
Malaria remains the single largest threat to child survival in
sub-Saharan Africa and warrants long-term investment for
control. Previous malaria distribution maps have been vague
and arbitrary. Marlies Craig, Bob Snow and David le Sueur
here describe a simple numerical approach to defining distri-
bution of malaria transmission, based upon biological con-
straints of climate on parasite and vector development. The
model compared well with contemporary field data and his-
torical ‘expert opinion’ maps, excepting small-scale ecological
anomalies. The model provides a numerical basis for further
refinement and prediction of the impact of climate change on
transmission. Together with population, morbidity and mor-
tality data, the model provides a fundamental tool for strategic
control of malaria.

There have been several attempts to define the global and
national distributions of malaria1–3. Common to all pre-
vious attempts at mapping malaria risk is that they de-
rive from a combination of expert opinion, limited data
and the use of crude geographical and climate iso-lines.
None has a clear and reproducible numerical defini-
tion: consequently, their comparative value is limited.

Recently, the tools for the spatial representation of
events have improved with the availability of affordable
geographical information systems (GIS) software and
large global data sets including climate, population, sat-
ellite imagery and topography. Consequently, the map-
ping of environmentally determined diseases is receiving
renewed interest4–13. It is into this milieu that the MARA/
ARMA (Mapping Malaria Risk in Africa/Atlas du Risque
de la Malaria en Afrique)14 project was born. One of the
first objectives of MARA/ARMA was to find the limits
of distribution of stable malaria transmission. 

Transmission and distribution of vector-borne dis-
eases are greatly influenced by environmental and cli-
matic factors. An indicator of malaria stability is the re-
production rate (Ro) of the disease: when Ro is less than
one, malaria is unstable, with a potential to die out;
when Ro is greater than one, malaria is stable and likely
to continue indefinitely. Vectorial capacity2,15, the main
component in Ro , is strongly determined by climate. In
this paper, the authors propose a ‘fuzzy logic’ model of
the distribution of stable malaria transmission in sub-
Saharan Africa. The model is based on the effect of
mean rainfall and temperature on the biology of malaria
transmission. Even though the relationships between
transmission potential and disease outcome are ill de-
fined16, Snow et al. (this issue) attempt to project bur-
dens of malaria mortality for sub-Saharan Africa, using
the model described here, in conjunction with selected
mortality data.

Fuzzy logic
Defining the precise edges of distribution of malaria

is difficult owing to small-scale ecological variability
and temporal changes in transmission risk. In reality
there is a gradual, ill-defined transition from perennial
to seasonal to epidemic to malaria-free regions, as well
as from high to low transmission intensity. Malaria dis-
tribution is not definable in space, because the edge of
distribution is indistinct, or in time, because both in-
tensity and distribution wax and wane with the natural
periodicity of events. It is not possible to predict, for
each point in space, the probability of transmission oc-
curring or not occurring, because many contributing
factors such as mosquito density, human activities, hu-
man and vector genetics, etc. are not measurable or
available at the continental scale. Of the available data
surfaces, we consider climate to be the most important
in limiting transmission and distribution of malaria 
on a large scale. Climate could be considered as either
able or unable to sustain transmission. This would be a
boolean situation, where climate is suitable (1) or un-
suitable (0). Defining boolean thresholds above which
the temperature–rainfall combination is considered suit-
able and where malaria is expected to occur, or below
which malaria is expected not to occur, would be ig-
noring natural gradients and inherent uncertainty.

Fuzzy logic17 is an extension of boolean logic that
deals with the concept of partial truth or, put differ-
ently, the extent to which a statement is true (fractions
between 0 and 1): climate is completely suitable, com-
pletely unsuitable, or in between, semi-suitable. While
probability sets are fuzzy, ie. non-boolean, fuzzy sets
are not probabilities, because they do not necessarily
add up to one, as do probabilities. Any 0–1 curve, con-
sidered appropriate for the subject, may be applied.
The type of curve chosen depends mostly on what and
how much is known about the suitability gradient.

Continental climate 
Continental monthly temperature and rainfall sur-

faces18, essentially interpolated weather station data,
were used to provide the climate data. They represent
long-term mean monthly profiles, ie. monthly means
in the average year. Conceptually, regions can be defined
as: (1) perennial – where conditions are always suitable
for transmission; (2) seasonal – where conditions become
suitable for a short season every year; (3) epidemic –
where long-term variation in climate renders conditions
suitable for transmission on an irregular basis (with a
potential of epidemic malaria); and (4) malaria-free –
where conditions are always unsuitable. Because inter-
annual variation is not reflected in long-term mean cli-
mate data, epidemic zones are not detectable. Using this
data set to predict regions of annual transmission would
lead to exclusion, at the fringe, of rare epidemic zones,
but inclusion of frequent epidemic zones. More finite
data (in space and time) is required to define the epi-
demic zones and this is being addressed presently.
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Temperature effects on transmission
The effects of temperature on the transmission cycle

of the malaria parasite Plasmodium falciparum are mani-
fold, but its specific effects on sporogonic duration (n)
and mosquito survival (p) are the most important19,20.
The mathematical relationships are shown in Box 1. 

The lower limit of temperature suitability is deter-
mined by the number of mosquitoes surviving the in-
cubation period (pn): while parasite development only
ceases at 16°C, transmission below 18°C is unlikely be-
cause few adult mosquitoes survive the 56 days re-
quired for sporogony at that temperature, and because
mosquito abundance is limited by long larval duration.
At 22°C sporogony is completed in less than three weeks

and mosquito survival is sufficiently
high (15%) for the transmission cy-
cle to be completed. Thus, tempera-
tures below 18°C were considered
unsuitable, and above 22°C, suitable
for stable transmission. 

The upper limit of temperature
suitability is determined by vector
survival, as sporogeny takes less
than a week. Temperatures of above
32°C have been reported to cause
high vector population turnover,
weak individuals and high mortal-
ity (D. le Sueur, PhD Thesis, Univer-
sity of Natal, 1991; R. Maharaj, PhD
Thesis, University of Natal, 1995).
Thermal death for mosquitoes oc-
curs around 40–42°C21,22 and daily
survival is zero at 40°C11. 

In addition to average tempera-
ture, Leeson23 found that in Zimb-
abwe, Anopheles gambiae s.l. disap-
peared when absolute minimum air
temperature in winter fell below
5°C, and DeMeillon24 found that in
the old Transvaal province, South
Africa (now Mpumalanga, Gauteng,
North-West and Northern Province)
vector distribution discontinued in
areas that experienced frost. Stucken-
berg25 plotted effective temperature
(an indicator that emphasizes the
importance of summer tempera-
ture and length in terms of bio-
logical activity) against frost inci-
dence in 84 weather stations. The
highest effective temperature with
at least one day of frost per annum
was 16.4°C. In southern Africa the
16.4°C effective temperature iso-
line compared well with the 5°C
minimum temperature iso-line, the
main differences occurring in parts
of the Zimbabwean highlands and
along a wide band across central
Botswana. The 5°C minimum tem-
perature iso-line was used here,
bracketed on both sides by 1°C, to
account for uncertainty, so that 6°C
and above was suitable, 4°C and be-
low, unsuitable.

Rainfall effects on transmission
The relationship between mosquito abundance and

rainfall is complex and best studied when temperature
is not limiting. Studies have demonstrated the associ-
ation between An. gambiae s.l. abundance and rainfall26,27

(D. le Sueur, unpublished) but a direct, predictable re-
lationship does not exist. Anopheles gambiae s.l. are seen
to breed more prolifically in temporary and turbid
water bodies, such as ones formed by rain28,29, while in
permanent bodies predation becomes important30. 
By contrast, A. funestus prefer more permanent water
bodies28. However, both temporary and permanent
water bodies are dependent on rain. Rain is also related
to humidity and saturation deficit: factors that affect
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Box 1. Relationships between Temperature and Sporogonic Duration (n),
Mosquito Survival (p) and Larval Duration

The effect of temperature on duration of the sporogonic cycle (n) in days is
defined as2,32 (Fig. Ia, above):

(1)

where DD is the total degree days for parasite development (111 for Plasmodium
falciparum), T is the mean temperature in degrees centigrade and Tmin is the tem-
perature at which parasite development ceases (16°C for P. falciparum). High
temperature speeds up mosquito development21 and decreases the interval
between bloodmeals, leading to more frequent host–vector contact28, but also
reduces mosquito survival (D. le Sueur, PhD Thesis, University of Natal, 1991; 
R. Maharaj, PhD Thesis, University of Natal, 1995). Daily mosquito survival (p)
is defined by Martens11 as:

p 5 e–1/(–4.411.31T–0.03T2) (2)

assuming constant humidity (Ib). Thus, the combined effect of n and p (pn)
indicates the percentage of a vector cohort that survives the full period
required for completion of sporogeny at different temperatures (Ic). Another
effect of temperature, namely on larval duration (ld) in days, can be expressed
as:

(3)

and is shown in (Id). The formula is derived from data published by Jepson21

and D. le Sueur (op. cit.) 

ld = 1 / (0.00554T – 0.06737)
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mosquito survival26. There is good reason for using
rainfall to indicate the probable presence of vectors,
their survival and the potential for malaria transmis-
sion. Although it is known that flooding often causes
destruction of breeding sites21 and a temporary reduc-
tion of vectors, it never eliminates the vector, so that
very high rainfall was still considered optimal for
transmission. The amount of monthly rain required
was examined by extracting the climate patterns in re-
gions where the status of malaria was known.

Diagnostic climate patterns
To examine the pattern of mean climate, as it relates

to different epidemiological settings, monthly rainfall
and temperature values were extracted from the climate
data surfaces18 for 20 different sites where malaria
transmission has traditionally been regarded as peren-
nial (annual, for more than six months), seasonal (an-
nual, for less than six months), epidemic (transmission

not recorded every year) and malaria-free (malaria
never recorded). The most diagnostic examples are dis-
played in Box 2. 

The examples confirm that the approximate tempera-
ture cutoff point between epidemic and no-malaria
zones is indeed around 18°C, and that 22°C allows stable
transmission, while the difference between regions ‘c’
and ‘e’ (Box 2; Figs I and II, c and e) indicates a rainfall
requirement for stable transmission of around 80 mm
per month for at least five months. 

The duration of the rainfall season is also important.
In regions where temperature is high but rainfall is lim-
iting, such as the fringes of the north African deserts,
mosquito populations increase rapidly at the onset of
rain, because of short developmental cycles. Conse-
quently, three months of rain may be sufficient to con-
stitute one transmission season. However, where tem-
perature is limiting during the colder season, as is the
case in large parts of southern Africa and highland
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Box 2. Temperature and Rainfall Profiles of Selected Regions

Monthly climate data
were extracted for se-
lected sites (Fig. I)
where the malaria epi-
demiology had been
established: 

Stable malaria re-
gions: a, Siaya district,
Kenya33; b, Ifakara area,
Tanzania34; c, North
KwaZulu-Natal, South
Africa5; d, Nioro du
Sahel, Mali35. 

Epidemic malaria re-
gions: e, Uasin Gishu
district, Kenya36; f, Gaborone area, Botswana*. 

Malaria-free regions: g, Kenya western highlands†; h,
Johannesburg area, South Africa‡; i, North-East Kenya†.

Graphs (Fig. II) of long-term mean temperature (open rec-
tangles), minimum temperature (crosses) and rainfall (closed
circles) profiles by month. 

The effect of mean temperature is illustrated in Fig. IIa, IIe and
IIg where rainfall is high all year: a constant temperature of
228C in (IIa) is sufficient for perennial transmission, 188C all year
in (IIe) is too cold but epidemics occur in warmer years, while in
(IIg), where mean temperature remains around 158C, transmis-
sion never occurs. Similarly, mean temperatures in (IIc) and
(IIh), which have the same seasonal rainfall pattern, suggest
that seven months above 228C allows seasonal transmission,
while six months above 188C does not. 

In terms of rainfall, the difference between (IIc) and (IIf),
which have similar mean temperature patterns, indicates that
five months above 80 mm rain is sufficient, but five months
above 60 mm is not. In (IIf) there is the added limiting effect of
low minimum temperatures in winter, but rare epidemics do
occur in particularly wet years37. It is further apparent from
areas (IId) and (IIi) that where temperatures are high, one month
of rain above 80 mm is not sufficient for a transmission season,
but that three months above 80 mm is. 

* Botswana Ministry of Health (1998) Botswana Malaria Cases: District Data 1982–1994

† UNICEF: Kenya Country Office, Government of Kenya (1994) Vitamin A Deficiency in Kenya. A Report of the National Macronutrients Survey

‡ Department of Health (1998) South Africa; Malaria Case Records by District, 1983–1997



areas, mosquito populations increase slowly at the on-
set of rain, with gradually rising temperatures, owing
to long developmental cycles. Parasite and vector de-
velopment is slow, and favourable conditions need to
last longer to provide a window of transmission. This
is also illustrated by the extracted climate patterns: in
Mali (Box 2; Figs I and II, d), where temperatures are
always high, a three month window of high rainfall is
sufficient for transmission, whereas in southern and
eastern Africa (Box 2; Figs I and II, a–c), suitable con-
ditions need to persist for at least five months.

Constructing a fuzzy distribution model
The GIS raster software IDRISI and its FUZZY func-

tion were used to convert the climate data to climate
suitability maps of fractions between 0 (conditions un-
suitable, U) and 1 (conditions suitable, S). Initially, a
simple sigmoidal fuzzy membership curve was used,
defined in IDRISI as:

(4)

where y is the fuzzy suitability of climate value x. In the
decreasing curve, fuzzy membership is equal to y, in the
increasing curve it is (1 − y). As outlined in the previous

sections, for rainfall, U=0, S=80 mm
per month; for average tempera-
ture U=18, S=22°C for the increas-
ing curve and S=32, U= 40°C for 
the decreasing curve. For winter
minimum temperature (mean daily
minimum of coldest month) U=4, 
S=6°C. 

Because favourable temperature
and rainfall conditions have to co-
incide temporally for transmission to
occur, the 12-monthly fuzzy rain and
temperature images were overlaid
month-by-month. The minimum
suitability rating was calculated at
each point, according to whichever
(rain or temperature) was more lim-

iting. Furthermore, suitable conditions have to occur
for a certain ‘time window’, constituting a transmis-
sion season, long enough for vector populations to in-
crease and for the transmission cycle to be completed.
In north Africa (>8° north) the highest value spanning
any three, and in the rest of Africa any five, consecutive
months was calculated. To adjust the model for the
effect of frost23,24, the fuzzy minimum winter tem-
perature was overlaid, again calculating the minimum
fuzzy value. The resulting model (Fig. 1) shows the dis-
tribution of conditions more or less suitable for stable
malaria transmission, lasting for at least five consecu-
tive months (or three in north Africa) in the average
year. 

Does the model agree with available data?
Comparing the model with historical maps and ma-

laria case data in southern Africa (Fig. 2), and in Kenya
and Tanzania (Fig. 3), the resemblance is striking. In
southern Africa the edge of malaria distribution is well
represented. The malaria-free east African highland re-
gions (Fig. 3) are also clearly reflected in the model. In
Kenya, the coastal and south-western endemic zones
agree, as do the ‘malaria near water’ regions, too dry to
register as suitable in the model. Minor discrepancies
are discussed in the figure captions. 
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Fig. 1. Fuzzy model for sub-Saharan Africa, showing the suitability of temperature and
rainfall conditions for malaria transmission for any three consecutive months in north
Africa and any five consecutive months in the rest of Africa (see text). A value of 1
means that conditions in the average year are suitable, hence one could expect to find
endemic malaria transmission (seasonal or perennial); a value of 0 means conditions are
unsuitable in the average year, hence transmission should be absent or occur in rare
epidemic episodes. Fractions from 0 to 1 indicate increasingly suitable climate, hence
increased risk of regular transmission. 

Fig. 2 (right). Comparison of the model
with southern African distribution data.
The climatic model: 0, unsuitable; 1, suit-
able (a). Malaria maps show malaria risk
in 1995 in Namibia (Richard Kamwi,
Ministry of Health and Social Services,
Namibia, pers. commun.), 1938 in South
Africa5 and annual malaria case num-
bers per district in Botswana (b). The
Namibia risk map is an expert opinion
map, based on case data. The Botswana
map is based on microscope-confirmed
case data collected at district level from
1982 to 1994. Malaria case incidence in
South Africa (not shown here) between
1987 and 1993 has been above 1% just
north and east of Swaziland, and 1% or
less elsewhere, but because malaria con-
trol has considerably reduced malaria in
South Africa5,38 it is necessary to look at
the historical map. Although the units in
the maps of the three countries differ,
agreement with the model is evident.

y = cos2
x – U p

S – U 2
3
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Fig. 3. Comparison of the model with Kenyan and Tanzanian malaria maps. The climatic model: 0, unsuitable; 1, suitable (a). Malaria maps
of Kenya37 and Tanzania39 are shown in (b). Agreement between the model and the historical maps is good. The area southeast of Mount
Kenya and Nairobi was historically recorded malarious for three to six months, whereas the model predicts low climatic suitability. On
closer inspection, this area is found to be flat, low-lying country, which may receive additional run-off water from the adjoining highlands;
a high normalized difference vegetation index (NDVI, which is a measure of the amount of photosynthesis taking place, and hence relates
to the moisture availability, saturation deficit, soil properties and humidity) indicates an abundance of water. Nevertheless, empirical data
from this region40 suggest that malaria transmission is low and sporadic, and we have to question the accuracy of the historical map. The
discrepancies in the Tana and Pangani (a and b above) river valleys, as well as the Limpopo river (Fig. 2), are a result of the model using
only rainfall to predict the presence of vectors so that, although rainfall may be low, breeding sites are available and humidity is high
along banks and floodplains of major rivers.



It is remarkable how such a simple model as this,
driven by an understanding of the situation on the
ground, approximates the edge of malaria distribution
across the continent so well. Because we are looking at
the distribution of stable malaria transmission, the
edge of the suitable zone must be regarded as the low-
est level of endemic malaria (hypo-endemic and/or
strongly seasonal), where we expect to find substantial
(not necessarily high) levels of transmission occurring
every year. The situation within the suitable zone (fuzzy
value 1) may vary from low to high transmission in-
tensity, but this is not reflected in a distribution model.
The situation outside the suitable zone (fuzzy values
from 0.9 down to 0) reflects the gradient from stable to
increasingly unstable transmission with lower and lower
transmission intensity, until, at the outermost fringes,
malaria becomes a sporadic, unpredictable event, sub-
ject to the chance influx of parasites in rare wet or warm
years. 

In Botswana, 13 years of incidence data* show that
districts in the same fuzzy zone behave similarly from
year to year in terms of actual numbers of cases re-
corded. Reported cases clearly decline from the three
endemic districts in the north, to extremely low num-
bers in the central district, where, in four out of 13
years, no cases were recorded at all. In a further five
districts, malaria cases are reported in extremely rare
years (David Rumisha, pers. commun.). The outlook 
of this model for public health applications is dealt
with by R.W. Snow et al. (this issue).

Around the equator, rainfall patterns are slightly 
to strongly bimodal, some regions receiving rain in two
short, distinct seasons. The model described above re-
quired five consecutive months with a rainfall above 
80 mm. We ran the model again, with the same fuzzy
definitions, but instead of looking for consecutive
suitable months, calculated the maximum fuzzy val-
ues persisting for five months in total. The difference
between the two models was 0 or negligible in most 
of Africa, except for parts of central, south-eastern and
northern Kenya, and with very small differences 
in Ethiopia, Somalia, southern Cameroun and along
the northern Angolan coast. In all other areas a bi-
modal rainfall pattern did not affect the outcome of the
model, and even the affected areas in Kenya are mostly
dry and unstable, indicating that two short, distinct
rainy seasons are after all not sufficient for endemic
malaria.

To refine the shape of the fuzzy curves, and the suit-
ability cutoffs S and U, it may be necessary to distin-
guish between the north, where the limiting factor is
rainfall only, and the rest of Africa, where the effect is
a combination of rainfall and temperature. Equatorial
regions, where the diurnal and annual temperature
ranges are low, and where temperature is limited by
altitude, might also need to be differentiated from the
South, where temperature range is great and mini-
mum temperature plays an important part, and where
temperature is limited largely by latitude. It is worth
noting here that no true gold standard is available.
Historical maps and limited long-term malaria records
have to suffice for comparative purposes.

Modelling at different spatial levels
We have demonstrated that a simple climate-based

model can be used to define the crude distribution of ma-
laria transmission in Africa. This model functions at the
continental level, a scale for which we believe the data
sets and the methodological approach to be appropriate,
but which will not take into account small-scale anoma-
lies that might affect distribution, such as rivers and
floodplains in areas of low rainfall, agricultural practice,
deforestation, etc. It reflects a conservative estimate of
distribution. The inclusion of other smaller-scale data
sets (hydrology, human activity, etc.) may allow more
detailed predictions, but requires a different approach. 

Thus, we view the modelling of malaria in Africa as a
four-tier approach: (1) the first level, at the continental
scale, defines the broad distribution of disease based on
climatic conditions in an average year; (2) the second
level, at a sub-continental scale, refines the distribution at
the periphery using annual data sets for higher temporal
resolution, and takes into account differences between
major malaria ecological zones; (3) the third level, at a
regional or national scale, would involve relating para-
site ratios to climate and other factors and defining the
transmission intensity within a given zone of transmis-
sion ecology, such as perennial, seasonal or bi-seasonal
transmission; and (4) the fourth level, at a scale of 30 km2

and below, is a process that operates below the second
administrative unit and seeks to define variation in trans-
mission on a local scale. The lower one goes in scale,
the more one is forced to consider whether the input re-
quired is justified by the scale at which one is working
and the meaning that one is drawing from the product. 

The model presented here, at the first level, introduces
a new approach to the numerical definition of continental
malaria distribution. The main benefit lies in the fact that
it can be repeated, evaluated and refined over time, and
can be manipulated mathematically in combination with
other data sets such as population31 to provide improved
estimates of people at risk, which is essential for prioritiz-
ing health services (R.W. Snow et al., this issue). Such a
model provides a baseline against which climate change
scenarios (eg. global warming) can be evaluated in the
long term. We are moving from the hypothetical to the
quantifiable.
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Parasite increased trophic transmission (PITT) is one of the
more fascinating tales of parasite evolution. The implications of
this go beyond cocktail party anecdotes and science fiction plots
as the phenomenon is pervasive and likely to be ecologically and
evolutionarily important. Although the subject has already re-
ceived substantial review, Kevin Lafferty here focuses on evo-
lutionary aspects that have not been fully explored, specifically:
(1) How strong should PITT be? (2) How might sexual selection
and limb autotomy facilitate PITT? (3) How might infrapopu-
lation regulation in final hosts be important in determining
avoidance of infected prey? And (4) what happens when more
than one species of parasite is in the same intermediate host?

Some of the most compelling Nature documentaries
are those that show hunting and feeding behavior, such
as a lioness downing a gazelle, or an osprey snatching
a fish from the water’s surface. Hidden from view and

never mentioned are the parasites that are experiencing
transmission at that moment. Unfortunately, parasite
transmission loses some of this drama when portrayed
to undergraduates as arrows in a parasite life cycle. A
perusal of life cycle diagrams in any parasitology text
will reveal that many ‘typical’ (as in Ref. 1) parasites
(many nematodes, most trematodes, most cestodes and
all acanthocephalans) depend on a definitive host eat-
ing an intermediate host. Such trophic transmission is
conspicuously absent in a few groups such as the mono-
genes, gyrocotylid Cestodaria, rhabditoid, oxyuroid and
filarial nematodes and schistosomatid trematodes2. Tro-
phic transmission might have evolved under the strong
selective pressure to survive the death of the host by
predation, a feat most easily accomplished by para-
sitizing the host’s predator. In addition to surviving,
parasites able to succeed at this would typically enter
a larger and longer-living host. 

Many parasites that achieve transmission via the food
chain alter the behavior or appearance of intermediate
hosts to increase their risk of being preyed upon by
final hosts (reviewed in Refs 3–6). Broad categorical
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