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Abstract

Background: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such,
there is a growing requirement for global soil information. Although several global soil information systems already exist,
these tend to suffer from inconsistencies and limited spatial detail.

Methodology/Principal Findings: We present SoilGrids1km — a global 3D soil information system at 1 km resolution —
containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg—1), soil pH,
sand, silt and clay fractions (%), bulk density (kg m—3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil
organic carbon stock (t ha—1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy
suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a
compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global
environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful
covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and
taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies
assessed using 5-fold cross-validation were between 23-51%.

Conclusions/Significance: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at
a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km
are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty
to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations.
However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as
new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative
Commons Non Commercial license.
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Introduction

There is increasing recognition of the urgent need to improve
the quality, quantity and spatial detail of information about soils to
respond to challenges presented by growing pressures on soils to
support a large variety of critical functions [1-4]. Arrouays et al.
[3] argue that existing soils information is not well suited to
addressing vital questions related to mapping, monitoring or
modelling soil processes that are driven by fluxes or changes in
soils of water, nutrients, carbon, solutes or energy. Conventional
models of soil variation describe variation in the horizontal
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dimension using polygons comprising classes of named soils [5]. In
the vertical dimension, variation is described in terms of classes of
horizons or layers that vary in their properties, thickness and
depth. These conceptual models of discrete variation of classes of
soil in horizontal and vertical directions are not well suited for use
in many of the (global) simulation models and decision making
systems currently used to describe and interpret soil functions and
processes, such as supporting crop growth modelling, modelling
hydrological and climatological processes, soil carbon dynamics or
erosion [2,5]. Most modern spatial models that require informa-
tion about soils as an input need accurate numerical information
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about continuous variation in soil properties. Models also require
mput data layers that are complete, consistent and as correct and
current as possible. These requirements are not well met by
current sources of soils information, especially sources of global
extent.

Soil is probably one of the least well described thematic layers at
the global scale, and existing global soil maps are often of
undocumented or unknown accuracy [5]. At the moment, only
coarse scale soil maps of the world are available at an effective
resolution of about ~20 km [10]. The most commonly used global
soil maps include [2,5]: Harmonized World Soil Database
(HWSD) [11], USGS-produced soil property maps (http://soils.
usda.gov/use/worldsoils/mapindex/) and ISRIC-WISE based soil
property maps [12].

While widely used and cited, these various coarse resolution soil
maps tend to suffer from artefacts due to use of different soil
mapping concepts between countries and regions, from variation
in the underlying soil mapping scale (usually between 1:0.5 M to
1:5 M) and from differences in reliability of source data within and
between continents [2,5]. They can also not easily be updated with
new information and often lack any measure of uncertainty, which
is assumed to be significant. In summary, currently available
global soil maps are not comparable in level of detail, spatial
accuracy and usability with other global environmental layers such
as global land cover and climatic products (Figure 1).

In this paper, we present and describe SoilGridslkm — a global
3D soil information system at 1 resolution — as a first response to
the need for a new, consistent and coherent, global soil
information. SoilGridslkm was produced using the Global Soil
Information Facilities (GSIF), which was recently developed at
ISRIC as a framework and platform to support widespread, open
collaboration in the assembly, collation and production of global
soil information.

Materials and Methods

Global Soil Information Facilities

ISRIC — World Soil Information has a mandate to serve the
international community with information about the world’s soil
resources to help addressing major global issues. Over the last four
years, in collaboration with a growing number of international
partners and with a direct support from the Bill and Melinda
Gates Foundation (AfSIS project; http://africasoils.net), ISRIC
has been developing a cyberinfrastructure called Global Soil
Information Facilities (GSIF).

GSIF has a particular emphasis on supporting the assembly and
collation of geo-registered soil profile descriptions with associated
analytical data, and on supporting the production of new maps of
3D continuous soil properties and soil classes at global to regional
scales. GSIF consists of several components: data portals for
assembling and hosting soil profile data and covariate data,
software for global soil data analysis and mapping, and facilities for
documenting data and methods and for automating workflows.

One of these components is “SoilGrids” — an automated
system for global soil mapping. SoilGrids is an implementation of
model-based geostatistics [13,14] for the purpose of predicting soil
properties (in 2D or 3D) and soil classes for a global soil mask (see
turther Figure 3c) using automated mapping. Automated mapping
is the computer- aided generation of maps from point observations
and covariate layers, with minimal human intervention, so that
map updating is easy. In the context of geostatistical mapping,
automated mapping implies that model fitting, prediction and
visualization are run using fully automated and reproducible
workflows [14,15]. The current implementation of SoilGrids
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focuses on producing predictions at 1 km spatial resolution and for
a selection of soil properties and classes of interest to modelers and
to international organizations such as FAO, Intergovernmental
Panel on Climate Change (IPCC), the Consultative Group on
International Agricultural Research (CGIAR) and similar.

We have imagined GSIF as a crowd-sourcing system, largely
mspired by systems such as OpenStreetMap, Geo-wiki [16] and
the R Open Source environment for statistical computing [17]. In
this context, GSIF follows the “Agile” approach to software/IT
development [18] meaning that we support rapid development,
integration of soil field data, output validation, and rapid
publishing of results. A new development cycle with new outputs
(in principle of improved accuracy) is implemented in succession
within an automated processing framework until the desired target
specifications have been reached.

Input data for SoilGridsTkm

The main input data sources for SoilGridslkm are global
compilations of publicly available (shared) soil profile data and
environmental layers at 1 km resolution; both are freely accessible
via portals (http://worldsoilprofiles and http://www.worldgrids.
org). The main sources of soil profile data used to produce the first
version of SoilGridslkm are: the USA National Cooperative Soil
Survey Soil Characterization database (http://ncsslabdatamart.sc.
egov.usda.gov/) and profiles from the USA National Soil
Information System (http://soils.usda.gov/technical/nasis/), LU-
CAS Topsoil Survey database [19], Africa Soil Profiles database
[20], Mexican National soil profile database [21], Brazilian
national soil profile database [22], Chinese soil profile database
[23], and the soil profile archive from the Canadian Soil
Information System [24]. Other significant sources of profile data
used are: ISRIC-WISE [25], SOTER [26], SPADE [27], and
Russian soil reference profiles [28].

The compilation of points shown in Figure 2 is possibly the
largest compilation of soil ground-truth data in the world. It can be
compared, for example, to a compilation of meteorological station
data used to generate the WorldClim dataset [29]. A large part of
the soil profile data used to generate SoilGridslkm can be accessed
via the WorldSoilProfiles.org data portal, however some data sets
such as LUCAS [19] have strict data use policies and can only be
obtained from the original data provider.

As covariates for SoilGrids1km we used a selection of GIS layers
(75): mainly MODIS images, but also climate surfaces [29], Global
Lithological Map (GLiM) [30], HWSD mapping units [11], and
SRTM DEM-derived surfaces. These layers (apart for the GLiM)
are all available via the WorldGrids.org data portal. The actual
number of covariates used during the analyses is different for each
soil variable as these are iteratively selected for each soil attribute,
based on their statistical significance to help predict the specific
attribute.

Before model fitting, the original covariates were converted to
principal components (n=95) to reduce data overlap and help
remove noise and artefacts [7]. Number of components is larger
than the number of original covariates because covariates such as
lithology and land form classes are converted to indicators before
the principal component analysis.

Soil mask map

We make no spatial predictions for global land cover categories
that represent non-active soil areas, such as: artificial surfaces and
assoclated areas (>50% of pixel covered with urban areas), bare
rock areas, water bodies [31], shifting sands, permanent snow and
ice. The global mask map of soils with vegetation cover and world
deserts 1s shown in Figure 3c.
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Figure 1. Spatial resolution and temporal coverage/publication time of some widely used global environmental data layers (global
soil layers have been highlighted): GLWD — Global Lakes and Wetlands Database, HWSD — Harmonized World Soil Database,
MOD12C1 — MODIS Land Cover Type Yearly L3, MOD13C2 — Vegetation Indices Monthly L3, CHLO/SST — MODIS Aqua Level-3
annual Chlorophyll/mid-IR Sea Surface Temperature, FRA — Forest Resources Assessment, GPW — Gridded Population of the
World, DMSP-OLS — Nighttime Lights Time Series, GlobCov — Land Cover classes based on the MERIS FR images, GADM — Global
Administrative Areas, TanDEM-X — Germany’s topographic radar mission. Key agenda setters in the terms of production and
dissemination of remote sensing and thematic environmental layers at the beginning of the 21st century include: NASA’s MODIS (Moderate-
resolution Imaging Spectroradiometer) and Landsat products — in terms of thematic content and usability [6-8], and Germany’s TanDEM-X new
global 12 m resolution DEM with £2 m vertical accuracy [9]. Based on information retrieved on February 15th 2014. was produced using the Global
Soil Information Facilities (GSIF), which was recently developed at ISRIC as a framework and platform to support widespread, open collaboration in
the assembly, collation and production of global soil information.

doi:10.1371/journal.pone.0105992.9001

The soil mask map was derived using the long term MODIS 1. soils with vegetation cover — pixels with MODIS LAI>0 for
LAI images (MODI15A2), MODIS land cover product at least one month in the last 12+ years (2000-2011),
(MOD12Ql) [6], and global water mask [31] products. We 2. urban areas — equal to the MODIS land cover product
distinguish three classes in the soil mask: “Urban and built-up” class,
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Figure 2. World distribution of soil profiles used to generate the SoilGrids1km product (about 110,000 points). Courtesy of various

national and international agencies (see: Acknowledgments).
doi:10.1371/journal.pone.0105992.9002

3. bare soil areas areas without any biological activity but
classified as “Barren or sparsely vegetated” in the MODIS land
cover product.

Spatial prediction models
Two groups of spatial prediction models were implemented:

1.2D or 3D regression and/or regression-kriging [32,33]
combined with splines for numerical properties as implemented
in the GSIF package for R. Here, the regression part is fitted
using either:

® Multiple linear regression [34] (for predicting pH, sand, silt
and clay percentages and bulk density),

® General Linear Models (GLM’) with log-link function
[35,36] (for predicting organic carbon content and CEC),

® Zero-inflated models [37] (for predicting coarse fragments
and depth to bedrock; Figure 4),

2. Multinomial logistic regression (as implemented in the nnet
package for R) for predicting distribution of soil classes [36].

As a general framework for mapping soil properties and classes
we use the regression-kriging method commonly used in
geostatistical mapping of soil properties [32,33,38]. We extend
the existing 2D regression-kriging method to 3D space 1ie. to
predict values at voxels (Figure 4 right). In addition, we combine
regression with splines, so that relationships between the soil
property and covariates as well as soil-depth are modelled
simultaneously:

i=1

)4 R n
£(s0.d0) =Y _ B Xj(s0,do) +8(do)+ > _ Zilso.do)e(sidi) (1)
j=0

where Z is the predicted soil property, s; are geographical
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coordinates, d; is depth expressed in meters below land surface.
Note that BJXJ and g(dp) are the trend part of the model, where
Xj(s0,do) are covariates at the target location so and depth dp,
8(dy) is the predicted vertical trend, modelled by a spline function,
and e(s;,d;) are residuals interpolated using 3D kriging using
kriging weights 4;(So,dp). Because all covariates in the current
version of SoilGridslkm are in fact 2D (i.e. values available at
surface or for top-soil only), we copy the values of covariates for all
depths in the regression matrix, which is a simplification. With the
increasing availability of gamma radiometrics and similar, we
anticipate that also 3D covariates will be used more in the near
future with values differing per depth, although many covariates
(e.g. elevation) will always remain 2D by definition.

3D regression and/or regression-kriging can be considered
novel approaches to modeling soil variation. For comparison, the
GlobalSoilMap project (http://globalsoilmap.net) proposes that
soil-depth spline functions and spatial prediction functions should
be fitted separately [3,40]. This spatial prediction system can be
considered 2.5D because 2D models need to be fitted for each
standard depth, i.e. each depth is modelled using a separate model
that includes different combinations of covariates and in which
data from predictions at one depth do not influence predictions at
another. In the case of 3D modelling, a single model (Eq.1) is used
for predicting in both X,Y and d for any property or class of
interest, and fitting of the regression equation and residuals occurs
at the same time as part of a single step. Another advantage of
using a full 3D spatial prediction system, in comparison to the
2.5D, is also that it allows for producing spatial predictions and
confidence intervals at any 3D location and not only at standard
depths.

For each soil property, we have evaluated which version of the
model in Eq.(1) would be most applicable. For example, initial
tests showed that, for some soil properties e.g. soil organic carbon
content and bulk density, the soil-depth relationship (g(dp)) can
often be better modelled using a log-log relationship. Consider for
example:
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Figure 3. Examples of input layers used to generate SoilGrids1km: (a) long-term day-time MODIS land surface temperature, (b)
percent cover Chernozems (based on the HWSD data set), and (c) global soil mask map. The spatial prediction domain of SoilGrids1km
are the areas with vegetation cover and urban areas, while bare soil areas have been masked out. See text for more explanation.
doi:10.1371/journal.pone.0105992.g003
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Figure 4. Standard stratification and designation of a soil profile: (left) soil horizons, solum thickness and depth to bedrock (‘R’
layer), and (right) six standard depths used in the GlobalSoilMap project [3].

doi:10.1371/journal.pone.0105992.g004

ORC(d)= exp (1o +11- log (d)) 2)

where O/R\C(d) is the predicted soil organic carbon content at
depth d and 7y is the rate of decrease with depth. The model fitted
using the global compilation of soil profiles (Figure 5b) has
10 =4.1517 (standard error 0.005326) and 71 = —0.60934 (stan-
dard error 0.00145). This model explains 36% of the variation in
the log-transformed ORC, which is a significant portion. This
illustrates that any global soil property model can significantly
profit from including depth into the statistical modelling. For other
soil properties that do not show a monotonic vertical trend, higher
order splines implemented via the ns function in the package
splines [35] have been used to account for complex, non-linear
relationships.

Further, soil covariate layers (X;) used to produce SoilGridslkm
were selected to represent the CLORPT model originally
presented by Jenny [38,41]:

S=f(cl,o,r,p,t) 3)

where S stands for soil (properties and classes), ¢/ for climate, o for
organisms (including humans), r is relief, p is parent material or
geology and ¢ is time. Most of the cl,0,r,p,t covariates are now
publicly available and can be obtained at low cost thanks to
NASA’s/USGS Earth Observation projects such as MODIS and
SRTM. We have also included soil class information (WRB
reference groups) extracted from the HWSD (Figure 3b). These
are basically traditional soil polygon delineations, comparable to
other categorical covariates e.g. land cover classes or geological
units.

The 3D regression function used for modelling changes of the of
soll organic carbon content in 3D was thus (in R syntax):
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formulaString=(ORCDRC+1)~PCl+PC2+...4PC95
+ns(altitude, df=2) glm (formula=formulaString,
family=gaussian(link= log),

data=rmatrix)

where ORCDRC is the organic carbon content, PC1 to PC95 are the
principal components derived from some 75 covariate layers
representing Jenny’s soil forming factors, altitude is depth in
meters from the soil surface, rmatrix is the regression matrix with
values of target variable and predictors, ns is the natural spline
function and df = 2 sets the number of allowed breakpoints (in this
case two breakpoints to allow for curvilinear relationship). Soil
classes are useful ‘carriers of soil information’ [42], hence for
SoilGrids1km we also provide global predictions for standard soil
classes classified according to the two most widely used interna-
tional soil classification systems:

o FAO’s World Reference Base (WRB) — with focus on
mapping soil groups e.g. Chernozem, Luvisols, Gleysols and
similar. The current system [43] defines 32 reference soil

groups.
® United States Department of Agriculture (USDA) Soil
Taxonomy — with focus on mapping the soil suborders.

The current system [44] defines 67 soil suborders (subdivision
of 12 orders: Alfisols, Andisols, Aridisols, Entisols, Gelisols,
Histosols, Inceptisols, Mollisols, Oxisols, Spodosols, Ultisols
and Vertisols).

Models for predicting WRB soil groups and USDA soil orders
were fitted using the nnet package (fits multinomial log-linear
models via neural networks) using the default settings of 100
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doi:10.1371/journal.pone.0105992.g005

maximum iterations [36]. Soil classes are modeled as 2D variables
i.e. the model does not include depth component, e.g.:

formulaString=TAXGWRB~PCl+PC2+...4+PC95
nnet = multinom(formula=formulaString,

data=rmatrix, MaxNWts="7000)

where TAXGWRB is the field observed WRB soil group, nnet::
multinom is the function to fit a multinomial logistic regression
and MaxNWts sets the maximum allowable number of weights high
enough for such a large regression data (regression model with ca.
100 covariates).

Note that all predictions in the initial version of SoilGridslkm
were made using regression modelling alone. 3D kriging on a
sphere at almost one billion locations (130 million pixels times 6
depths) was beyond our technical capacities in 2013/2014. Efforts
to use full 3D regression-kriging to produce the first version of
SoilGridslkm were abandoned in response to two main issues.
Firstly, the computational load to undertake global kriging was too
demanding for the processing resources and time we initially had
at our disposal. We are working to both increase our processing
power and to make the global kriging algorithms more efficient so
we can run them globally for subsequent versions of SoilGridslkm.
Secondly, there are very large areas of the world (e.g. Russia,
northern Canada) that presently have almost no point profile data.
These areas lack a sufficient number and density of point
observations to successfully compute residuals, which can then
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be kriged (otherwise kriging leads to serious artifacts). Since we
were unable to produce residuals for large parts of the world, we
decided not to try to krige residuals globally at first, at least until
we obtain enough new point data to support computing and
kriging residuals for all major portions of the globe. A full
implementation of the 3D regression-kriging model built for
SoilGrids has been run successfully at the continental level in
Africa but, for the present (February 2014), we have not been able
to apply full 3D regression-kriging globally. As soon as these
technical limitations are solved, future versions of SoilGridslkm
will likely also include a 3D kriging component.

Quality control
Resulting spatial predictions in SoilGridslkm are evaluated
using two groups of methods:

® (iross-validation: We used 5—fold cross-validation to estimate
the average mapping accuracy for each target variable. For
continuous soil properties, we evaluate the amount of variation
explained by the models [45]; and for soil classes we evaluate
the map purity (ie. proportion of observations correctly
classified) and kappa statistic.

® Visual checking and overlay analysis: Because there is a large
amount of spatial data, we have requested users to visually
explore maps and look for artefacts and inconsistencies.
Inconsistencies and artefacts in maps can be continuously
reported through a Global Soil Information mailing list.
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To derive amount of variation explained by the models for
numeric variables we first derive Root Mean Square Error [46]:

!
RMSE = ; ; [2(s:) — 2(s)] (4)

where [ is the number of validation points. Amount of the variation
explained by the model is then:

2
Z%={1 SSE]Z{ _ RMSE

© SSTO o2

} 0—100%]  (5)

where SSE is the sum of squares for residuals at cross-validation

points (i.e. RMSE?-n), and SSTO is the total sum of squares.

Derivation of secondary soil properties: soil organic
carbon stock

The SoilGridslkm output maps can be further used for
estimation of secondary soil properties which are typically not
measured directly in the field and need to be derived from primary
soil properties. For instance, consider estimation of the global
carbon stock (in t hafl). This secondary soil property can be
derived from a number of primary soil properties [47]:

. ORC ., HOT
OCS [kg m] = 7o [k ke'!]- =56 [m]
(6)
_ 0
‘BLD [kg m'3}~7100 ﬁ;;F @

where OCS is soil organic carbon stock, ORC is soil organic
carbon mass fraction in permilles, HOT is horizon thickness in
em, BLD is soil bulk density in kg m~* and CRF is volumetric
fraction of coarse fragments (>2 mm) in percent (see also
Figure 6).

The propagated error of the soil organic carbon stock (Eq.6) can
be estimated using the Taylor series method [48]:

1

70¢s = 15,500,000 1OT”

™)

\/ BLD?'(100— CRF)* 63 + 03 (100 — CRF)**ORC? + BLD? ‘62 . "ORC?

where OORC> OBLD and OCRy are standard deviations of the
predicted soil organic carbon content, bulk density and coarse
fragments, respectively. Note that we first predict OCS values for
all depths/horizons, then aggregate values for the whole profile (0—
2 m). We further use a map of predicted depth to bedrock to
remove all predictions outside the effective soil depth (areas where
soil is shallower than 2 m). A more robust way to estimate the
propagated uncertainty of deriving OCS would be to use
geostatistical simulations (e.g. derive standard error from a large
number of realizations 100) that incorporate spatial and vertical
correlations. Because we are dealing with massive data sets,
running geostatistical simulations for millions of pixels was not yet
considered as an option.

Software implementation

SoilGridslkm predictions are generated via the GSIF package
for R, which makes use of a large number of other basic and
contributed packages — gstat, raster, rgdal and other R packages
for spatial analysis [49]. GSIF package for R contains most of the
functions required to produce SoilGrids, and will remain the main
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platform in the future to obtain global model parameters and
access SoilGrids through an APL

As previously mentioned, the target resolution of SoilGridslkm
is relatively coarse, nevertheless, the compu- tational intensity and
memory required to produce SoilGridslkm is high: one run of
SoilGridslkm takes about 12—16 hours on a 12—core HP Z420
workstation with 64 GiB RAM running on a Windows 7 64-bit
system. Note also that since we produce predictions at six depths
and uncertainty for each depth, the quantity of GeoTIFF maps
produced is in the order of 250x912MiB=250 GiB. To deal with
processing such large data sets we used a combination of tiling and
parallel processing, as implemented via the snowfall package for R
[50], to maximize the CPU usage and minimize the time required
to produce predictions.

The spatial prediction process consists of four main steps:

1. preparation of gridded covariates (principal component
analysis),

2. preparation of point data,

3. model fitting and

4. spatial prediction and construction of GeoTiffs.

From the steps listed above, spatial prediction take the longest
computing time, which is often in the order of 20 or more hours
using the computer specification listed above. As a rule of thumb,
we look for mapping frameworks that can generate outputs within
48 hrs. If the whole process from model fitting to prediction and
export of maps to GeoTiffs consumes >48 hrs of computing, we
consider the system to be impractical for routine operational use.

Results

Model fitting

The results of model fitting (Table 1) indicate that the
distribution of soil organic carbon content is mainly controlled
by climatic conditions, i.e. monthly temperatures and rainfall [51],
while the distribution of texture fractions (sand, silt and clay) is
mainly controlled by topography and lithology. These key
predictors agree with expectations based on existing knowledge.
The regression models account for between ca. 20-50% of
observed variability in the target variables (Table 1). Detailed
model parameters can be obtained from the SoilGridslkm
homepage at http://soilgrids.org.

Figure 7 illustrates two examples of spatial predictions for soil
organic carbon content and pH. As mentioned previously, soil
organic carbon clearly decreases with depth (see also the soil-depth
curves shown in Figure 8). Areas mapped as having elevated
values of organic carbon are typically associated with cooler and
wetter climate regimes and boreal-tundra type vegetation [51-54].
Note that several soil variables have skewed distributions hence
also the output predictions are skewed, so that we use log-
transformed legends to maximize contrast in the map (Figure 7).

Figure 8 shows predicted values for organic carbon and pH
(mean value and confidence intervals) for the same location shown
in Figure 5. The prediction intervals are rather wide (see also
Figure 11), which is connected to the fact that the models explain
only 23-51% of the variation. However, it is important to note
that these are global maps of predictions made using relatively
coarse resolution covariates. We assume that is unlikely that any
effort to map the distribution of soils at a resolution of 1 km could
explain a much larger proportion of the total variation in soil
properties, as much of this variation occurs over distances less than

1 km [55].
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Figure 6. Soil organic carbon stock calculus scheme. Example of how total soil organic carbon stock (OCS) and its propagated error can be
estimated for a given volume of soil using organic carbon content (ORC), bulk density (BLD), thickness of horizon (HOT), and percentage of coarse

fragments (CRF). See text for more detail.
doi:10.1371/journal.pone.0105992.9006

Also note that SoilGridslkm predictions are not capable of
representing abrupt changes in values through depth e.g. due to
buried horizons, textural heterogeneity or similar. Because we
have used linear or close to linear models (plus smoothing splines)
to predict values of targeted soil properties and not e.g. regression-
trees, these models have smoothed out a significant amount of the
variability in the point data, so that it is not realistic to expect
abrupt changes in soil properties; at least not vertically (as
illustrated previously in Figure 8).

Figure 9 (with a zoom in on Italy) shows that the SoilGridslkm
predictions exhibit an order of magnitude greater spatial detail
than previous global soil information products e.g. HWSD. This is
mainly because a large stack of fine resolution remote sensing
based covariate layers have been used to generate SoilGridslkm,

and many of these have shown to be significantly correlated with
soil properties and classes. Spatial classification accuracy for
mapped soil classes, when evaluated using kappa statistics
(Table 1), shows a somewhat better match between what was
observed on the ground for the USDA classification system
(ground-truth classification available for 16,212 profiles) than for
the WRB system (classification available for 37,015 profiles).

For many WRB classes our models predicted occurrences in
areas that are inconsistent with a strict definition of geographic
areas where these classes can occur. The most difficult to map
seem to be WRB classes such as Andosols, Solonchaks, Calcisols
and Cryosols. These classes are strictly defined (e.g. Andosols are
connected with volcanic activities and specific geology) and we
need to explore ways to prepare covariates that will prevent

PLOS ONE | www.plosone.org

Table 1. Mapping performance of SoilGridsTkm — amount of variation explained (from 100%) or purity/kappa for categorical
variables — for eight targeted soil properties and two soil classes distributed via SoilGrids1km.

Variable name Type GSIF code Units Range (observed) Amount of var. explained
Soil organic carbon (dry combustion) 3D ORCDRC g kg—1 0-450 22.9%

pH index (H20 solution) 3D PHIH5X 10—-1 2.1-11.0 50.5%

Sand content (gravimetric) 3D SNDPPT kg kg—1 1-94 23.5%

Silt content (gravimetric) 3D SLTPPT kg kg—1 2-74 34.9%

Clay content (gravimetric) 3D CLYPPT kg kg—1 2-68 24.4%

Coarse fragments (volumetric) 3D GRAVOL cm3 cm—3 0-89

Bulk density (fine earth fraction) 3D BLDVOL kg m—3 250-2870 31.8%

Cation-exchange capacity (fine earth fraction) 3D CEC cmol+/kg 0-234 29.4%

Depth to bedrock 2D DBR cm 0-240

Soil group (WRB taxonomy) 2D TAXGWRB - - 28.1% (kappa)

Soil suborder (USDA taxonomy) 2D TAXOKST - - 40.3% (kappa)

WRB ="“World Reference Base”; USDA = “United States Department of Agriculture”.

Amount of variation explained by the models (Eq.5) i.e. kappa statistics for soil types was determined using 5-fold cross-validation.
doi:10.1371/journal.pone.0105992.t001
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Figure 7. Example of SoilGrids1km layers: (A) soil organic carbon content in permille, and (B) soil pH for the topsoil (0-5
centimetres). Boxplots show the sampled distribution of the soil property based on the present compilation of global soil profile data.
doi:10.1371/journal.pone.0105992.g007

prediction of those classes in areas where, by definition, they
should not occur. Likewise, USDA suborders are based on soil
moisture and climate regimes, for which we did not currently have
global covariate maps, and consequently strictly defined classes
such as Xerolls (Mollisols in Mediterranean climate; xeric moisture
regime) were predicted in Brazil, which probably does not match
the definition of the class.

Multinomial logistic regression is a purely data-driven method,
so that the overall mapping performance highly depends on
representation of environmental conditions by soil samples. All
classes that are poorly represented in the environmental space, due
to under-sampling, are understandably difficult to map accurately
using a purely data- driven model [56]. Nevertheless, the final
results of automated extraction of soil classes using multinomial
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logistic regression are promising, especially for mapping the
USDA classes. The mapping accuracy could probably be
improved by adding more classification-related covariates and
more field observations of soil taxonomy, hopefully through
crowd-sourcing, in areas where the accuracy is critically low.

Figure 10 shows derived total soil organic carbon stock based on
Eq.(6). According to this map, the total (baseline) amount of soil
organic carbon (up to 2 m depth; excluding deserts, bare rock
areas and ice caps) is about 330 t ha™' on average. The highest
concentrations of soil organic carbon are in areas of cooler climate
and high rainfall, i.e. northern parts of Canada and Russia seem to
be pools for most of the world’s soil organic carbon. This largely
agrees with results by Hugelius et al. [53] and Scharlemann et al.
[57].
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water suspension. See also Table 1.
doi:10.1371/journal.pone.0105992.g008

The map shown in Figure 10 can be used to supplement maps
of total aboveground biomass (see e.g. Ruesch and Gibbs [58] and
Scharlemann et al. [57]). Our results also confirm that, overall, the
amount of organic carbon below ground is greater than held in
biomass above ground [51].

Quality issues

The results of cross-validation are shown in Table 1. The cross-
validation results, as expected, largely reflect the model fitting
success — properties that can be modeled successfully can also be
mapped with higher accuracy. The soil properties that were most
difficult to map are soil texture fractions, CEC and WRB soil
groups. Although the accuracies of the predictions rarely exceed
50% of the total variation, all statistical models are significant
showing clear spatial patterns (see e.g. Figure 7). Low cross-
validation percentages are common in soil mapping [38,55], these
numbers were not unexpected. Nevertheless, these can be
considered promising initial results considering the complexity of
harmonization of input point data (see further discussion).

Based on the feedback we received to date from users visiting
the project homepage at http://soilgrids. org, the main limitations
of SoilGridslkm are:

1. problems arising from poor relationships between covariates
and dependent variables e.g. covariates can only explain part of
the variability, which could possibly be improved by using
more sophisticated statistical models;

2. problems arising from high spatial clustering of sampling
locations (see Figure 2; observations are too sparse to improve
on the regression using a kriging step);

3. problems associated with using partially-harmonized soil
profile data;
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4. problems arising from use of HWSD soil mapping units that
are of too coarse scale and often not completely harmonized so
that the country borders are still visible (obvious artefact);

5. limitations in the usability of SoilGridslkm for spatial planning
at county or farm scale due to coarse resolution of the maps;

6. inability to consider and model significant sources of variability
e.g. temporal variability due to changes in land use and/or
land cover [59];

7. limitations arising from insufficient use of higher quality and
finer resolution conventional soil maps prepared at national to
regional scales.

Discussion

SoilGrids1km were released on December 5th 2013 (World Soil
Day) at the FAO Rome, as a proposed contribution of the
Netherlands to the Global Soil Partnership [60]. The system, at
the moment, includes predicted values for (Table 1): soil organic
carbon (g kg™ '), soil pH, sand, silt and clay fractions (%), bulk
density (kg m %), cation-exchange capacity (cmol+/kg) of the fine
earth fraction, coarse fragments (%), soil organic carbon stock (t
ha™"), depth to bedrock (in cm; see Figure 4), World Reference
Base soil groups [43], and USDA Soil Taxonomy suborders [44].
We focused on generating spatial predictions at six standard
depths (0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and
100-200 cm), for which spatially distributed estimates of upper
and lower level 90% prediction intervals are presented. As such,
we follow the corresponding specifications of the GlobalSoilMap
project [3].

Initial predictions of soil classes were made at higher (more
general) taxonomic levels for both WRB (soil groups) and Soil

August 2014 | Volume 9 | Issue 8 | 105992


http://soilgrids

SoilGridsTkm

Vertisol
Umbrisol
Solonetz
Solonchak
Regosol
Podzol

Planosol

Phaeozem
Nitisol
Luvisol
Lixisol
Leptosol

Kastanozem
Histosol
Gleysol
Fluvisol
Ferralsol

- Chernozem

- Cambisol

- Calcisol

- Arenosol

. Andosol

- Alisol

I Albeluvisol

SoilGrids 1km - Aorio
\\ Hotees - water

Lig) -

Figure 9. Spatial predictions of WRB soil groups for SoilGrids1km (left) and HWSD data set representing conventional soil maps
(right). A zoom in on North of Italy. White pixels indicate missing values.
doi:10.1371/journal.pone.0105992.g009

Figure 10. Predicted global distribution of the soil organic carbon stock in tonnes per ha for 0-200 centimetres. Total soil organic
carbon stock (here displayed on a log-scale) was estimated as a sum of soil organic carbon stocks for six standard depths and adjusted for the depth
to bedrock. Projected in the Sinusoidal equal area projection to give a realistic presentation of areas. Vast deserts (e.g. Sahara or Gobi) can be
assumed to contain close to zero organic carbon stock. See also Figure 11.

doi:10.1371/journal.pone.0105992.g010
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Figure 11. Lower and upper confidence limits (90% probability) of estimated soil organic carbon stock (tonnes per ha) for standard
depths 0-30 and 30-60 centimeters for the same area as shown in Figure 9. Derived using the procedure explained in Figure 6.

doi:10.1371/journal.pone.0105992.9011

Taxonomy (suborders). This was done because the available point
profile data sets do not provide a sufficient number of locations
representative of all of the lower levels of classification in each
system. Without a sufficient number of examples for all lower
classes, distributed fully across all of the feature space within which
each class can occur, it is not possible to successfully predict many
of the lower classes defined for either system. Once we have more
point observations that encompass the full range of lower level
classes across the entire environmental and geographic spectrum
of their distribution, we will be able to predict at a more detailed
taxonomic level for both classification systems.

The main purpose of SoilGridslkm is to provide initial, fully
worked, examples of how complete and consistent global maps of
soil properties, and soil classes, can be produced using currently
available legacy soil profile data, freely available gridded maps of
global covariates and an on-line automated soil mapping system
(GSIF). Additionally, we want to use these initial example maps to
implement and demonstrate procedures and systems for support-
ing free and unrestricted access to what we consider to be the best
possible current, globally-complete, estimates of soil properties and
soil classes. It is hoped that the production, distribution and use of
these new, initial, global soil maps will stimulate additional efforts
to both improve these maps and to launch new efforts to collect
and use new soils information in new soil mapping and monitoring
projects. We especially aim at supporting countries in Africa, and
large parts of Asia and Latin America, that often have limited
infrastructures to produce soil information at fine resolution [2,5].
We think that there is a great potential in using the existing field
observations and Open Source software to map spatial and spatio-
temporal patterns, ie. without doing any major financial
investments.

A number of legitimate concerns exist relative to the initial
SoilGridslkm outputs. Probably the most immediate and signif-
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icant concern has to do with the accuracy and usability of the
initial predictions of soil property and class values. We acknowl-
edge that the accuracy of these initial predictions rarely exceeds
50% of the total variation and, for many properties, is often closer
to 20-30% (Table 1). The results of cross-validation are informa-
tive but need to be taken with caution because most of the soil
profiles (Figure 2) were not collected using probability sampling, so
that the cross-validation results possibly carry the same sampling
bias as the original data [61]. Also note that the accuracy of
mapping WRB groups is likely lower than the accuracy of
mapping USDA soil suborders because over 40% of the soil
profiles that were used for the WRB classification were actually
classes translated from national systems. Translation i.e. harmo-
nization of international soil records probably introduces addi-
tional noise that cannot be solved by regression modelling.

We argue that it is unreasonable to expect any global map of
variation in soil properties to explain much more than 50% of the
total observed variation. It is well known that a significant
proportion of spatial variation in soil properties occurs over
relatively short distances of meters to tens of meters [55,56]. It is
therefore unreasonable to expect that a map of global variation in
soll properties, portrayed at a spatial resolution of 1 km, will be
able to capture and portray the 50% or more of total variation that
occurs at resolutions shorter than 1000 m. Our hope and plan is to
gradually improve the accuracy of the predictions by addressing
these issues and concerns one by one, in a systematic way
(Figure 13). This should be done primarily by working with
national and regional soil data agencies, i.e. by adding additional
covariates at increasingly finer spatial resolutions and by adding
more field/point data from areas that are under-represented.

Although millions of soil profile records have undoubtedly been
collected throughout the world, they are often unequally
distributed (Figure 2). Likewise, many soil profiles funded by
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Figure 12. Accessing SoilGrids1km from the Soillnfo app for mobile devices. Soillnfo app is available for download via http://soilinfo.isric.

org.
doi:10.1371/journal.pone.0105992.g012

public money are not publicly available or are available in paper
format only. Due to unbalanced representation and spatial
clustering, predictions in the current version of SoilGridslkm are
largely controlled by point data sets available for the USA and
Europe. Most of these are from agricultural soils, which inflicts
additional bias. Our predictions are therefore likely to exhibit
lower accuracy for poorly represented areas such as most of the
former Russian Federation, the northern Circumpolar Region,
semi-arid and arid areas.

We have also purposely excluded all areas that show no
evidence of historical vegetative cover. Our predictions are hence
not globally complete. This is a definite drawback for use in global
modelling and we acknowledge a need to use either expert
judgment or data from other mapping sources to provide
alternative predictions for areas with missing values. Again, for
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deserts and bare rock areas it is perfectly valid to assume a 0 value
for soil organic carbon, but it is not as straightforward to estimate
soil pH for shifting sand areas for example. For the present, we
argue that it is inappropriate to try to make predictions for areas
that completely lack vegetative cover e.g. shifting sands of Sahara.
These areas have very few to zero point profile observations which
can be used to calibrate statistical prediction models. In addition,
even if they did have a sufficient number of point profile
measurements, the environments of extreme climatic conditions
are so different from vegetated ones so that any prediction model is
likely to be very different from ones we develop for vegetated
areas. We recommend that SoilGridslkm users who require values
for the complete land mask fill in the gaps by using expert
knowledge or best regional estimates as available from conven-

tional soil mapping (e.g. HWSD, ISRIC-WISE).
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Figure 13. Projected evolution of SoilGrids in the years to come. We anticipate that the main drivers of success of SoilGrids will be use of
machine learning methods for model fitting, development of spatio-temporal geostatistical models, use of new sources of field and remote sensing
data and use of faster and more powerful computing capacities. Amount of variation explained by these models will eventually reach a ‘natural limit’
(short-range variation that cannot be explained using spatial prediction models), until there is a technological jump in soil remote sensing technology
e.g. ground penetrating scanners.

doi:10.1371/journal.pone.0105992.9013

It is worth emphasizing that we designed GSIF as a flexible All methods and models fitted for the purpose of producing
framework with respect to the choice of depths, dimensions (2D or SoilGridslkm are available via an Open Source platform (GSIF
3D spatial predictions), spatial support size, soil properties and package for R) and could be adapted for both regional and local

classes and prediction models. Outputs from GSIF are reproduc- mapping. As with input data, the models used to make predictions
ible as a result of use of scripting. Consequently, all maps can be in GSIF can be improved or replaced in subsequent iterations
ecasily updated as new inputs (point and covariate data) become once better performing models are identified. Prediction models

available. We used the GSIF system to generate SoilGridslkm that could be considered in the future include those based on
maps for the standard depths defined by the GlobalSoilMap hierarchical Bayes models, regression trees, Random Forests and

project, but basically one could use the same system for any depth other machine learning techniques. Regression- trees and similar
and also for any new property. GSIF is therefore scalable and can models could help model better abrupt changes in values
be used to produce spatial predictions for virtually any soil vertically, and Random Forests could help emphasize relative
property, at any depth and at any spatial or temporal resolution. importance of specific covariates. The actual modelling approach
This, of course, assumes the existence of a sufficient number of used to produce any set of predictions will be reviewed
point soil observations of appropriate quality and of sufficient continuously to identify and apply the approach that produces
covariate layers at sufficiently fine spatial resolution to support the most correct, consistent and usable outputs.

modelling at a given spatial resolution.
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Because the SoilGridslkm maps can be easily updated (or
changed) the process used to produce the map (i.e. SoilGrids
system) becomes more important than the map itself. Previously,
the map product was seen as more important than the process
used to produce it, because any map had to be considered as valid
and useful for an extended period, as it took so long, and cost so
much, to revise or update the map. Under the GSIF model, the
final (or most current) map is no longer the most important output
and any system that only provides a final map is considered
deficient. We hence argue that it is more important to provide
access to all data and models needed to produce (and reproduce)
the map than to simply provide the final map itself.

In the future, we hope that GSIF will be used by an increasing
number and variety of interested parties, including national and
regional soil mapping agencies, commercial consulting agencies,
advocacy groups and non-governmental organizations. We
envisage GSIF as a platform for cooperation, collaboration,
innovation and sharing. It will become so if interested parties
decide to participate and contribute as committed partners. The
number of soil profiles freely shared by the soil science community
is constantly growing and national agencies and other data
providers are encouraged to contribute their point data to help
improve the prediction accuracy locally for specific countries/
regions, for the benefit of the global user community and in
support of the global UN conventions.

SoilGridslkm are available for download under a Creative
Commons non-Commercial license via http://soilgrids.org. Soil-
Gridslkm are also accessible via a Representational State Transfer
(http://rest. soilgrids.org) service and via a mobile phone app
“Soillnfo App” (http://soilinfo-app.org; Figure 12).
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