases from Hwange District in

Zimbabwe was tested by cross correlation. A sensitivity

analysis was carried out on the ‘best-fit’ model and simu-

lations of different IRS coverage levels and timing were

produced.

Description of study area

Matabeleland North Province is in the north-west of

Zimbabwe, bordering with Zambia to the north and

Botswana to the west. It has an area of 75 025 km2, and an

estimated population (for the analysis period) of 735 000

people of which 124 803 are under 5 years of age (Health

Information Unit 19952 ). Malaria in Matabeleland North is

seasonal, normally beginning in December and continuing

until May with peak transmission occurring during March/

April, following peak rainfall.

Hwange district has one of the highest incidences of

malaria in Matabeleland North, although all districts in the

province are affected by malaria. Average monthly mini-

mum and maximum temperatures in Hwange district were

13.6 and 29.4 �C during the period of analysis and mean

annual rainfall was 482 mm. Malaria transmission in this

district is highly seasonal and inter-annual variability in

reported case numbers is high.

Overview of the model

The model uses mean monthly maximum temperature and

the cumulative monthly sum of rainfall to calculate values

for key parameters. These are then combined to give the

number of new infections, super infections and people

recovering which are then used to calculate the number of

humans infected with malaria each month. The model is

designed for use in areas where brief seasonal transmission

and occasional epidemics do not enable acquired immu-

nity. The population are therefore considered to be non-

immune. The model is described as six submodels briefly

outlined below. Mathematical details of the model speci-

fication are provided in Appendix 1.

1Data collected and used by permission of Dr David Sang,

Ministry of Health, Kenya.
2Further details on the Kenyan model available on request from
the corresponding author.
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Submodel 1 describes the number of (female) mosquitoes

as a function of rainfall.

Submodel 2 describes the relationship between tem-

perature and the length of the gonotrophic or feeding cycle.

The gonotrophic cycle length is the period of time between

successive egg laying. Although the length of the gono-

trophic cycle is known to be related to humidity the

relationship has not been defined and was therefore not

explicitly included in the model.

Submodel 3 describes the relationship between tem-

perature and the sporogonic cycle. The sporogonic cycle is

the time taken for the parasite to undergo necessary

development in the vector, enabling it to transmit malaria.

Submodels 2 and 3 are based on the work of Detinova

(1962).

Submodel 4 describes vector survivorship in terms of

survival probability per gonotrophic cycle and per day

(Lindsay & Birley 1996). Combined with submodel 3, this

allows the calculation of the probability of the vector

surviving long enough for sporogonic development to be

completed. Submodel 4 is also used to simulate the effects

of a residual spray programme, which is considered in

terms of its impact upon the probability of vector survival

per gonotrophic cycle.

Submodel 5 describes the determination of the spor-

ozoite rate. The sporozoite rate is the proportion of vectors

with infectious pathogens in their salivary glands. The

sporozoite rate sub-model used was developed by Saul

et al. (1990).

Submodel 6 is the human infection model which

calculates the number of new infections, superinfections

and recoveries.

Model assumptions

The model is based on the following assumptions:

• Vector and host populations are homogenous.

• The probability of an individual vector surviving from

one gonotrophic cycle to the next is constant and

therefore independent of the age of that individual.

• Vectors which become infectious remain infectious.

• Feeding of an already infected vector on an infectious

host has no effect on the course of the infection in the

vector.

• Vectors bite randomly.

• Infected individuals bitten again by an infected

vector will be superinfected. This is not counted as a

new infection but will mean that the individual is not

able to recover until the following month where

recovery will then be governed by the probability of

recovery.

• The proportion of multiple or mixed blood meals

because of interrupted feeding may be a significant

factor in transmission. However, it is not included in

the model and all blood meals are assumed to be

carried out in full on a single host.

Model inputs

The population estimates for Hwange district were

obtained for the years 1994–1997 (National Heath Infor-

mation and Surveillance Unit) and 1999 (Hwange District

Health Service) where no data were available (1993 and

1998) the linear trend of the series was used to estimate

population size.

Residual spraying was carried out annually in the district

during the period of analysis; however, data on the

coverage achieved by the spray programme were not

available for all years. Limited information was available

regarding coverage in more recent years and this was used

to provide an estimate of the likely coverage achieved by

the programme in previous years. The lack of data was

further complicated by the ambiguous use of the term

‘coverage’ in source information, which does not refer to

coverage of the total district but actually refers to coverage

of the target area delineated for the spay programme.

Reported coverage percentages were therefore converted to

actual district coverage.

The probability of vectors surviving each feeding cycle

(a) is considered to be fixed throughout the model, it is

reduced (by a factor, b) when spraying is carried out.

The reduction in survivorship caused by spraying is

assumed to occur as soon as the spray programme is

completed to its defined level of coverage, for example,

if the spray programme is completed during January its

effectiveness will start and be at a maximum in January.

The residual action of the insecticide used is assumed to

last for 6 months with a linear decline in effectiveness

such that after six full months the insecticide is ineffec-

tive.

Survivorship is critical to malaria transmission and the

probability of vectors surviving each feeding cycle is

usually in the range of 0.4–0.6 (Charlwood et al. 1985;

Mutero & Birley 1987; Graves et al. 1990; Hii et al.

1990). Data were obtained from the literature to further

inform the choice of values for a and b. Magesa et al.

(1991) found that the mean ovarian age grade of An.

gambiae in traditional Tanzanian villages before and after

DDT house spraying was 1.229 and 0.400 respectively.

The ovarian age grade is determined by the dissection of

the ovaries to count the number of dilatations left in

the ovariole stalks subsequent to each ovulation and
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oviposition which corresponds to the number of gono-

trophic cycles undergone (Gilles & Warrell 19933 ). These

data were rearranged (see Appendix 2) to yield estimates of

a and ab shown in Table 1. The selection of values for

other model inputs is described below.

Fitting and testing the model

The ability of the model to predict the relative changes in

malaria cases reported in the Hwange district during the

period from January 1994 to June 1998 (source: National

Heath Information and Surveillance Unit, Ministry of

Health and Child Welfare) was measured by cross

correlating the model results for the sum of all infections

[new infections (F) and super infections (Z)] with the

number of cases recorded at government health facilities.

This was used because it is assumed that the case data

will reflect not only new infections, but also individuals

who are carrying parasites but are no longer clinically ill

who receive another infected bite and are therefore sick

again. The time-series data used include a range of

transmission levels found in the area ranging from serious

epidemic years to post-drought low transmission (see

Figure 2).

The value of unknown variables were altered one at a

time manually until the value of each variable that yielded

the highest correlation coefficient was identified (see

Table 2 for range tested for each variable). The ‘solver’

function3 in Excel (Microsoft 1993) was then used to

Table 1 Value of variables achieving the

highest correlation with case data

Variable description

Variable

name

Value yielding
highest

correlation

coefficient

Number of people initially infected I 500

Constant in the rainfall to mosquito sub model l 992 123
Proportion of human blood-fed mosquitoes h 0.38

Difference between indoor and outdoor temperature l 1

Percentage coverage achieved by spray programme c 0.24*

Percentage of vectors surviving each feeding cycle in
unsprayed population

a e)1/1.229*

Percentage of vectors surviving each feeding cycle in

sprayed population

ab e)1/0.4*

Probability of vector becoming infected per infectious meal k 1
Probability of pathogen becoming infectious in the vector v 0.4

Length of phase 1 and 3 of gonotrophic cycle m 1.26

Probability of recovery r 0.182
Lag 4 months

Proportion of cases reporting at health facility k 0.54

*The variable was not altered using the solver function as the variable value chosen was

based on a priori information rather than by fitting.
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Figure 1 Scatter plot of model results for ‘cases reporting by

month’ (model output) against reported malaria for Hwange dis-
trict.

3The solver function determines the maximum or minimum value

of one cell by changing other cells and in this case was used to

maximize the correlation between modelled and actual cases by
varying unknown model inputs.
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further improve the correlation between the model results

and the case data for Zimbabwe.

The model output represents all infections occurring;

however, not all malarial infections will present and be

recorded at the health centre. A constant representing the

proportion of cases in the community reporting at the

government run health facilities (k) was therefore

introduced to fit the model output to the case data. The

‘solver’ function was used to obtain the value of k which

minimized the square of the difference between the sum

of cases predicted by the model and the sum of actual

cases. The resulting data were defined as ‘cases reporting

by month’.

Further analysis regarding the ability of the model to

predict the magnitude or severity of malaria seasons was

carried out by comparing the deviation from the mean

value for each month for modelled and actual cases.

Uncertainty analysis

Uncertainty analysis was used to assess the effect on

predicted cases resulting from uncertainty in input

parameters. Variables identified as important were inclu-

ded in the subsequent sensitivity analysis. Table 2 provides

a list of the variables and ranges examined in the

uncertainty analysis.

0

10 000

20 000

30 000

40 000

Ja
n-

94

Model
Malaria

M
ar

-9
4

M
ay

-9
4

Ju
l-9

4

Sep
-9

4

Nov
-9

4

Ja
n-

95

M
ar

-9
5

M
ay

-9
5

Ju
l-9

5

Sep
-9

5

Nov
-9

5

Ja
n-

96

M
ar

-9
6

M
ay

-9
6

Ju
l-9

6

Sep
-9

6

Nov
-9

6

Ja
n-

97

M
ar

-9
7

M
ay

-9
7

Ju
l-9

7

Sep
-9

7

Nov
-9

7

Ja
n-

98

M
ar

-9
8

50 000

60 000

70 000

Figure 2 Modelled and actual reported

malaria cases (adjusted for lag time).

Table 2 Variables included in uncertainty analysis

Variable Range Justification Results

Rainfall to mosquito constant (l) 250 000–1

500 000

No data – arbitrary Linear scaling factor

Proportion of human blood-fed mosquitoes (h) 0.1–1 True value ranges between 0 and 1 Highly sensitive therefore

included in SA
Temperature adjustment factor (l) 1–10 �C No data – arbitrary Linear scaling factor

Probability of vector becoming infected per

infectious meal (k)

0–1 True value ranges between 0 and 1 Linear scaling factor

Probability of pathogen becoming infectious in the
vector (v)

0–1 True value ranges between 0 and 1 Linear scaling factor

Length of phase 1 and 3 of gonotrophic cycle (m) 0.5–4 No data – arbitrary reasonable range Included in SA as sensitivity

depends on IRS coverage
level

Probability of recovery (per month) (r) 0–0.9 80 days duration infectivity ¼ 0.375

per month (Macdonald 1957)

Highly sensitive therefore

include in SA
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Sensitivity analysis

Variables that were identified as important in the uncer-

tainty analysis, and others of specific interest were subject

to a one-way sensitivity analysis. Each variable was varied

±10% from the value which achieved the best fit. The

number of cases predicted for a low-transmission (LT) year

(1994) and a high-transmission (HT) year (1996) was

recorded for each value and the percentage change in cases

resulting from a 10% change in each variable was

calculated. Sensitivity analysis was carried out on the

proportion of human blood-fed mosquitoes (h), the

proportion of vectors surviving the feeding cycle in

the unsprayed (a) and sprayed (ab) populations and

the probability of recovery (r).

Alternative intervention scenarios examined

A range of IRS intervention scenarios was examined using

the model based on variations of the actual IRS strategy.

The IRS carried out in Hwange district during the period

studied was completed by the end of December (early

January at the latest) with a coverage rate of approximately

24% of the entire district (selective spraying of wards

within the district). The first scenario simulated was a

‘do-nothing’ alternative where the model was used to

simulate the number of cases if no IRS was carried out.

Alternative IRS coverage levels of 24% (actual coverage),

50%, 75% and 100% with effectiveness on-set time (spray

completion date) set to 1 January each year were then

simulated. Simulations were then carried out applying

24% (baseline) IRS coverage with effectiveness on-set

times of 1 August, 1 September, etc. to 1 March. For each

scenario modelled, the total number of cases reporting each

year was recorded. The number of cases prevented com-

pared with the ‘do-nothing’ alternative, was then calcula-

ted for each scenario.

Results

Model results

Values of variables achieving best fit with data. Table 1

shows the value of each variable which achieved the

highest correlation coefficient between the modelled and

actual cases. Combining these variables with the

population and climate data predicted the actual case data

with a lag of 4 months and a correlation coefficient of

0.825 (r2 ¼ 0.6814). Figure 1 shows a scatter plot of

actual cases against modelled cases and a fitted trend line,

illustrating that the model tends to over-predict case

numbers (even after adjusting for cases reporting). Figure 2

illustrates the modelled and actual reported malaria cases.

The model clearly picks out the seasonality (timing) of

transmission and also the magnitude of each malaria

season.

Comparison of the deviation from the mean value for

each month for modelled and actual cases revealed that

deviations from the mean in the actual cases are positively

related to deviations from the mean in the modelled cases

with r2 ¼ 0.8806. In other words, the model predicts well

the magnitude of malaria each month.

The values of the variables ‘proportion of vectors

surviving feeding cycle in unsprayed population’ (a),

‘proportion of vectors surviving feeding cycle in sprayed

population’ (ab) and ‘percentage coverage achieved by

spray programme’ (C) were not varied using the solver

function as part of the model fitting as the critical

relationship between these variables and the model output

required that they should be based on actual data rather

than varied to improve the fit of the model. However,

manual varying of parameters showed that a C-value of

50% improved the correlation coefficient very slightly to

0.828 (r2 ¼ 0.6854) and increased the value of the

proportion of cases reporting (k) necessary to set predicted

cases equal to recorded cases from 0.54 to 0.78. During the

sensitivity analysis other values of a were tested while all

other parameters were held constant. This analysis

revealed that, ceteris paribus the highest correlation coef-

ficient was obtained with a ¼ 0.44. Other values of ab
were also tested in the sensitivity analysis revealing that a

higher correlation coefficient (0.830, r2 ¼ 0.6893) could be

obtained with ab equal to 0, in which case k (the

proportion of case that report) would increase to 0.59.

However, to maintain the relationship between the value of

a and ab obtained from Magesa et al. (1991) and in view of

the relatively small increase correlation achieved by alter-

ing the value of ab, the original value was maintained.

Uncertainty analysis results

The uncertainty analysis revealed that the model is

relatively more sensitive to the rainfall to mosquito

constant (l) (which is positively related to transmission) in

drier years. The temperature adjustment factor (l) is

negatively related to transmission but the model is fairly

robust to changes within the range examined. The prob-

ability of vector becoming infected per infectious meal (k)

and probability of pathogen becoming infectious in the

vector (v) are positively related to transmission and the

model is robust to changes between 0.4 and 1; however,

reducing the value of either of these variables below 0.2

(with the other set to 1) reduces transmission dramatically.

The length of phase 1 and 3 of the gonotrophic cycle (m) is
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positively related to transmission and the model is fairly

robust to changes in this variable; however, if it drops

below 0.5 transmission is reduced dramatically. The model

is highly sensitive to changes in the proportion of human

blood-fed mosquitoes (h) which was further investigated in

the sensitivity analysis. In higher transmission years, the

model is less sensitive to changes in the probability of

recovery (per month) (r); however, in lower transmission

years, altering r from 0.18 to 0.1 can have a dramatic

impact on transmission; this was investigated further in the

sensitivity analysis.

Sensitivity analysis results

The results of the sensitivity analysis are shown in Table 3.

Reducing the proportion of human blood-fed mosquitoes

(h) below the best-fit value (0.38) reduced cases by 48%

and 41% in LT and HT years respectively. Plotting other

years and other values for h (not shown here) confirms a

threshold-type effect with transmission being reduced

dramatically in all years for values of 0.3 or less. Increasing

h has a greater impact in 1994 (LT) than 1996 (HT)

probably because the model nears saturation point in 1996.

As expected very high levels of h lead to the model

predicting high case numbers every year.

Changes in the proportion of mosquitoes surviving the

feeding cycle (a) impact in a similar way to changes in h,

but the magnitude of the effect is greater. The model is

relatively insensitive to changes in the proportion of

mosquitoes surviving the feeding cycle in the sprayed

population (ab); however, this is likely to be partly because

of the fact that the sensitivity analysis was carried out with

a coverage equal to 24%; therefore, ab is acting only on a

quarter of the vector population. Moreover, the value of

this variable will begin to increase as the insecticide loses

efficacy; therefore, its value at particular points during the

epidemic curve will also be important, this is investigated

in the scenarios below. The recovery rate (r) is inversely

related to transmission and the magnitude of the effect is

larger in LT compared with HT years.

Intervention scenario results

Table 4 shows the total number of cases occurring under

each coverage and timing scenario, and Table 5 shows the

number of cases prevented, compared with the ‘do nothing’

alternative for each coverage and timing scenario. Figure 3

shows the number of reported cases prevented with

alternative levels of IRS coverage and fixed timing com-

pared with a ‘do-nothing’ alternative. As expected, the

number of cases prevented increases with increased

coverage in all years. And, the marginal benefit (additional

cases prevented for each incremental increase in IRS

coverage) declines as coverage levels increase. The margi-

nal benefits of increased coverage are greater and decline at

a slower rate in higher transmission years when compared

with lower transmission years.

Figure 4 shows the number of cases prevented (com-

pared with a ‘do nothing’ alternative) with alternative

timings of IRS and coverage fixed at 24%. In LT years

(1993 and 1994), the timing has little impact on the

number of cases prevented as long as IRS is completed

between September and December. However, in medium

transmission years (1995, 1997 and 1998), effectiveness

(cases prevented) begins to decline if IRS is completed later

than September or October. In 1996 (HT/epidemic year),

the timing of IRS has a dramatic effect on the number of

cases prevented. For example, if IRS is completed by

Table 3 Sensitivity analysis results

Variable Value tested

Low-transmission (LT) year (1994) High-transmission (HT) year (1996)

Number of cases % change in cases Number of cases % change in cases

h (10% lower than best fit) 0.342 6247 )48 107 375 )41

h (best fit) 0.38 12 106 n/a 181 743 n/a
h (10% higher than best fit) 0.418 24 892 106 228 930 26

a (10% lower than best fit) 0.396 2960 )76 29 108 )84

a (best fit) 0.44 12 106 n/a 181 743 n/a
a (10% higher than best fit) 0.484 40 658 236 249 714 37

ab (10% lower than best fit) 0.072 12 445 2.8 180 236 0.83

ab (best fit) 0.08 12 106 n/a 181 743 n/a

ab (10% higher than best fit) 0.088 12 198 0.8 182 631 0.5
r (10% lower than best fit) 0.1638 14 748 22 197 807 8.8

r (best fit) 0.182 12 106 n/a 181 743 n/a

r (10% higher than best fit) 0.2002 9931 )18 161 536 )11
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October (with 24% coverage) around 67 300 cases occur;

this rises to around 181 700 cases if IRS is not completed

until January (see Table 4); so according to the model

simulations, spraying earlier could reduce cases by an

additional 114 400. In other years, the additional cases

prevented by bringing IRS forward to September or

October range between 8000 (1994) and 37 000 (1998).

Spraying late (e.g. in February) prevents between 2 and 4.7

times fewer cases than spraying in October each year when

compared with a ‘do nothing’ alternative.

In 1996, increasing coverage from 24% to 50% leads to a

fall in cases of around 58 000, but spraying earlier with

the 24% coverage level would reduce cases by 114 000

without incurring any additional insecticide costs. In fact,

Table 5 Total number of cases prevented under varying scenarios compared with ‘do nothing’ alternative

Year

Scenario

IRS coverage (effective from January) IRS effective from (coverage 24%)

24% 50% 75% 100% August September October November December January February March

1993 322 471 526 542 N/A N/A N/A N/A N/A 322 89 19
1994 8565 12 557 14 048 14 516 15 546 16 551 15 068 14 681 12 382 8565 3205 1722

1995 43 049 58 697 64 191 65 941 71 098 72 955 71 970 69 206 61 528 43 049 25 212 21 241

1996 91 714 141 181 167 636 178 204 171 471 201 273 206 156 188 298 136 879 91 714 61 884 54 224

1997 63 383 85 679 95 234 98 533 69 372 83 201 84 541 65 742 62 161 63 383 42 448 33 971
1998 45 402 61 290 70 224 73 638 74 982 82 588 75 748 58 672 44 152 45 402 35 271 33 139

Table 4 Total number of cases occurring under varying scenarios

Year

Scenario

‘Do nothing’
alternative

IRS coverage (effective from
1 January) IRS (coverage 24%) effective from

24% 50% 75% 100% August September October November December January February March

1993 559 237 88 33 16 483 N/A N/A N/A N/A 237 470 540

1994 20 671 12 106 8114 6624 6155 5125 4120 5604 5990 8289 12 106 17 467 18 949
1995 81 202 38 153 22 505 17 010 15 261 10 103 8247 9231 11 995 19 674 38 153 55 989 59 961

1996 273 457 181 743 132 277 105 821 95 254 101 987 72 184 67 302 85 159 136 578 181 743 211 573 219 234

1997 123 551 60 168 37 872 28 317 25 018 54 179 40 350 39 010 57 809 61 390 60 168 81 104 89 581
1998 104 481 59 079 43 191 34 257 30 842 29 499 21 893 28 733 45 809 60 329 59 079 69 210 71 342
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Figure 3 Total number of cases prevented under different IRS

coverage scenarios (timing January).
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Figure 4 Total number of cases prevented under different IRS

timing scenarios (coverage 24%).
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according to the simulations, changing the timing of IRS

completion from October to January would lead to a greater

reduction in cases than increasing coverage levels to 100%.

Discussion

The model presented in this paper uses observed tempera-

ture to model gonotrophic and sporogonic cycle lengths

and rainfall to drive mosquito numbers. These inputs are

combined with models of daily vector survival and the

sporozoite rate to produce monthly estimates of reported

malaria cases for Hwange District, Zimbabwe. Having

validated the predicted cases against actual cases using the

known coverage and timing of the IRS, the model was used

to simulate alternative IRS intervention scenarios.

The simulations show that the marginal benefits of

increasing IRS coverage are higher in HT years relative to

lower transmission years. This implies that over a period of

years, maximum impact could be achieved with a given

quantity of insecticide by increasing coverage in HT years

and reducing it in LT years. However, the model also

shows that earlier spraying is more effective in all years,

especially so in epidemic years, and that IRS has limited

impact if it is carried out too late in relation to peak

transmission. This finding illustrates the problem described

by Najera et al. (1998) and Connor et al. (1999) where

vector control measures are implemented when transmis-

sion has already been naturally interrupted thus wasting

scarce resources.

The model does not incorporate potential reductions in

the effectiveness of IRS caused by replastering of walls after

spraying, and this may cause the simulations to overesti-

mate the benefits of earlier spraying. However, the model

also makes a conservative assumption of the residual

impact of the insecticide effectiveness duration of 6 months

which means that, especially for the earlier interventions

scenarios, the efficacy of the insecticide may actually

continue beyond what has been modelled and therefore the

model may underestimate the benefits of early spraying

(for estimates of residual effects of insecticides in IRS, see

Najera et al., 19984 ).

Unfortunately, data on the impact on vector survivorship

in sprayed and unsprayed populations were only available

from a single study using DDT. Estimates of these variables

for other insecticides and in other settings would be useful

to validate the findings of this study and to examine the

impact on transmission of different insecticides.

Another limitation of the study is that the model is

validated using clinically diagnosed malaria cases which

are subject to under-reporting and misdiagnosis. However,

the skill of the model in predicting these data is good,

particularly if we consider its ability to predict the

epidemic year (1996). It would lend further weight for the

model if it were to be tested using data sets from other

locations. The potential for using the relationships used in

this model as part of efforts to develop MEWS should also

be considered.

Our results show that spraying is most effective when

completed earlier (in September or October rather than

December or January) every year. However, decisions on

the coverage levels for each year should also be informed

by the level of transmission that year. Unfortunately, this

decision would have to be made before actual rainfall data

are available to make predictions – although the model

predicts cases with a 4-month lag, the whole of a month’s

rainfall would be needed to make a forecast, making the

effective lead time 3 months. A practical alternative could

be to spray certain areas early annually, and use forecasted

information to carry out additional spraying in at-risk

areas. The use of seasonal climate forecasts (Thomson

et al. 2006) could therefore be used to inform coverage

decisions; however, the benefits of this would have to be

weighed against the reduced reliability of predictions based

on a forecast rather than actual rainfall.

The model simulations have also revealed a potential

benefit of MEWS in improving resource allocations in

time. A subsequent study by the same authors will

examine this using cost-effectiveness analysis. If accurate

malaria forecasts are available, prevention and mitigation

activities can be implemented in a timely manner to

maximise the cases prevented and possibly even avert

epidemics occurring altogether. However, this will be

dependent upon the capacity (technical and economic)

and willingness of malaria control programmes to act on

forecasted and therefore uncertain information and on the

forecasts being issued with adequate lead time for a

response to be coordinated (Roll Back Malaria 2001).

With IRS the lead time required may be relatively long;

however, other interventions such as checking and

replenishing drug stocks and warning communities and

health staff of the impending epidemic can be done with

shorter lead times. Evidence on the effectiveness of such

interventions is currently lacking.

Conclusions

Although studies have previously investigated the effect-

iveness (and cost-effectiveness) of IRS, none have examined

changes in effectiveness resulting from inter-annual vari-

ation in transmission levels. This is particularly relevant in

epidemic or seasonal transmission areas where IRS is

commonly used. In addition, the mode of action of IRS

confers public rather than personal protection (vectors are

generally killed whilst resting following a blood meal and
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are therefore unable to transmit malaria). The timing of the

application of IRS in relation to the timing and intensity of

transmission season is therefore an important determinant

of the transmission-reducing effects of IRS. This study has

taken existing understanding of the effectiveness of IRS a

step further by identifying and quantifying how the timing of

the intervention affects its effectiveness. In addition, it has

highlighted the potential efficiency gains that could be made

by altering the coverage levels and the timing of IRS

activities to reflect the diverse transmission levels which may

occur in the same locations in different years. An accurate

and timely MEWS and response capacity could help to

improve efficiency of resource use and reduce the burden of

malaria in areas of seasonal or epidemic-prone transmission.
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Appendix 1: Mathematical description of the model

Submodel 1: mosquito population

The number of female mosquitoes emerging each month is

assumed to be directly proportional to monthly rainfall (R)

q ¼ lR ð1Þ

Studies providing data on the number of bites per person

per night by month in locations across Africa (E. Savage

and M. Thomson, unpublished data) were identified,

geo-referenced and then the climatic rainfall data for the

relevant month and location were extracted from a climate

surface data set (Hutchinson et al. 1995).

The relationship between rainfall and the number of

bites per person per night for each location was found to be

approximately linear and this relationship was therefore

assumed in the model as reflected in Eqn 1 above.

Submodel 2: gonotrophic cycle length

The gonotrophic cycle (U)6 can be split into three phases

(Detinova 1962):

(i) the search for the host and the bite;

(ii) the digestion of the blood meal (u);

(iii) the maturation of the ovaries, and the search

for a suitable water body and oviposition (egg laying).

Phase one and three are assumed to be constant in length

and together have duration (m).

The duration of phase two of the cycle (u) is known to be

directly related to temperature and humidity and can be

calculated as follows (from Detinova 1962):

u ¼ fU

TU � gU
ð2Þ

where TU is the indoor temperature which can be calcu-

lated from the outdoor ambient temperature (T) using an

adjustment factor (l). fU is the degree days (a measure of

the total amount of heat required, between the lower and

upper thresholds, for an organism to develop from one

point to another in its life cycle) the minimum temperature

required for digestion of blood.

The total gonotrophic cycle length is therefore:

U ¼ mþ fU

ðT þ lÞ � gU

� �
ð3Þ

Submodel 3: sporogonic cycle length

The length of the sporogonic cycle is the time from the

female mosquito taking an infected blood meal to the

appearance of sporozoites in its salivary glands. This

process is dependent on temperature and is expressed thus

(from Detinova 1962):

N ¼ fN

ðTN � gNÞ
ð4Þ

where fN represents the number of degree days needed to

complete the parasite development (111 �C days for

P. falciparum) and gN represents the threshold below

which development ceases, (18 �C) (Detinova 1962).

Temperature (TN) is again adjusted to account for

differences between indoor and outdoor resting tempera-

tures, using a weighting system, based on the period of time

the vector spends indoors as a proportion of gonotrophic

cycle length.

Hence:

N ¼ fN

T þ lu
U

� �
� gN

ð5Þ

Submodel 4: vector survivorship

The model works on a daily time period. However, as

spraying has an impact on survivorship per gonotrophic

cycle, we first examined survivorship per gonotropic cycle

and then rearranged this to give daily survival. For this

reason, the model switches between daily survival and

survival per gonotropic cycle.
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The probability of a vector surviving each gonotrophic

cycle is a which is assumed to be constant and independent

of the length of the gonotrophic cycle (Hii et al. 1990).

After Lindsay and Birley (1996), the daily probability of

survival is therefore:

P ¼ a1=U ð6Þ

This assumes that a mosquito’s probability of daily

survival decreases as the feeding cycle gets shorter

(as temperature increases).

The model defines two populations of mosquitoes, those

covered (C) and not covered (1 ) C) by the spray

programme where C is the percentage coverage achieved

by the spray programme. The percentage of vectors

surviving each gonotrophic cycle is expressed as a in the

population not covered by the spray programme.

This is reduced by b in the population covered by the

spray programme immediately after spraying, gradually

increasing back towards a at a rate of b/6 per month over

the effective residual life of the insecticide (assumed to be

6 months).

The mean probability of daily survival (P) for the whole

population is

½að1� CÞ þ abC�1=U ð7Þ

The probability of the vector surviving sporogony is a

critical variable in the transmission of malaria. This is

expressed as

PN ð8Þ

Submodel 5: sporozoite rate

The sporozoite rate (S) is the proportion of vectors with

infectious pathogens and was derived from summing

infinite series as described by Saul et al. (1990). For

notational convenience the formula shown uses the prob-

ability of surviving the gonotrophic cycle for an unsprayed

population (a), in a sprayed situation this is substituted for

a(1 ) C) + abC.

S ¼ xhkvPN

ð1� aþ xhkvaÞ ð9Þ

where h is the proportion of human blood-fed mosquitoes,

i.e. those feeding on humans rather than other species, e.g.

cattle, x the proportion of humans that are infectious, k the

probability of the vector becoming infected per infectious

meal, v the probability (of the pathogen) becoming

infectious in the vector, and the probability of the vector

not becoming infectious as a result of a single feed is:

1� xhkv

Submodel 6: human infection

The number of infectious mosquitoes biting humans is the

product of the sporozoite rate (S), the number of mosqui-

toes (q) and the person biting habit (a).

The person biting habit represents the frequency at

which mosquitoes feed on humans as opposed to other

vertebrates:

a ¼ h

U
ð10Þ

where h is the proportion of human blood-fed mosqui-

toes (as described above) and U the gonotrophic cycle

length.

When the total human population is equal to (d), the

probability of a human receiving an infectious bite (R) is:

R ¼ 1� 1� 1

d

� �sqa

ð11Þ

An infectious bite received by a human is classified as a

new infection if it is on an uninfected human and a

superinfection if it is on an already infected human. The

number of infected humans is I and so the number of new

infections (F) is R(d ) I) and the number of superinfections

(Z) is RI.

New infected humans recover after time t with a fixed

probability r; hence, the number of people recovering at

time t (c) is:

c ¼ ðI � ZÞr ð12Þ

Dynamic model

The number of infected humans at time t (It) is the number

of infected humans at time t)1 (It)1), minus the number of

people recovering at time t (ct), plus the number of people

newly infected at time t (Ft):

It ¼ It�1 � ct þ Ft ð13Þ

Appendix 2

Magesa et al. (1991) found that the mean ovarian age

grade of An. gambiae in traditional Tanzanian villages

before and after DDT house spraying was 1.229 and 0.400

respectively. The ovarian age grade is determined by

dissection of the ovaries to count the number of dilatations

left in the ovariole stalks subsequent to each ovulation and

oviposition which corresponds to the number of gono-

trophic cycles undergone (Gilles & Warrell 19937 ). These

values were used to calculate the value of a and ab as

follows.
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If the probability of vectors surviving sporogeny before

spraying is a, the mean ovarian age grade of the population

at any given time �t is given by:

�t ¼

R1
0

tðaÞtdt

R1
0

tatdt

¼ � 1

ln a
ð14Þ

With spraying the probability of surviving the feeding

cycle is given by ab, similarly the mean ovarian age grade

of the population at any given time after spraying is:

�t ¼ �1

ln ab
ð15Þ

Hence before intervention substituting data from

Magesa et al. (1991) into Eqn 15 gives:

�1

ln a
¼ 1:229

Rearranging gives:

a ¼ e�1=1:229

After intervention substituting values from Magasa et al.

into Eqn 16 and rearranging gives:

�1

ln ab
¼ 0:4

ab ¼ e�1=0:4

In addition to the value of a shown above, other values

ranging between 0 and 1 were tested. For ab values

between 0 and a were tested.
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Un modèle pour simuler l’impact de la synchronisation, de la couverture et de l’intensité de transmission sur l’efficacité de la pulvérisation de résidus

d’intérieur pour le contrôle de la malaria

objectifs (i) Développer un modèle de prédiction de la transmission de la malaria basé sur la température et les précipitations. (ii) Utiliser le modèle

pour examiner le rapport entre la synchronisation de l’intervention et l’intensité de transmission sur l’efficacité de la pulvérisation de résidus d’intérieur

(PRI).

méthodes Un modèle dynamique de la transmission de malaria a été développé à partir de modèles existants de dynamique de transmission de

malaria. Le modèle a ensuite été utilisé pour prévoir rétrospectivement des cas réels de malaria dans le district de Hwange au Zimbabwe en utilisant les

données sur la météorologie, la synchronisation de la PRI et la couverture. Les simulations de scénarios alternatifs d’intervention (synchronisation et

couverture) ont été utilisées pour examiner l’efficacité des interventions appliquées plus tôt ou plus tard sur des étendues plus élevées et plus basses de la

couverture durant les années épidémiques et non épidémiques.

résultats Le modèle a permis de prévoir des cas réels de malaria à Hwange sur une période de quatre ans et demi avec un délai de quatre mois (par

exemple: les précipitations et la température de janvier prévoyaient la malaria d’avril) et un coefficient de corrélation de 0,825 (r2 ¼ 0,6814). Les

simulations de PRI démontrent que les avantages marginaux de l’augmentation de la couverture de PRI sont plus élevés pour les années de transmission

élevée que pour celles de transmission faible. Ceci implique que durant un certain nombre d’années, un impact maximum pourrait être atteint avec une

quantité donnée d’insecticide, en augmentant la couverture dans les années de transmission élevée. Le modèle démontre également que la pulvérisation

très tôt est plus efficace pour toutes les années, spécialement pour les années épidémiques, et que la PRI a un impact limité lorsqu’elle est effectuée trop

tard par rapport au pic de transmission.

conclusion les modèles de transmission de malaria, basés sur la température et les précipitations, sont capables de prévoir des épidémies de malaria.

L’intervention très tôt, basée sur la connaissance préalable de l’importance de la saison de malaria, peut être plus effective et plus efficace que le fait de

mener des activités de contrôle en routine chaque année.

mots clés malaria, modèle, synchronization, pulvérisation de résidus d’intérieur, Zimbabwe, épidémies
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Modelo para simular el impacto la cobertura, la intensidad de transmisión y del momento de realización de la intervención sobre la efectividad del

rociamiento intradomiciliario con insecticidas de acción residual para el control de la malaria

objetivos (i) Desarrollar un modelo de transmisión de malaria, capaz de predecir a partir de datos de temperatura y precipitación (ii) Utilizar el

modelo para examinar la relación entre el momento de la intervención y la intensidad de transmisión sobre el efecto del rociamiento intradomiciliario

con insecticidas de acción residual (RIR)

métodos Se desarrolló un modelo dinámico para la transmisión de malaria a partir de otros modelos dinámicos para la transmisión de malaria ya

existentes. El modelo se utilizó para predecir de forma retrospectiva los casos actuales de malaria del distrito de Hwange, en Zimbabwe, utilizando datos

metereológicos reales, y de cobertura y del momento de realización el RIR. Mediante simulaciones de escenarios alternativos (en cuanto al momento de

realizar la intervención y su cobertura), se examinó la efectividad de intervenciones más tempranas o más tardı́as, con mayor y menor nivel de cobertura,

en años epidémicos y sin epidemia.

resultados El modelo fue capaz de predecir los casos de malaria reales en Hwange durante un periodo de cuatro años y medio, con un tiempo de

antelación de cuatro meses (por ejemplo con datos de lluvias de Enero, se predice la malaria en Abril) y un coeficiente de correlación de 0.825 (r2 ¼
0.6814). Las simulaciones del RIR demuestran que el beneficio marginal de aumentar la cobertura de RIR es mayor en años de alta transmisión que en

aquellos de menor transmisión. Esto implica que durante un periodo de unos cuantos años se podrı́a alcanzar un impacto máximo, con una cantidad

dada de insecticida, aumentando la cobertura en años de alta transmisión. El modelo también muestra que el rociamiento temprano es siempre más

efectivo, y en especial en los años epidémicos, y que el RIR tiene un impacto limitado si se realiza demasiado tarde con relación al pico de transmisión.

conclusión Los modelos de trasmisión de malaria basados en la temperatura y la precipitación, tienen el potencial de predecir las epidemias de

malaria. Una intervención temprana, basada en un conocimiento previo de la magnitud de la estación de malaria, puede ser más efectiva y eficiente que

llevar a cabo actividades de control rutinarias cada año.

palabras clave malaria, modelo, momento de la intervención, rociamiento intradomiciliario, insecticidas acción residual, Zimbabwe, epidemias
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