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Abstract. Eritrea has a successful malaria control program, but it is still susceptible to devastating malaria epidemics.
Monthly data on clinical malaria cases from 242 health facilities in 58 subzobas (districts) of Eritrea from 1996 to 2003
were used in a novel stratification process using principal component analysis and nonhierarchical clustering to define
five areas with distinct malaria intensity and seasonality patterns, to guide future interventions and development of an
epidemic early warning system. Relationships between monthly clinical malaria incidence by subzoba and monthly
climate data from several sources, and with seasonal climate forecasts, were investigated. Remotely sensed climate data
were averaged over the same subzoba geographic administrative units as the malaria cases. Although correlation was
good between malaria anomalies and actual rainfall from ground stations (lagged by 2 months), the stations did not have
sufficiently even coverage to be widely useful. Satellite derived rainfall from the Climate Prediction Center Merged
Analysis of Precipitation was correlated with malaria incidence anomalies, with a lead time of 2–3 months. NDVI
anomalies were highly correlated with malaria incidence anomalies, particularly in the semi-arid north of the country and
along the northern Red Sea coast, which is a highly epidemic-prone area. Eritrea has 2 distinct rainy seasons in different
parts of the country. The seasonal forecasting skill from Global Circulation Models for the June/July/August season was
low except for the Eastern border. For the coastal October/November/December season, forecasting skill was good only
during the 1997–1998 El Niño event. For epidemic control, shorter-range warning based on remotely sensed rainfall
estimates and an enhanced epidemic early-detection system based on data derived for this study are needed.

INTRODUCTION

Malaria control in Eritrea. Eritrea is a malaria epidemic-
prone country in the horn of Africa. It is divided into three
main topographical regions (the western lowlands, central
highlands, and eastern coastal lowlands) with different rain-
fall seasonality patterns. There are six administrative regions
(zobas) with 58 districts (subzobas) (Figure 1) and ≈ 1,500
villages. The estimated population is 3.5 million.

A survey in 2002 estimated malaria prevalence at 2%, with
some villages having up to 30% prevalence.1 Eritrea has had
a successful malaria control program over the last 8 years
since a devastating epidemic following the heavy rains asso-
ciated with the 1997–1998 El Niño event.2 An intensive mix-
ture of interventions has been applied,2 including widespread
coverage with free insecticide-impregnated mosquito nets to
all malaria risk areas,3 indoor residual spraying with DDT
and malathion in some areas, provision of prompt treatment
by village health agents, source reduction, and chemical or
biologic larval control.4

To improve epidemic control in climate sensitive regions,
the World Health Organization (WHO) has proposed a
framework for the development of integrated malaria early
warning systems (MEWS),5,6 based on vulnerability monitor-
ing, seasonal climate forecasting, environmental and meteo-
rological monitoring, and epidemiologic surveillance. Here
we explore the potential for using these indicators in the de-
velopment of a malaria early warning system in Eritrea.

Vulnerability assessment. Malaria risk maps derived from

climate-driven malaria transmission models have been used
to indicate areas of stable and unstable malaria7 and thereby
indicate areas vulnerable to climate related epidemics. Early
attempts to create a malaria risk map based on the modeled
relationship between village-based prevalence data in Eritrea
and a wide range of environmental and climatic predictors
was found to be unsatisfactory.8,9 In this paper, we report on
a new methodology based on routine incidence data, designed
to indicate the intensity and seasonality of transmission at the
district level.

Climate and environmental monitoring. In most of Eritrea,
the majority of the rainfall occurs during July/August. In the
eastern portion of the country, where a steep escarpment
degrades toward the Red Sea, rainfall is considerably lower
and peaks in October/January. Both ground station measures
and satellite-derived estimates of rainfall are potential proxies
for use by malaria control staff. Comparisons of the two
sources in neighboring Ethiopia indicated that certain satel-
lite-derived rainfall estimates (RFE) products may provide
sufficiently accurate rainfall information in the region to be
used routinely by malaria control.10

There is a strong relationship between normalized differ-
ence vegetation index (NDVI), a measure of environmental
“greenness” and rainfall both spatially and temporally over
East Africa, as well a demonstrated relationship between
NDVI, rainfall, and the El Niño–Southern Oscillation
(ENSO).11–13

Seasonal climate forecasts. For certain geographic areas
and seasons, climate forecasts offer a degree of predictability
of climate fluctuations at a seasonal (i.e., ≈ 3 month) lead
time.14 Predictability is highly dependent on the extent to
which regional climate for a given season is determined by sea
surface temperature (SST) patterns of global oceans; in par-
ticular SSTs in the tropical Pacific (i.e., the ENSO). There is
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some indication that the summer rainfall in Eritrea is related
to ENSO15 and therefore potentially predictable.

Significant correlations between malaria incidence and ob-
served SSTs (including time-lagged SSTs) have been ob-
served.16,17 Building on these observations, seasonal climate
forecasts produced from the real-time operational multimo-
del ensemble DEMETER forecast systems have started to
contribute to the development of malaria early warning in
Botswana.18,19

Surveillance data. In many African countries, malaria data
are collected at health facilities but often not looked at until
they are summarized in the form of routine annual reports.
Recently, many countries including Eritrea have attempted to
improve the collection and use of health facility data, by up-
dating health management information systems (HMIS). The
aim is to improve estimates of the burden of disease at the
national level while enhancing quality of care, accountability
and decision making at the local level. Weekly surveillance
data are particularly valuable for the detection of unusual
situations, possibly an epidemic, which may require a prompt
response.20

Unfortunately, to date, there is very little information that
feeds back to the district level for improved decision making,
thus undermining the incentives for improved reporting.21

Furthermore, biases in data reported that result from quality
of service, drug availability, physical and social access, and
health-seeking behavior feed the widespread distrust of pas-
sive surveillance data collection as a tool in routine malaria
decision making.22 Furthermore, for clinically diagnosed ma-
laria cases (as opposed to those confirmed by laboratory di-
agnosis), there is often considerable overestimation of the
case numbers as well as delay in appropriate treatment of
nonmalaria fever patients.23 Despite these limitations, many
countries have no alternative but to make best use of the
information available through passive health surveillance sys-

tems. Geographical and seasonal patterns of malaria trans-
mission are usually clearly evident from such data.24

In Botswana, where the HMIS is not only functioning well
but where all suspected malaria cases are routinely labora-
tory-confirmed, a strong correlation is observed between
clinical and confirmed cases.17 Thus in epidemic-prone areas,
routine surveillance of clinical cases may be useful for deter-
mining past thresholds and for the early detection of epidem-
ics. A recent study from Kenya has shown that the quality of
routinely collected health surveillance data from the HMIS
can be dramatically improved through statistical methodolo-
gies that impute missing data using geospatial techniques.25

METHODS

Surveillance data. Eritrea’s National Health Management
Information System (NHMIS) was revised in 1998 with sup-
port from USAID and John Snow, Inc. (Boston, MA). This
revision involved computerization of a previously existing pa-
per system for monthly reporting from each health facility,
standardized coding of case definitions, coding of health fa-
cilities and administrative areas, reduction in numbers of age
groups reported, and establishment of reporting timelines.
There were no major changes in malaria case definitions or
unit of reporting (health facility).

For this study, the numbers of outpatient clinical malaria
cases were extracted from the NHMIS Access database by
month and health facility for the years 1998–2003. Data for
1996–1997 were obtained from similar Malaria Control Pro-
gram records stored in Excel by health facility and month.

The NHMIS listed 325 health facilities in 1998. We re-
stricted this to 242 sites by exclusion of private doctors, work-
site clinics, national referral hospitals in Asmara, and exclu-
sion of 3 nonfunctioning health facilities. The number of
health facilities in the system had increased to 383 by 2003, of

FIGURE 1. Zobas and subzobas of Eritrea.
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which many were new small private clinics as well as one
new National Referral Hospital. In this analysis, we use only
data for the original 242 selected facilities. Administrative
(subzoba and zoba) boundary files were obtained from the
National Statistics and Evaluation office, Asmara, Eritrea,
and visualized in ArcView 3.3. Malaria cases were summed
over both age groups (under and over 5 years) by subzoba
and month (1–9 facilities per subzoba, average 4.3). Malaria
incidence per 1000 persons per month by subzoba was
estimated using the year 2000 population estimates in the
NHMIS.

Imputation of missing values. If complete, the 8 years
(1996–2003) of monthly incidence data for 58 subzobas would
have records for 5568 subzoba-months. There were 191 miss-
ing data points (subzoba-months), representing 3.4% of the
total matrix, impeding the use of principal component analy-
sis (PCA), which is dependent on complete data sets. Missing
values were imputed through a sequence of multivariate step-
wise regressions that estimated the variables with the smallest
number of missing values first and proceeding until all missing
values were estimated.26–28

Stratification map using NHMIS data. We used the
ADDATI software developed for exploratory data analysis,
including principal components and clustering analysis.29

Monthly malaria incidence estimates, computed as arithmetic
average of values in that month during the 8-year period for
each of the 58 subzobas, were used for the analysis. The pro-
cessing sequence in ADDATI includes i) PCA followed by ii)
nonhierarchical clustering adapted from Diday30 on the most
significant principal components.

PCA is a technique for simplifying a data set by reducing
multidimensional data sets to lower dimensions in the data.31

The reduction in dimensions of the data set is necessary to run
and accelerate the clustering analysis, which is a classification
of objects into different groups such that each group shares a
common trait. A total of 12 principal components were gen-

erated from the monthly average incidence data. Using eigen-
value and proportion of variance explained by each compo-
nent criteria, we retained, for further analysis, the 6 first prin-
cipal components, which explained 99.37% of the cumulative
variance in the data.

The iterative nonhierarchical clustering method groups
the subzobas into a specific user-defined number of clusters.
ADDATI generates the cluster centers and allocates the sub-
zobas to the clusters based on proximity to initial centers
(“seeds”).29 The data were initially clustered into 2, 3, 4, 5, 6,
8, and 12 clusters for analysis. Clusters were visualized in
ESRI ArcView 3.3.

Climate datasets. Although there is a variety of rainfall
datasets for Eritrea, few are suitable for analyses of long-term
trends and variability. After investigating a range of datasets,
we concluded that 3 were useful for assessing climate vari-
ability in Eritrea during the study period (Table 1): Rain
gauge data from meteorological stations (locations shown in
Figure 2); merged gauge and satellite rainfall estimates
(CMAP); and the vegetation index (NDVI) from NOAA
AVHRR computed as a monthly maximum value composite.
A fourth potential dataset (from the Climate Research Unit
at the University of East Anglia, U.K.) consisted of interpo-
lated meteorological station data but was only available up
until 1998. Using the first 3 sources, the monthly anomalies
(departure from long-term mean) of climate environmental
variables were calculated. The monthly anomalies, both for
climate environmental variables and for incidence data, are
used for the analysis. Anomalies are used instead of recorded
values because both climate variables and malaria incidences
have a similar seasonal pattern. Statistical analysis of re-
corded values would indicate a very high correlation between
climate and malaria incidences only due to the fact that the
temporal evolution of climate variables and malaria inci-
dences follow the same seasonality. To eliminate the seasonal
cycle effect and study only the impact of variations in climate

TABLE 1
Types and sources of observed or forecast climate data for Eritrea

Climate data Coverage Spatial resolution Temporal resolution Time period Source

Rainfall gauge data 23 Meteorological
stations

Point data Monthly cumulative
rainfall

Jan. 1992–Dec.
2003

Meteorology Office of the
Civil Aviation Department

Climate Prediction Center
Merged Analysis of
Precipitation (CMAP),
version 0407

Complete coverage 2.5 × 2.5 degree
grid

mm per day for each
month

1979 to present (http://www.cpc.ncep.noaa
.gov/products/global_precip/
html/wpage.cmap.html)

Normalized Difference
Vegetation Index
(NDVI), version “e”
product

Complete coverage ≈ 8 km Maximum value of
three dekads in
one month

July 1981 to
present

Provided by USGS ADDS
and made available via the
IRI data library at http://
iridl.ldeo.columbia.edu/
SOURCES/.USGS/.ADDS/
.NDVI/.NDVIe/.dekadal/
.maximum/.NDVI/

Interpolated rainfall gauge
data

Complete coverage ≈ 5 km Monthly cumulative
rainfall

1959–1998 Climate Research Unit of the
University of East Anglia
precipitation dataset37

SSTs Global oceans 2 × 2 degree
grid

Monthly mean 1979 to present NOAA ERSSTv2 available
via IRI data library at:
http://iridl.ldeo.columbia
.edu/SOURCES/.NOAA/
.NCDC/.ERSST/.version2/

ECHAM 4.5 Global 2.8 × 2.8 degree
grid

Monthly mean 1979 to present Max Planck Institute,
Hamburg, Germany, model
run at IRI
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with variations in malaria incidence, the long-term mean is
subtracted from the recorded data.

The satellite-derived climate variables from the IRI data
library were averaged over the same administrative bound-
aries as the incidence data, using subzoba boundaries from
the National Statistics and Evaluation Office, Eritrea. Al-
though it would have been preferable to use smaller bound-
aries, such as health facility catchment areas, these are not yet
available.

Seasonal climate forecasts. We used rainfall output from a
global circulation model (GCM) ECHAM 45 (Table 1) to
predict September NDVI using forecasted June/July/August
(JJA) rainfall and to predict January NDVI using forecasted
October/November/December (OND) rainfall.

RESULTS

Reporting rate. The average reporting rate by month at the
health facility level over the entire 8-year period was 76.9%.
Of the 242 health facilities, the majority (155 [64.0%]) pro-
vided > 80% of required reports, 38 facilities (15.7%) pro-
vided 60–80% of reports, 20 (8.3%) provided 40–60% of re-
ports, 19 (7.9%) provided 20–40% of reports, and only 10
(4.1%) provided < 20% of the required reports. In some
cases, this is because the facility was not functioning for part
of the time period, but detailed information on this is not
available.

Estimates of reporting completeness by year were as fol-
lows:

1996: 52.1% of reports received, 59.9% of facilities reporting;
1997: 71.2% of reports received, 74.4% of facilities reporting;
1998: 78.1% of reports received, 84.7% of facilities reporting;
1999: 83.3% of reports received, 87.2% of facilities reporting;
2000: 77.4% of reports received, 92.1% of facilities reporting;
2001: 84.8% of reports received, 93.8% of facilities reporting;
2002: 86.4% of reports received, 92.6% of facilities reporting;
2003: 89.5% of reports received, 93.0% of facilities reporting.

As mentioned in the Methods section, there were a poten-
tial 5568 data points (subzoba-months) from the 58 subzobas

and 96 months of study. There were 191 missing data points
where no reports were received in a particular subzoba, rep-
resenting 3.4% of the total matrix.

Vulnerability mapping with surveillance data. The 5-cluster
map (Figure 3) was found to be most representative of what
is expected in the field and is consistent with expert opinion.
With 5 clusters we were able to capture differences in both
intensity and the seasonal dynamics of malaria incidence. This
is particularly important in Eritrea as the coastal region is
dominated by OND rains as opposed to July/August/
September (JAS) rains for the rest of the country. However,
this analysis was able to differentiate distinct risk regions
(groups of subzobas) within the Red Sea coastal region of
Eritrea as well as different intensities of transmission within
the areas susceptible to the OND rainfall season. One can
argue that the difference in intensity (or malaria incidences)
observed between the clusters could be related to the number
of health facilities per subzoba, which could affect the cover-
age and hence the number of malaria cases reported from a
subzobas. We analyzed the number of health facilities and
number of reports received per year to verify whether this
hypothesis could influence the intensity. Tables 2 and 3 show
that there is indeed a difference in number of health facilities
between clusters, but the average number of reports received
per cluster and per year is very similar and does not influence
the number of incident cases recorded (e.g., Cluster 2 has the
highest number of health facilities and still is classified by a
low incidence rate).

In addition to clarifying the seasonal pattern and intensity
of transmission in different areas, the stratification map pro-
duced is useful for targeting and timing interventions, such as
indoor residual spraying to the highest-risk areas.

Climate/environmental predictors of malaria inci-
dence. The relationship of monthly malaria incidence anoma-
lies to anomalies in climate/environmental data (and each
anomaly value squared) for each subzoba was assessed using
Spearman and Pearson rank correlations.

There is a good correlation between rainfall and malaria
anomalies in some of the subzobas where rain gauge station
data are available (22 out of 58 subzobas) with a lead time of
2 months (Figure 4). However, there is no information for
large tracts of the country, suggesting that, although this data
source may be used in specific districts, it is not suitable for
national coverage.

Satellite-derived estimates of rainfall. Rainfall estimate
anomalies were also moderately correlated with malaria inci-
dence anomalies with an average lead time of 2–3 months.
Although the strength of the relationship was less than that of
the gauge data, this data source had the advantage of com-
plete coverage of the country.

Satellite-derived estimates of vegetation “greenness.” NDVI
anomalies were correlated with malaria incidence anomalies,
particularly in the semi-arid north of the country and along
the coast in Northern Red Sea (Figure 5). Areas of high cor-
relation are largely those identified as “sparse vegetation”
from the Africover land cover map produced by the Food and
Agriculture Organization of the United Nations.32 An advan-
tage of NDVI over rainfall is that it is indicative of soil mois-
ture and is therefore capable of picking out areas where rain-
fall runoff may have a significant impact on malaria transmis-
sion.

FIGURE 2. Location of rainfall stations in Eritrea.
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Seasonal climate forecasts. We retrospectively forecast
June/August rainfall data using a general circulation model
forced with May SST anomalies and correlated the results
with September NDVI over the Greater Horn of Africa in-

cluding Eritrea. This forecast would normally be available
toward the end of June. Accuracy is good over the northern
part and eastern coast of the Greater Horn of Africa with
correlation ranging from 0.4 to 0.7 (not shown). However,

FIGURE 3. Stratification map of Eritrea malaria risk based on monthly clinical malaria data derived using principal-components analysis and
nonhierarchical clustering.

TABLE 2
Number of health facilities per cluster and number of reports received for each year

Five clusters corresponding to Figure 3

1, Very low incidence year
around (Oct peak)

2, Low incidence year
around (Oct peak)

3, Moderate incidence
West (Oct peak)

4, High incidence
(Oct peak)

5, Moderate incidence
East (Jan peak)

No. of health facilities 42 103 38 24 35
No. of reports

1996 339 710 140 222 102
1997 373 942 268 248 236
1998 395 1012 334 239 289
1999 406 1089 352 244 329
2000 419 1037 284 219 288
2001 437 1106 335 260 326
2002 417 1095 400 247 349
2003 439 1108 405 265 381
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over Eritrea the area of predictability was limited to the east-
ern border, and accuracy falls further from the sea (north
western region).

Results show that good correlations (with coefficients be-
tween 0.6 and 0.8) are obtained in Eritrea for the period
OND. However, correlation values dropped dramatically
when the year 1997 is not taken into account, implying that
good predictability in terms of rainfall could be achieved only
during a very strong El Niño event.

DISCUSSION

Malaria stratification is a classification of areas according to
the risk of malaria. It is a way to set priorities and target
prevention efforts to the areas where they are most needed. It
can highlight areas where the control program needs extra
effort and helps to make the best use of resources. Changes in
stratification over time can also help to indicate the areas at
most risk of epidemics.

Because control activities are mostly organized by admin-
istrative units, such as subzoba, classification of these units is
more useful to the program than a strict ecological stratifica-
tion, where different environmental strata may overlap more
than one subzoba. In future, risk stratification can be ex-
tended to smaller units within subzobas if desired. The avail-
ability from the International Research Institute for Climate
and Society (IRI) of remotely sensed data averaged over the
subzoba administrative unit, together with malaria cases in

the same geographic units, was highly beneficial to the strati-
fication process.

Our results show the ADDATI software, freely available
for agroclimatic applications, can be a useful tool for malaria
stratification. Although the program was intended for classi-
fication of satellite-derived time series land cover data into
areas of similar spatiotemporal patterns in vegetation devel-
opment, it is relatively easy to use for clustering districts with
similar malaria incidence and seasonality.

Using only health-facility clinical malaria incidence data
aggregated over administrative divisions we identified 5 clus-
ters (groups of administrative units) of malaria risk based on
both intensity and dynamics. The cluster classification pro-
vides guidance for targeting extra malaria control methods
(such as indoor residual spraying) to the highest-incidence
areas. It also clarifies the seasonality differences between re-
gions and indicates optimum timing of interventions.

Stratification of malarious areas by average parasite inci-
dence has been applied previously.33,34 Our current method-
ology is an improvement of that process because it identifies
not only geographic areas with similar malaria intensity but
also areas with similar temporal dynamics. It also relies only
on readily available surveillance data on malaria incidence to
stratify in areas with significant seasonal variation in inci-
dence. Given that many malarious countries have established
or improved their HMIS as repositories for surveillance and
monitoring data, development of a stratification method that
depends on such data has great potential.

FIGURE 4. Variance in malaria incidence predicted by rainfall from
meteorological stations lagged by 2 months. The coefficient of deter-
mination (R2) values indicate the proportion of variability in the
malaria anomalies that is accounted for by the rainfall.

FIGURE 5. Correlation between monthly NDVI and monthly ma-
laria incidence. The coefficient of determination (R2) values indicate
the proportion of variability in the malaria anomalies that is ac-
counted for by the NDVI.

TABLE 3
Average of reports per health facilities per cluster and per year

No. of reports per
facility, by year

Five clusters corresponding to Figure 3

1, Very low incidence year
around (Oct peak)

2, Low incidence year
around (Oct peak)

3, Moderate incidence
West (Oct peak)

4, High incidence
(Oct peak)

5, Moderate incidence
East (Jan peak)

1996 8.07 6.89 3.68 9.25 2.91
1997 8.88 9.15 7.05 10.33 6.74
1998 9.40 9.83 8.79 9.96 8.26
1999 9.67 10.57 9.26 10.17 9.40
2000 9.98 10.07 7.47 9.13 8.23
2001 10.40 10.74 8.82 10.83 9.31
2002 9.93 10.63 10.53 10.29 9.97
2003 10.45 10.76 10.66 11.04 10.89
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Although the problem of underreporting of disease inci-
dence from underserved areas is always present, this may be
compensated by the availability of much larger and more de-
tailed datasets than are usually available from cross-sectional
prevalence surveys. Problems of inconsistent reporting can be
minimized by restricting analysis only to health facilities with
reliable reporting, ideally of confirmed malaria cases.

The dataset used for stratification also provides necessary
outcome data for assessing the effectiveness of different con-
trol methods used in the country over the last 8 years. How-
ever, because malaria anomalies and rainfall/NDVI are
clearly associated in Eritrea, it is imperative that an analysis
of the impact of interventions take into account climate/
environment variability.

The routine data is also a rich source of past information at
the subzoba and health facility level for generating epidemic
threshold values for early detection of abnormal numbers of
cases. This task is currently in progress.

The climate/environmental variables used in this report can
be routinely monitored, and in fact some are already used
within Eritrea for food security and locust monitoring. These
environmental variables have the potential to be partially pre-
dicted using seasonal climate forecasts, although this predict-
ability is unlikely to be as good as other parts of east and
southern Africa.35,36

There is a known trade-off between timing and accuracy in
any such warning system. In our example:

a. Health surveillance using epidemic thresholds detects the
early phase of epidemics and provides a couple of weeks’
warning of an epidemic peak.

b. Environmental monitoring of NDVI provides concurrent
prediction of malaria anomalies.

c. Rainfall from gauge data provides prediction of malaria
anomalies with a lead time of 2–3 months for some sub-
zobas with meteorological stations.

d. Rainfall from merged gauge and satellite data (CMAP)
predicts September or January NDVI (when peak malaria
occurs) with 2–3 months’ lead time.

e. General circulation models predict rainfall with a lead time
of 2 months and NDVI with a lead time of 4 months, but
with reasonable accuracy only in El Niño years for most
parts of Eritrea.

Stratification and definition of the relationship between cli-
mate and malaria are significant steps toward development of
an early warning system. Once a picture of the “expected”
number of monthly (or, perhaps in the future, weekly) ma-
laria cases in a subzoba or cluster has been built up, together
with the expected climate variables in the same areas, all of
the necessary components of an early warning system are in
place.
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tique et reconnaissance des formes la méthode des nuées dy-
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