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ABSTRACT

This paper examines the quality of seasonal probabilistic forecasts of near-global temperature and pre-

cipitation issued by the International Research Institute for Climate and Society (IRI) from late 1997 through

2008, using mainly a two-tiered multimodel dynamical prediction system. Skill levels, while modest when globally

averaged, depend markedly on season and location and average higher in the tropics than extratropics. To first

order, seasons and regions of useful skill correspond to known direct effects as well as remote teleconnections

from anomalies of tropical sea surface temperature in the Pacific Ocean (e.g., ENSO related) and in other

tropical basins. This result is consistent with previous skill assessments by IRI and others and suggests skill levels

beneficial to informed clients making climate risk management decisions for specific applications. Skill levels for

temperature are generally higher, and less seasonally and regionally dependent, than those for precipitation,

partly because of correct forecasts of enhanced probabilities for above-normal temperatures associated with

warming trends. However, underforecasting of above-normal temperatures suggests that the dynamical

forecast system could be improved through inclusion of time-varying greenhouse gas concentrations. Skills of

the objective multimodel probability forecasts, used as the primary basis for the final forecaster-modified

issued forecasts, are comparable to those of the final forecasts, but their probabilistic reliability is somewhat

weaker. Automated recalibration of the multimodel output should permit improvements to their reliability,

allowing them to be issued as is. IRI is currently developing single-tier prediction components.

1. Introduction

The International Research Institute for Climate and

Society (IRI) began issuing seasonal forecasts of near-

global climate in October 1997, using a two-tiered dy-

namically based multimodel prediction system (Mason

et al. 1999). The forecasts are probabilistic with respect

to the occurrence of three climatologically equiprobable

categories of seasonal total precipitation and mean

temperature—below, near, and above normal as defined

by the 30-yr base period in use at the time. The forecasts

were issued quarterly for the two upcoming consecutive

3-month periods from October 1997 until June 2001,

after which time they were issued monthly for the same

two lead times, but additionally for the two intermediate

overlapping 3-month periods. For most of the history

of the IRI’s forecasts, they have been issued approxi-

mately one-half month prior to the beginning of the first

3-month forecast period.1 We define the lead time as the

time between issuance and the start of the targeted pe-

riod; since June of 2001, forecasts were issued at 0.5-, 1.5-,

2.5-, and 3.5-month lead times.

An evaluation of the performance of IRI’s seasonal

forecasts from 1997 through 2001 was presented in

Goddard et al. (2003). Forecast skills were found to be

positive for the seasons and regions known to have in-

trinsic predictability, aided in particular by the strong

ENSO events from mid-1997 through mid-2000. In this

paper forecast skills during the longer period of late

1997 through 2008 are described.

In section 2 the methodology used to produce IRI’s

precipitation and temperature forecasts, and the forecast

format, are outlined. In section 3 the verification data
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and procedures are defined, and in section 4 skills of the

IRI’s forecasts are examined by region and season and in

the context of the ENSO state and a strong multidecadal

warming trend. Skills of the issued forecasts are compared

with those of the objective guidance of the numerical

prediction tools. Section 5 provides a summary and sug-

gests possible improvements for IRI’s climate forecasts.

2. Climate prediction methodology

The IRI’s prediction methodology has been primarily

dynamical, using a two-tiered system (Bengtsson et al.

1993) in which a set of SST predictions is first estab-

lished, and then a set of atmospheric general circulation

models (AGCMs), each consisting of multiple ensemble

runs, is forced by the set of predicted SSTs (Mason et al.

1999). The use of multiple SST scenarios accounts for

uncertainty in the SST predictions, yielding more re-

alistic levels of uncertainty in the temperature and pre-

cipitation forecasts than would be produced from a single

(but imperfect) SST scenario.

a. SST prediction

The precise details of the method of deriving the SST

predictions have evolved during the 11 years of IRI’s

forecasts, but use of both persisted SST anomalies and

one or more scenarios of evolving SST predictions based

on a combination of dynamical and statistical models

have been consistent features. In all scenarios, the SST

forecasts in the extratropics (outside of 308N–258S) are

damped persistence of the mean anomalies observed the

previous month (added to the forecast season’s clima-

tology), with an e-folding time of 3 months (Mason et al.

1999). In the tropics, multimodel, mainly dynamical SST

forecasts are used for the Pacific—the basin having the

best known physics and model forecast consistency—

while statistical and dynamical forecasts are combined

for the Indian and Atlantic Oceans. In the non-Pacific

tropical basins, during seasons having little apparent

SST predictive skill, damped persistence of the SST

anomalies observed in the most recent month are used,

but with a lower damping rate than applied in the ex-

tratropics. For seasons having greater apparent skill, ca-

nonical correlation analysis (CCA; Glahn 1968; Barnett

and Preisendorfer 1987) models are used in the Indian

Ocean (Mason et al. 1999) and tropical Atlantic Ocean

(Repelli and Nobre 2004).

A separate scenario of globally persisted SST anomaly,

consisting of undamped anomalous SST observed the pre-

vious month added to the climatology of the months being

forecast, is used out to 4 months for the IRI’s shortest

lead time forecasts. For the nonpersisted, evolving SST

anomaly predictions, the AGCMs are run out to 7 months.

The methods used to develop the SST forecasts are

detailed in Table 1. For the evolving SST forecasts,

three versions of the forecast SST anomalies have been

used. In the first version, used through May 2004, a sin-

gle deemed best estimated forecast SST scenario was

used for tropical Pacific SST, which was that of the

National Centers for Environmental Prediction (NCEP)

coupled model (Ji et al. 1998). Beginning June 2004,

three separate tropical Pacific scenarios were used:

NCEP’s more recently developed global coupled model

[Climate Forecast System (CFS); Saha et al. 2006], the

Lamont-Doherty Earth Observatory (LDEO) interme-

diate coupled model version 5 (Chen et al. 2004), and the

constructed analog (CA) statistical model (Van den

Dool 1994, 2007; Van den Dool et al. 2003). One-third of

the ensemble members of each of the AGCMS was

forced by each SST scenario. This multiscenario design

(Li et al. 2008) was believed to better represent the un-

certainty expressed by the spread of the ensemble mean

SST forecasts among the three models, whose forecast

ENSO states often differed considerably. In the tropical

Atlantic and Indian Oceans, a single scenario was used,

consisting of the average of the CFS and CA ensemble

mean forecasts.

Use of multiple SST scenarios was refined further in

a third version starting in May 2007, noting that some-

times the ensemble mean tropical Pacific forecasts of the

three models agreed closely, while at other times they

differed greatly. The degree of disagreement is not be-

lieved to be significantly related to actual forecast un-

certainty (e.g., Kharin and Zwiers 2002; Tippett et al.

2007). To ensure more approximately comparable sce-

nario differences from year to year for the same forecast

start month and lead time, the three scenarios were

derived based on the historical error of the 3-way su-

perensemble mean of the models, for hindcasts using

observed SSTs over the global tropics. The preferred

structures of the error field were found using principal

components analysis (PCA) on the multimodel mean

SST hindcast error. The three scenarios then used are 1)

the 3-way multimodel ensemble mean SST forecast itself

(with mean biases removed, and that mean 2) plus and 3)

minus the first PC of the historical error. The PC ac-

counts for roughly 40% of the model error variance, and

its spatial pattern for most start and lead times is related

largely, but not exclusively, to ENSO.

b. AGCMs for climate prediction

In the second tier of IRI’s prediction system, several

AGCMs are forced by the set of predicted SSTs. The

initial states of the AGCMs are not based on observed

atmospheric or land surface conditions but are taken

from ongoing updates to long AGCM simulations forced
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by observed SSTs. Because the earliest predicted period

begins 3–4 weeks after the time of the forecast in-

tegrations, use of observed atmospheric initial condi-

tions is not considered critical. However, the lack of

observed land surface initial conditions (soil moisture,

snow cover) may slightly degrade the forecasts because

their effects can continue for longer than one month.

The initial conditions used, differing among ensemble

members, are characteristic of the respective model,

region, and time of year, and the probability distribution

of possible atmospheric states is spanned across mem-

bers, constrained to be consistent only with the pre-

scribed SST boundary conditions.

The number and specific set of AGCMs, and their

forcing by the SST predictions, have evolved over the

11 yr of forecasting (Table 2). Three AGCMs with T42

spectral horizontal resolution (;2.88 latitude–longitude)

were used from late 1997 to early 2001, after which ad-

ditional or replacement AGCMs were used (Barnston

et al. 2003). Seven AGCMs have been used from late

2004 through 2008, providing a total of 144 (68) en-

semble members forced by evolving (persisted) SST. The

National Aeronautics and Space Administration (NASA),

Center for Ocean–Land–Atmosphere Studies (COLA),

Geophysical Fluid Dynamics Laboratory (GFDL), and

Scripps models have highest horizontal resolution [T62

spectral (;2.08) or 2.58 3 2.08 gridded]. The European

Center for Medium-Range Weather Forecasts–Deutsches

Klimarechenzentrum: Hamburg Model (ECHAM) and

National Center for Atmospheric Research (NCAR)

Community Climate Model (CCM) have been run at

IRI, while the other models have been run at their home

institutions using IRI’s SST boundary conditions and

graciously sent monthly to IRI to contribute to the fore-

casts. All model outputs are expressed with respect to

their own climatologies (e.g., mean and terciles) based

on multidecadal simulations using observed SST.

The climatological base period used as the reference

frame for forecasts and observations was 1961–90 from

1997 until June 2001, 1969–982 from July 2001 through

2002, and 1971–2000 from January 2003 to present.

Forecasts issued through early 2001 were developed

largely from the ECHAM3.6, CCM3.2, and NCEP–

Medium-Range Forecast (MRF9) AGCMs, whose fore-

casts were combined subjectively by the forecasters using

various model validation statistics (Mason et al. 1999;

Goddard et al. 2003). Forecast formation was further

guided by empirical probabilistic composites based on

relative frequencies of occurrence of tercile-based cate-

gories keyed to past ENSO episodes (Mason and Goddard

2001). Beginning in mid-2001 the process of merging the

AGCM predictions into a final forecast was automated

TABLE 1. Versions of SST forecast used for each tropical ocean basin by IRI to force its multiple AGCMs. The persisted SST (first row) is

used for entire globe for the first 3-month forecast season only, while the evolving SST forecasts are used for forecasts for all lead times.

SST version Period of use

Ensemble

apportionment Tropical Pacific SST Indian Ocean SST Tropical Atlantic SST

Persisted SST Oct 1997–present Uniform Undamped persisted Undamped persisted Undamped persisted

Evolving SST 1 Oct 1997–May 2004 Uniform 1) NCEP coupleda CCA CCA or damped

persisted

Evolving SST 2 Jun 2004–Apr 2007 One-third for

each scenario

Separately: Mean of CFSb and CAc Mean of CFSb

and CAc1) CFSb only

2) CAc only

3) LDEOd only

Evolving SST 3 May 2007–present One-third for

each scenario

Separately: Separately: Separately:

1) Mean of CFS,

CA, LDEO

1) Mean of CFS,

CA, CCA

1) Mean of CFS, CA

2) Same as 1, plus

perturbatione
2) Same as 1, plus

perturbatione
2) Same as 1, plus

perturbatione

3) Same as 1, minus

perturbation

3) Same as 1, minus

perturbation

3) Same as 1, minus

perturbation

a NCEP coupled ENSO forecast model (Ji et al. 1998).
b NCEP Climate Forecast System (Saha et al. 2006).
c Constructed analog statistical model (Van den Dool 1994, 2007; Van den Dool et al. 2003).
d Lamont-Doherty Earth Observatory intermediate coupled model 5 (Chen et al. 2004).
e Perturbation consists of first EOF of historical error of mean of CFS, LDEO, and CA.

2 This nonstandard base period was used because of delays in

updating of the global climate observational data used.
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(Barnston et al. 2003). Two multimodel ensembling

methods were used: a Bayesian method (Rajagopalan

et al. 2002; Robertson et al. 2004) and a canonical vari-

ate method (Mason and Mimmack 2002), and the two

forecast results were averaged. In both methods, in-

dividual model weighting varies by grid point and forecast

target season, governed by the models’ historical skills

over an approximately 50-yr period when forced by ob-

served SST fields. Use of this model weighting formula-

tion, to be discussed in the context of the skill results in

section 4f, is not ideal because observed SST is not avail-

able for the target periods in the real-time forecast setting.

c. Final forecast

Even with the more automated system implemented

in 2001, final minor subjective modification of the ob-

jective forecasts by the forecasters has continued. This

modification has consisted largely of overall damping of

probabilities toward climatology—more at high than at

low latitudes, and in particular for inordinately strong

regional probability shifts. Light spatial smoothing has

also been done to reduce noise. Other modifications

include selected spatial model output statistics (MOS)

corrections of systematic errors of the individual AGCMs

for precipitation for specific regions using CCA (Ndiaye

et al. 2009; Tippett et al. 2003; Landman and Goddard

2002); a nudging toward reduction (enhancement) of

probabilities for below-normal (above normal) tem-

perature, partly in response to a diagnostic verification

of IRI’s forecasts during 1997–2000 (Wilks and Godfrey

2002); and making the forecasts more consistent with

those of other meteorological centers or regional cli-

mate outlook forums.

3. Data and methods

a. Data

Consistent datasets of observed global temperature and

precipitation are required to calibrate the model fore-

casts and to verify the forecasts. For temperature, the

28 gridded global Climate Anomaly Monitoring System

(CAMS) dataset from National Oceanic and Atmospheric

TABLE 2. AGCMs used to develop IRI’s climate forecasts: basic features and references. ECPC is the Experimental Climate Prediction

Center, and AM2 denotes the Atmospheric Model, version 2.

AGCM

Horizontal

resolution

Vertical

resolution

(layers)

Period of

contribution to

IRI forecasts

No. of

ensemble members

(evolving/persisted SST)

Model

development site

CCM3.2a T42 18 Sep 97–Aug 03 10/10 NCARb

CCM3.6a T42 18 Dec 04–present 24/24 NCARb

COLA T63 13 Oct 01–May 04

Jun 04–present

10/0

12/0

COLAc

ECHAM3.6a T42 19 Sep 97–Jan 02 10/10 Max Planck Instituted

ECHAM4.5a T42 19 Aug 01–present 24/24 Max Planck Institutee

ECPC Noah T62 18 Jun 03–May 04

Jun 04–present

10/10

12/10

Scripps Institution

of Oceanographyf

GFDL AM2p12b 2.58 3 2.08 18 or 24 Oct 04–present 30/10 GFDLg

NASA Seasonal-to-Interannual

Prediction Project (NSIPP)

2.58 3 2.08 34 Apr 01–May 04

Jun 04–present

9/0

12/0

Goddard Space Flight

Center (GSFC)h

NCEP MRF9 T40 18 Sep 97–May 04

Jun 04–present

10/0

30/0

NCEPi

a Model is run at IRI.
b Hack et al. (1998); Hurrell et al. (1998); Kiehl et al. (1998).
c Schneider (2002).
d Deutsches Klimarechenzentrum (1992); Roeckner et al. (1992).
e Roeckner et al. (1996).
f Kanamitsu et al. (2002); Kanamitsu and Mo (2003).
g GFDL Global Atmospheric Model Development Group (2004).
h Bacmeister et al. (2000); Pegion et al. (2000); Schubert et al. (2002).
i Kumar et al. (1996); Ji et al. (1998); Livezey et al. (1996).
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Administration (NOAA) (Ropelewski et al. 1985) is

used. For precipitation, the Climate Prediction Center

(CPC) Merged Analysis of Precipitation (CMAP; Xie

and Arkin 1997) for data from 1979 onward and the data

from the Climate Research Unit (CRU) of the Univer-

sity of East Anglia for 1961–78 (New et al. 2000; Mitchell

and Jones 2005) are used. Tests for relative biases during

the overlap period indicate minor biases in mean and

biases in variance (CRU data having lower variance).

The latter biases slightly affect the terciles when the

1961–90 climatology period was used but have little ef-

fect for the two later base periods.

b. Methods

Here we use the ranked probability skill score (RPSS;

Epstein 1969), a likelihood score (Aldrich 1997), and a

generalization of the relative operating characteristics

(ROC) curve (Mason 1982) to the three forecast cate-

gories collectively (Mason and Weigel 2009). For addi-

tional diagnostic understanding, we apply reliability

analysis (Murphy 1973).

The RPSS (Epstein 1969; Wilks 2006), an extension of

the Brier skill score (Brier 1950) to more than two cat-

egories, begins with computation of the ranked proba-

bility score (RPS). RPS is the squared probability error,

cumulative across the forecast categories in ascending

rank order, between the categorical forecast probability

and the corresponding observed ‘‘probability’’ (100%

probability assigned to the observed category, 0% other-

wise). Higher RPS indicates larger forecast error. RPSS is

positive when the RPS of the forecasts is less than that of

a chosen reference forecast (here, the climatology forecast

of one-third probability for each category).

The likelihood score (Aldrich 1997) is based on the

product, over all forecasts in a set of n forecasts, of the

probabilities forecast for the actually observed category.

The nth root of this product is taken, yielding an in-

tuitively meaningful geometric mean probability as-

signed to the correct category. The likelihood score is

closely related to the ignorance score (Roulston and

Smith 2002), linked to information theory, and derived

scores such as return ratio (Hagedorn and Smith 2008;

Tippett and Barnston 2008). A likelihood skill score

(LSS) compares the likelihood score for the forecast with

that of a reference forecast (here, climatology), assigning

zero skill if it equals the reference. A differing feature

between LSS and RPSS is that LSS is based on the

probability assigned only to the category later observed

(the locality property; Brocker and Smith 2007), ignor-

ing probabilities for the other categories; RPSS uses the

probabilities forecast for all three categories and gives

greater credit when high probabilities are assigned to

a category adjacent to that observed versus a more dis-

tant category. Both RPSS and LSS are used to verify the

IRI forecasts in part to assess the extent to which the

simpler LSS provides information about forecast quality

TABLE 3. Information and computation for RPSS, LSS, and GROC verification measures.

Verification measure; conceptual basis; references Computation formula

Ranked probability skill score (RPSS): Squared probability

error, cumulative across forecast categories, between

forecast probability and observed ‘‘probability’’ (0 if not

observed, 1 if observed), compared with same calculation

for a naive reference forecast such as that for

climatological probabilities; highly analogous to mean

squared error skill score for deterministic forecasts

(Epstein 1969; Wilks 2006).

RPSS 5 1� (RPSfct/RPSref), where fct refers to the forecasts, and ref

refers to a naive reference forecast such as 1/3 for each tercile category.

Here RPS 5 (1/nfct)�nfct

ifct51 �ncat

icat51(PCUMfct
icat
� PCUMobs

icat
)2

h i
,

where icat is category number, ncat is the total number of categories,

ifct is forecast number, and nfct is the total number of forecasts.

Likelihood skill score (LSS): Geometric mean of the

probability assigned to the category that was actually

observed (Aldrich 1997).

LSS 5 (LIK
fct
� LIK

ref
)/(1� LIK

ref
), where fct and ref are

as defined for RPSS. Here LIK 5
ffiffiffiffiffiffiffiffiffiffiffiffi
pPifct

nfct
p

, where

nfct is the number of forecasts; p is the multiplication

operator with range ifct 5 1 to nfct.

Generalized relative operating characteristics (GROC):

Proportion of all available pairs of observations of

differing category whose probability forecasts are

discriminated in the correct direction; equivalent to

ROC area for individual categories, and somewhat

analogous to Spearman rank correlation, and other

rank tests, for ranked deterministic forecasts

(Mason and Weigel 2009).

GROC 5 �m
y
�1

k51 �m
y

l5k11 �nk

i51 �nl

j51 I(pk,i, p
l,j)

h i
�m

y
�1

k51 �m
y

l5k11 nknl

� �.
,

where I(pk,i, pl,j) 5 1, 0.5, or 0, depending on whether difference

in the probability forecasts was in correct direction, was neutral, or

was in the incorrect direction, respectively [see Mason and Weigel

(2009) for formula for determining which I( pk,i, pl,j) outcome

occurred]. Here my is the number of categories, k and l identify

the differing observed categories whose forecasts are compared,

and i and j are forecast numbers within the specified categories.

The numerator sums the I(pk,i, pl,j) outcomes over all qualifying

pairs of forecasts; the denominator contains the number of pairs.
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similar to (or as fully as) the more comprehensive and

widely used RPSS.

Another probabilistic verification measure is an ex-

tension of the ROC area to include all forecast categories

collectively (Mason and Weigel 2009). This generalized

ROC score (GROC) is the proportion of all available

pairs of observations of differing categories whose prob-

ability forecasts are discriminated in the correct direction.

With a possible range of 0%–100%, a 50% rate of correct

discrimination is expected by chance. The calculations of

RPSS, LSS, and GROC are summarized in Table 3. RPSS

and LSS can be calculated for individual forecasts, per-

mitting a time series of forecast skills. By contrast, GROC

is calculated only for a set of forecasts, of which at least

two must have differing observational outcomes.

All three of RPSS, LSS, and GROC are proper

(Winkler and Murphy 1968; Brocker and Smith 2007)—

that is, they cannot be enhanced by making the forecast

probabilities different from those believed true by the

forecasters (‘‘hedging’’; Murphy and Epstein 1967). A

difference between GROC on the one hand, and RPSS

and LSS on the other, is that the goodness of the cali-

bration of the probabilities matters to the latter two

scores, while it is essentially irrelevant to GROC.

GROC evaluates purely discrimination ability within

the forecast sample at hand, without penalty for overall

or conditional biases in the probability values. The other

side of the same coin is that GROC does not reward

correct forecasts of overall shifts of climate in the fore-

cast sample relative to a longer period of reference such

as a warmed climate relative to a past 30-yr period. The

above characteristics are similar to those of the temporal

correlation coefficient for verification of deterministic

forecasts and in contrast to the mean squared error or

Heidke skill scores (Barnston 1992)—the latter two, like

RPSS and LSS, being calibration sensitive.

Limited ensemble sizes restrict forecast probabilities

to finite numbers of possible values, creating small off-

sets from asymptotic probabilities coming from theo-

retically infinite ensemble sizes. These offsets slightly

decrease RPSS (Weigel et al. 2007a,b), whose clima-

tology reference RPS remains ‘‘perfect.’’ Impacts on

LSS and GROC are smaller. Adjustments for these

biases are not conducted here, given IRI’s fairly large

ensemble size.

In addition to the above verification measures, the

probabilistic reliability of the forecasts is diagnosed us-

ing attributes diagrams (Murphy 1973; Wilks 2006).

These show the correspondence of the full range of is-

sued forecast probabilities and their associated relative

frequency of observed occurrence, revealing forecast

characteristics such as probabilistic bias, forecast over-

(under-) confidence, and forecast sharpness.

4. Results

The temporal variability of the performance of IRI’s

forecasts is shown by time series of a verification mea-

sure (RPSS or LSS) for a given lead time averaged over

the globe, the tropics, or specific regions. These scores

are averaged over the scores for each grid square, area

weighted by the cosine of their latitude. Additionally,

the geographical distribution of the forecast quality is

shown by computing the measures for each grid square

over all forecasts or a subset of forecasts (e.g., for a given

season and/or lead time). We show the performance of

the issued forecasts as well as the objective multi-

AGCM output used as the primary guiding tool. First,

however, we consider the quality of the SST forecasts.

a. SST forecast skill

Favorable performance of the climate forecasts in

a two-tiered design depends on performance in critical

aspects of the SST forecasts—particularly the ENSO

state and the SST anomaly patterns in the tropical At-

lantic and Indian Oceans. Figure 1 shows the spatial

distribution of temporal correlation between tropical

SST forecasts and observations at 0.5- and 3.5-month

lead times, and Fig. 2 shows time series of the forecasts

and observations averaged over several key rectangular

areas. Figure 2 (top) shows the performance of the SST

forecasts in capturing the ENSO state as represented by

the Niño-3.4 SST index (Barnston et al. 1997) at 0.5- and

3.5-month lead times. Forecasts and observations cor-

relate 0.88 and 0.75 at 0.5- and 3.5-month lead times,

respectively, indicating useful skill in anticipating the

ENSO-related SST. Omitting the strong El Niño through

the first half of 1998, these correlations drop to 0.86 and

0.73, suggesting that the skill did not depend heavily on

this one episode.

SST forecasts in the Indian and tropical Atlantic

Oceans (Figs. 1 and 2) were comparatively less skillful,

and skills differ little from persistence-based forecasts

(Table 4). These lower skills are consistent with the

weaker inherent predictability of SST in the non-Pacific

tropical ocean basins (Goddard et al. 2001; Stockdale

et al. 2006). Although interannual variability of tropical

SSTs outside of the central and eastern Pacific is small

(Table 4), anomaly patterns in these oceanic regions

are believed key to enhanced likelihoods for specific

climate anomalies (e.g., Chang et al. 2006). For example,

in parts of tropical and subtropical Africa, Asia, and

South America, climate anomalies are related to a zonal

dipole in the Indian Ocean (Saji et al. 1999; Goddard

and Graham 1999), an El Niño–like structure in the

equatorial Atlantic (Zebiak 1993), and meridional gra-

dients in the tropical Atlantic (Ward and Folland 1991;
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Enfield et al. 1999; Servain et al. 1999). Both tropical

Indian and Atlantic Ocean SSTs appear sensitive to ex-

ogenous, and sometimes extratropical, phenomena that

may have little inherent predictability (Kushnir et al.

2006). While this may be true for the tropical Pacific as

well, the Pacific has better defined, slower, and stronger

internal dynamics that frequently outweighs exogenous

influences.

b. Temporal variability of climate forecast skill

Figure 3 shows time series of RPSS averaged over the

near-global and tropical (258N–258S) land areas for

forecasts for each of the four lead times (0.5, 1.5, 2.5,

and 3.5 months) from the period October–December

(OND) 1997 to December–February (DJF) 2008/09 for

precipitation and temperature. Forecasts of climato-

logical probabilities are included. The proportions of

land area coverage by nonclimatology forecasts for the

globe, tropics, and extratropics (Table 5) indicate highest

proportions of nonclimatology forecasts issued for the

tropics, for temperature, and for shorter lead times.

Nonclimatology forecasts are somewhat more prevalent

in forecasts for which ENSO extremes were expected

than otherwise and for boreal autumn and winter than

other seasons because of greater confidence in the fore-

cast ENSO state for those seasons.

Forecast skill over the 11-yr period has been strongly

related to ENSO variability (Fig. 3). Correlations be-

tween the absolute value of the Niño-3.4 SST anomaly

and tropical RPSS for precipitation are 0.54, 0.44, 0.40,

and 0.43 for 0.5-, 1.5-, 2.5-, and 3.5-month lead pre-

cipitation forecasts, respectively. (Corresponding Spear-

man rank correlations are 0.44, 0.44, 0.41, and 0.38.)

Figure 4 (left) shows the effect of the ENSO state on

RPSS for 0.5-month lead tropical precipitation forecasts

as a function of lag time between the season of the ENSO

state and that of the climate forecast target. Despite

modest average skill levels, a simultaneous positive rela-

tionship with both phases of ENSO is noted (consistent

with results in Goddard and Dilley 2005), El Niño being

associated with greater skill than La Niña. Figures 3 and 4

show near-zero precipitation skills during ENSO-neutral

FIG. 1. Spatial distribution of correlation coefficient between seasonal mean tropical SST

forecasts and observations for all seasons at (a) 0.5- and (b) 3.5-month lead times, and likewise

for persistence forecasts of 3-month mean SST anomaly at (c) 0.5- and (d) 3.5-month lead times.
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periods in both extratropics and tropics, which is com-

parable to Livezey and Timofeyeva (2008), who iden-

tified ENSO variability as virtually the sole source of

seasonal precipitation forecast skill for the United States.

The time series of RPSS for IRI’s temperature fore-

casts (Fig. 3) show higher average levels than those of

precipitation forecasts. Temperature skill is related to

ENSO state but differently than precipitation: skill is

FIG. 2. IRI’s predictions of SST anomaly from late 1997 through 2008 in five regions at 0.5-

and 3.5-month leads, together with the corresponding observations: Niño-3.4 (east-central

tropical Pacific), north tropical Atlantic, south tropical Atlantic, west Indian Ocean, and

southeast Indian Ocean. The center month of the 3-month period being forecast is indicated on

the horizontal axis. Vertical year-separating lines are drawn through the DJF season. Regional

lat–lon boundaries and the correlation skills of these forecasts and of corresponding persistence

forecasts are provided in Table 4.
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highest near the end of, and shortly following, El Niño

events, and lowest with the same timing for La Niña

events. Figure 4 (right) shows the effect of the ENSO

state on RPSS for 0.5-month lead tropical tempera-

ture forecasts as a function of lag time between the SST

and the climate forecast target. The greatest impact of

ENSO on RPSS occurs 4 months following the ENSO

peak for both ENSO phases. This influence on forecast

skill is attributable to a delayed temperature response in

both tropics and extratropics (Kumar and Hoerling

2003), which was earlier documented in the context of

the atmospheric bridge (Lau and Nath 1996; Alexander

et al. 2002) and strongly exemplified in the response to

the 1997/98 El Niño (Kumar et al. 2001).

One reason for the comparatively higher overall tem-

perature forecast skill is that the skill receives a substantial

contribution from correctly forecasting increased prob-

abilities of above-normal temperature related to global

warming. This warming is partially reproduced by the

AGCMs, forced by SSTs that reflect part of the global

warming signal, although the climate change signal is

largely lost in the SST forecasts, and consequently in the

AGCM responses, after the first few months in models

using fixed (and now outdated) greenhouse gas settings

(Doblas-Reyes et al. 2006; Liniger et al. 2007). There-

fore, the warming signal is further captured by the

forecasters who make additional subjective probabilistic

adjustments toward warmth. The climate change com-

ponent of skill is much weaker for precipitation, whose

trends are generally smaller and may be of either sign,

depending on location and season. Seasonal tempera-

ture is subject to well established probabilistic shifts

related to ENSO (e.g., Halpert and Ropelewski 1992),

providing a source of interannual predictability largely

independent of the warming trend. Although the geo-

graphical distribution of ENSO’s effects on temperature

differs from that associated with global warming, there

are similarities between effects of El Niño and global

warming, particularly in the tropics. Consequently, in

a tropical average sense, El Niño tends to amplify the

effects of global warming, yielding increased confidence

in forecasts of above-normal temperature, while La Niña

tends to weaken or cancel global warming effects, result-

ing in a smaller net signal, greater forecast uncertainty,

and lower skill.

These ideas appear substantiated by Figs. 3 and 4,

showing highest (lowest) temperature skills during and

after El Niño (La Niña) events, particularly in the tropics.

Correlations between the Niño-3.4 SST anomaly and the

tropical RPSS 4 months later are high: 0.80, 0.77, 0.76, and

0.72 for 0.5-, 1.5-, 2.5-, and 3.5-month lead time forecasts,

respectively. (Corresponding Spearman rank correla-

tions are 0.79, 0.78, 0.78, and 0.74.) In their evaluation of

IRI’s forecasts during 1997–2001, Goddard et al. (2003)

concluded that empirical ENSO probabilistic composites

were not helpful for IRI’s seasonal temperature forecasts

because the La Niña conditions during the majority of the

period led to increased forecast probabilities for below-

normal temperature, while above-normal temperatures

continued to predominate in the observations.

c. Seasonality and geographical distribution of
climate forecast skill

Figure 5 shows the geographical distribution of RPSS

over the globe for all seasons for precipitation and

temperature at 0.5-month and 3.5-month lead times.

TABLE 4. Skill (as correlation coefficient), bias, and variance ratio with respect to observations of IRI’s predictions of SST (1997–2008)

in five rectangular tropical ocean regions at 0.5- and 3.5-month lead times. Skill of forecasts of simple persistence of observed seasonal

anomalies at the same lead times is shown for comparison. Boldface correlations attain statistical significance at 95% level using 1 degree

of freedom per year for the Niño-3.4 region, and 2 degrees of freedom per year for the other SST regions.

SST region Location

Lead time

(months)

No.

forecasts

Correlation

(forecast/persistence)

Avg obs

anomaly (8C)

Bias

(8C)

Obs

std dev (8C)

Variance

ratio

Niño-3.4 58N–58S, 1208–1708W 0.5 104 0.88/0.62 0.08 20.03 0.80 0.66

3.5 101 0.75/0.24 0.06 0.04 0.76 0.66

West tropical

Indian

108N–108S, 508–708E 0.5 104 0.36/0.39 0.29 20.11 0.23 1.07

3.5 101 0.47/0.08 0.29 20.22 0.23 0.83

Southeast tropical

Indian

08–108S, 908–1108E 0.5 104 0.44/0.33 0.24 20.08 0.36 0.80

3.5 101 0.21/0.21 0.25 20.20 0.35 0.31

North tropical

Atlantic

208–58N, 308–608W 0.5 103 0.69/0.61 0.40 20.06 0.32 1.29

3.5 100 0.27/0.29 0.40 20.17 0.33 0.88

South tropical

Atlantic

08–208S, 308W–108E 0.5 103 0.18/0.11 0.19 0.00 0.25 1.43

3.5 100 20.10/20.14 0.19 20.11 0.25 1.44
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FIG. 3. Time series of RPSS averaged over the tropical land areas (258N–258S) or for the

globe (except Antarctica) for forecasts for each of the four lead times (0.5, 1.5, 2.5, and 3.5

months) from late 1997 through 2008 for (a) global precipitation, (b) tropical precipitation,

(c) global temperature, and (d) tropical temperature. The RPSS of the objective multimodel

ensemble forecasts, used as essential guidance for the final forecasts, is shown for 0.5-month

lead. The purple curve shows the Niño-3.4 SST observation. The center month of the 3-month

period being forecast is indicated on the horizontal axis. Vertical year-separating lines are

drawn through the DJF season. Note differing ordinate scales across the panels.
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Relatively high temperature skill is noted in much of the

tropics and in some extratropical regions. Temperature

skill decreases, but does not disappear, with lead time.

Skill for precipitation is lower than that for temperature

but is also generally highest in the tropics. While pre-

cipitation skill averaged over all seasons does not dis-

appear at 3.5-month lead, it decays more quickly with

lead time than temperature, proportionally with respect

to its initial level, in regions having highest season-

specific skills (not shown). Skill is generally greater for

temperature than for precipitation partly because of the

more pervasive and unidirectional manifestation of cli-

mate change (and generally correct forecasts for such)

in temperature than precipitation. To first order, the

global warming component of temperature forecast skill

pervades all seasons, all lead times, and most regions

and is proportionately most prominent in the tropics

where interannual and internal variability are gener-

ally weakest. (Warming is greater in the extratropics in

degrees Celsius but is outweighed by still greater amounts

of interannual variability.)

Because RPSS for precipitation is below 20.01 over

nearly as much area of the globe as it is above 0.01 at 0.5

and 3.5-month leads (Fig. 5), one reasonably might

question the field significance of the skill result (Livezey

and Chen 1983). Monte Carlo tests were conducted in

which the years were shuffled 5000 times, while the or-

dering of the months within a given year remained intact

to represent the effective sampling time for an ENSO

cycle. The global mean RPSS for the shuffled data never

attained the level of the actual verification (at 0.006) at

0.5-month lead and exceeded it (at 0.003) in 1 out of 5000

trials at 3.5-month lead. Because field significance is

strong, one can trust not only the existence of real global

mean skill but also the general features of the skill’s

geographical distribution.

The geographical distribution of mean RPSS for pre-

cipitation forecasts at 0.5-month lead is shown in Fig. 6

FIG. 4. Contoured plot of RPSS for tropical (a) precipitation and (b) temperature forecasts at

0.5-month lead as a function of the ENSO state (represented by Niño-3.4 SST anomaly) and the

time lag (months) between the SST and the forecast climate (temperature or precipitation).

The lag is positive when SST precedes the time of the climate forecast. Variable contour in-

tervals and shading thresholds are arbitrary, for readability.

TABLE 5. Percentage of land area for which nonclimatology forecasts were issued, 1997–2008.

Precipitation Temperature

Forecast lead time (months) Globe (%) Tropics (%) Extratropics (%) Globe (%) Tropics (%) Extratropics (%)

0.5 28 44 16 64 77 54

1.5 23 39 11 56 68 47

2.5 21 36 10 51 63 42

3.5 20 34 10 46 58 37
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for January–March (JFM), April–June (AMJ), July–

September (JAS), and OND. Skills are often related to

the seasonal cycle of rainfall itself, which in the tropics–

subtropics maximizes with the local summer monsoon

season or with the twice-yearly passage of the ITCZ near

the equator. Skill is highest in Indonesia, eastern equa-

torial Africa, and southeastern South America during

the last few months of the calendar year; in portions of

southern Africa from November to March; and in India

and the Sahel from June through September. Skill is

concentrated in the seasons and regions having known

responses to ENSO (Ropelewski and Halpert 1987,

1989, 1996; Mason and Goddard 2001) as well as some

additional areas in response to SST anomalies outside the

tropical Pacific (e.g., the African Sahel and Guinea coast,

and Northeast Brazil in response to the tropical Atlantic).

The seasonal cycles of precipitation forecast skill for

several regions having well-defined monsoon seasons

and/or ENSO-related responses are shown for all 12 run-

ning 3-month seasons in Fig. 7, using RPSS and GROC.

Skill in the Philippines is highest in late boreal winter

following the usual peaking of ENSO episodes and

minimal in boreal summer during the southwest Asian

monsoon. Indonesia and the western tropical Pacific is-

lands show maximum skill in late boreal autumn, when

ENSO episodes often mature and the ITCZ migrates

through from north to south. Skill in the African Sahel

peaks during the late boreal summer rainy season, and

analogous behavior holds for austral summer in southern

Africa. In eastern equatorial Africa, skill peaks in late

boreal autumn (short rainy season) but is low during the

boreal spring (long rainy season), as established through

ENSO responses empirically (Ropelewski and Halpert

1987; Mason and Goddard 2001) and physically in the

context of the intermediary role of the Indian Ocean SST

in the short rainy season (Goddard and Graham 1999). In

the southern United States, Mexico, and the Caribbean,

skills peak during boreal winter, during a dry season,

following known teleconnections to ENSO (Ropelewski

and Halpert 1987, 1989; Mason and Goddard 2001).

While there are no large differences between the skill

pictures painted by RPSS and GROC beyond their

differing scaling, a tendency for fewer cases of negative

skill is noted in GROC (,0.5) than in RPSS (e.g., dur-

ing boreal summer in western tropical Pacific islands,

RPSS , 0 while GROC . 0.5). This is likely due to the

FIG. 5. Geographical distribution of RPSS averaged over all seasons for (left) precipitation at 0.5-month lead and 3.5-month lead and

(right) likewise for temperature. White areas lack sufficient data to calculate RPSS meaningfully.
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presence of discrimination in the forecasts, such as cases

of above-normal rainfall being forecast with higher prob-

abilities of above normal than cases lacking above-normal

rainfall, even if the probability values have systematic

biases. Unconditional or conditional (rainfall dependent)

forecast biases, such as most probabilities for above

normal being too low, would be penalized in RPSS,

counteracting credit given for the probability for above

normal being relatively higher for cases of observed

above-normal rainfall than for other cases; GROC would

reflect such discriminative ability, unhidden by biases.

Hence, Fig. 7 tells us that the precipitation forecast prob-

abilities may not have been optimally calibrated; this

will be examined below in a reliability analysis.

The geographical distribution of mean RPSS for tem-

perature forecasts at 0.5-month lead time are shown in

Fig. 8 for JFM, AMJ, JAS, and OND. The skill patterns of

the four seasons do not differ greatly. The JFM season

features the greatest spatial extremes of skill, with highest

tropical skill and most widespread negative extratropical

skill. The seasonal cycle of temperature forecast skill for

selected large regions (Fig. 9) shows smaller, subtler sea-

sonal dependence than that of precipitation skill. This

difference likely exists because much of the temperature

skill is related to correctly forecast probability shifts

toward above normal because of global warming, which

is largely independent of season. Temperature also lacks

the tropical seasonal migratory cycles found in pre-

cipitation (e.g., ITCZ, monsoons). Skill in many regions

(e.g., northern South America, Indonesia) is slightly higher

in boreal winter than summer, which is likely related to

seasonality of the ENSO cycle: El Niño (La Niña) tends

to warm (cool) the tropical atmosphere most predictably

and strongly near and following its mature phase late in

the calendar year.

The differences in skill shown by RPSS and GROC

(Fig. 9) indicate fewer cases of negative RPSS than

GROC (,0.5), for example, late boreal summer skills

for Africa. This difference is due to the credit given by

RPSS for correctly elevated probabilities for above-

normal temperature caused by global warming, even in

the absence of correct year-to-year discrimination among

probability values within the 11-yr period. Because of the

reference forecast used in RPSS (a climatology based on

a completed 30-yr period), forecasts uniformly tending

toward above-normal temperature earn credit in RPSS

FIG. 6. Geographical distribution of mean RPSS for precipitation for JFM, AMJ, JAS, and OND seasons at 0.5-month lead time. White

areas lack sufficient data to calculate RPSS meaningfully.
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but not in GROC unless, additionally, the forecast warm

tendency differs interannually in phase with the obser-

vations. Figure 7 (precipitation) and Fig. 9 (temperature)

provide opposing examples of how attributes other than

discrimination hurt or help RPSS, respectively, without

affecting GROC. A summary comparison of skill results

using the RPSS, LSS, and GROC measures is provided in

Table 6 for each of the four forecast lead times for the

globe, tropics, and extratropics.

d. Probabilistic reliability

Reliability plots for precipitation and temperature

forecasts over the globe and in the tropics over the 11-yr

forecast period, aggregated for all area-weighted grid

points and seasons, are shown in Fig. 10 by tercile cate-

gory. Precipitation reliability appears favorable, with very

slight overconfidence for above- and below-normal pre-

cipitation. There is slight underforecasting of below-

normal rainfall: the 11-yr verification period was slightly

drier than the 30-yr climatological base period [e.g., in

tropics, below- (above-) normal precipitation occurred

in 36% (31%) of cases], while the mean forecast prob-

abilities remained close to 33%. The frequency of issu-

ance of given forecast probabilities (lower subpanels of

Fig. 10) shows a majority of climatological probabilities

forecasts both globally and for the tropics and non-

climatology forecast probabilities deviating mainly within

10% of climatology. The near-unity slope of the reliability

curve indicates that this lack of forecast sharpness is

necessary, given the considerable forecast uncertainty

consistent with the known generally limited skill levels. A

summary of some diagnostic attributes of the reliability

FIG. 7. Seasonal distribution of mean skill (1997–2008) for precipitation at 0.5-month lead

time for selected regions, using (top) RPSS and (bottom) GROC. Rectangular boundaries:

tropics (258N–258S); southern Africa [158S southward (includes Madagascar)]; Indonesia and

vicinity (208N–108S, 958–1508E); Sahel (108–208N, 208W–308E); equatorial East Africa (108N–

108S, 308E eastward); southeast South America (258–408S, 608W eastward); western tropical

Pacific islands (238N–258S, 1578E–1808); southern United States, Mexico, and Caribbean (178–

328N, 608–1208W); northern South America (08–128N); Europe (358–708N, 558E westward).
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analysis for the tropical precipitation forecasts is shown

in Table 7a. Noted are reasonable slopes for the above-

and below-normal categories and low sharpness (SDf

column).

For temperature (Fig. 10, bottom), the confidence

component of the reliability is favorable, with reliability

curve slopes near unity for above-normal temperature

and slightly less for below normal for global and tropical

domains. However, despite mean forecast probability

shifts toward above-normal temperatures [mean prob-

abilities issued for above (below) normal in tropics of

43% (23%)], above-normal temperatures were mark-

edly underforecast [above (below) normal observed in

68% (10%) of cases]. This degree of imbalance in the

observations with respect to the climatology reflects the

large magnitude of low-frequency variability, including

specifically a global warming signal.

The magnitude by which temperatures during the

11-yr study period averaged higher than those during the

warmest of the 30-yr climatological base period used for

IRI’s forecasts (1971–2000) is illustrated in Fig. 11a,

which shows the spatial distribution of the percentile of

the 1998–2008 median temperature within the 1971–2000

climatologies, seasonally aggregated. Positive shifts are

large: the 11-yr medians of 15% of the land grid points

attain $95 percentile rank within the 1971–2000 obser-

vations, and the medians of 1.5% of the grid points are

higher than all 30 years in the 1971–2000 period.3 No grid

points attain #5 percentile rank with respect to either

30-yr period, and most of the few grid points ranking

below the median for 1971–2000 are near coastlines, re-

strained by the more slowly changing ocean tem-

peratures. Throughout this period, during which the SST

forecast models and AGCMs still used fixed, outdated

greenhouse gas concentration settings, the IRI forecasts

may have kept better pace with the warming trend if

they had allowed an empirical tool known as optimal

climate normals (OCN; Huang et al. 1996) to influence

the forecasts.4 Figure 11b shows the spatial distribution

FIG. 8. Geographical distribution of mean RPSS for temperature for JFM, AMJ, JAS, and OND seasons at 0.5-month lead time. White

areas lack sufficient data to calculate RPSS meaningfully.

3 For the 1961–90 climatology used during the first few years of

IRI forecasts, these figures increase to 30% and 8.6%, respectively.
4 OCN forecasts the mean temperature anomaly observed over

the most recent 10 years for the season and location in question and

would forecast a pattern qualitatively similar to that of Fig. 10a, but

season specific.
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of the percentile of 1997–2008 median precipitation

within the 1971–2000 climatology. The direction of shift

from the climatology is geographically dependent for

precipitation, with roughly equal areas trending drier as

trending wetter.

Reliability plots for global temperature and pre-

cipitation (Fig. 10, left) show similar slopes, and slightly

milder unconditional biases, compared with those for

tropical forecasts. The global plots show lower forecast

sharpness, consistent with known lower average signal-

to-noise ratios (and expected predictive skill levels) in

the extratropics (Shukla and Kinter 2006; Kumar et al.

2007; Peng et al. 2000).

A diagnostic evaluation of IRI’s seasonal climate fore-

casts for the 1997–2000 period (Wilks and Godfrey 2002)

found IRI’s 0.5-month lead temperature forecasts some-

what overconfident, precipitation forecasts with appro-

priate confidence in the tropics but overconfidence in

the extratropics, and substantial overforecasting of be-

low-normal temperatures with a gross preponderance of

above-normal observed temperature but only a slight

mean tilt toward above-normal forecast temperature.5

The negative RPSS values seen over a large region in

extratropical latitudes (Figs. 5 and 6) suggest that even

the weak shifts in precipitation probabilities have con-

tinued to exceed those warranted in the extratropics,

and that nonclimatology forecasts should be uncommon

in the extratropics. Mean tropical forecast probabilities

for above-normal temperature were somewhat higher

during the 11-yr forecast period than during 1998–2000

[partly in response to Wilks and Godfrey (2002) and

because of forecasters’ increasing confidence in fore-

casting a continuation of the global warming signal],

while the relative frequency of observations in the above-

normal category continued at the same high level (roughly

FIG. 9. Seasonal distribution of mean skill (1997–2008) for temperature at 0.5-month lead

time for selected large regions, using (top) RPSS and (bottom) GROC. Rectangular bound-

aries for portions of continents are provided in caption of Fig. 7.

5 A similarly strong cool bias was also noted in the climate

forecasts of NOAA Climate Prediction Center during 1995–98

(Wilks 2000).
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two-thirds of cases) over the 11-yr period as during

1998–2000. The result was a slightly less severe, but still

very substantial, cool bias.

e. Separation of interannual and low-frequency skill

The performance of probabilistic forecasts is more

fully described by verification measures aimed at differ-

ent attributes than by a single measure (Wilks 2006). For

example, RPSS and LSS can be negative because of im-

perfect calibration even when the forecasts have potential

information value (Hsu and Murphy 1986; Mason 2004),

while GROC, being virtually insensitive to calibration

problems (e.g., mean or conditional forecast biases), may

show positive results for the same set of forecasts.

Among the RPSS, LSS, GROC scores, and reliability

diagrams, multidimensional diagnostics are formed for

the forecasts.

A comparison among the geographical patterns of

RPSS, LSS, and GROC is shown for IRI’s forecasts of

precipitation and temperature for the JFM season in

Figs. 12 and 13, respectively. Comparisons for other

seasons (not shown) are similar. RPSS and LSS have

very similar patterns, including locations having zero

skill, LSS averaging one-half to one-third of RPSS in

magnitude. That RPSS is affected by probabilities as-

signed to categories that do not verify, while LSS is not,

is probably not a significant factor in the score differ-

ences for IRI’s forecasts, which never have grossly non-

Gaussian (e.g., bimodal) probabilities that would enable

probabilities given to nonverifying categories to be im-

portant. The global spatial correlation between RPSS

and LSS is 0.9 or greater for all seasons, while that be-

tween either of them and GROC is approximately 0.6.

Thus, at least for IRI forecast skill, RPSS and LSS ap-

pear largely redundant, and either of them could be used

alone without material loss of information. For pre-

cipitation (Fig. 12), GROC skill shows skill patterns

roughly similar to those of RPSS and LSS, but with

somewhat less area of negative (,0.5) skill.6 This sug-

gests that the proportion of correct discrimination among

the varying probabilities forecast for the tercile categories

is favorable in JFM in the relatively high skill regions

(e.g., Philippines—east Australia, Pacific islands). Be-

cause forecast uncertainty is considerable (the most likely

category often having only 0.40–0.50 probability, as

warranted for good reliability), RPSS and LSS have

weak magnitudes in these skillful regions. Addition-

ally, the mild bias of over- (under-) forecasting above

(below) normal further decreases RPSS and LSS but

not GROC (Fig. 10 and Table 7a); these probabilistic

features may cause RPSS and LSS to be negative.

A different picture is presented for temperature

(Fig. 13). The patterns themselves, while roughly simi-

lar, differ in that there is a greater area of negative skill

for GROC than for RPSS and LSS. This is caused by the

TABLE 6. RPSS, LSS, and GROC all-season skill results for IRI’s precipitation and temperature forecasts for each of four lead times for

land areas over the globe, tropics, and extratropics.

Precipitation Temperature

Lead (months) Measure Globe Tropics Extratropics Globe Tropics Extratropics

0.5* RPSS 0.006 0.011 0.001 0.113 0.174 0.064

LSS 0.003 0.006 0.000 0.054 0.087 0.028

GROC 0.537 0.562 0.518 0.565 0.619 0.522

1.5 RPSS 0.004 0.006 0.002 0.087 0.133 0.050

LSS 0.002 0.003 0.001 0.039 0.063 0.020

GROC 0.528 0.547 0.513 0.553 0.606 0.511

2.5 RPSS 0.003 0.004 0.002 0.074 0.113 0.043

LSS 0.001 0.002 0.000 0.032 0.052 0.016

GROC 0.521 0.536 0.509 0.552 0.602 0.512

3.5 RPSS 0.003 0.006 0.001 0.059 0.094 0.031

LSS 0.001 0.003 0.000 0.026 0.042 0.013

GROC 0.522 0.538 0.510 0.543 0.586 0.509

* For comparison with the verification measure used for NOAA/Climate Prediction Center’s seasonal forecasts for the United States

(O’Lenic et al. 2008, Livezey and Timofeyeva 2008), Heidke skill scores for 0.5-month lead for precipitation for the globe, tropics, and

extratropics are 0.037, 0.060, and 0.019, respectively, and for temperature they are 0.297, 0.408, and 0.208, respectively.

6 The larger spatial variation seen in GROC within its range of

0 to 1 than those seen in RPSS and LSS within their ranges exists, in

part, because GROC measures mainly just one attribute of per-

formance (discrimination), while RPSS and LSS measure perfor-

mance in discrimination and in other attributes. Excellent (or very

poor) performance is less likely to occur in net over several attri-

butes than in just one.
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FIG. 10. Reliability plot for (a) global and (b) tropical precipitation and (c) global and (d) tropical temperature for

0.5-month lead forecasts for all seasons. For precipitation, the green curve pertains to forecast probabilities for

above-normal precipitation, the orange curve pertains to forecast probabilities for below-normal precipitation, and

the gray curve pertains to forecast probabilities for near-normal precipitation. For temperature, the red curve de-

notes above-normal temperature and blue below-normal temperature. For above and below normal, least squares

regression lines are shown, weighted by the sample sizes represented by each point. Points representing probability

intervals that are forecast at least 5% of the time are drawn using larger symbols than other points. The diagonal y 5 x

line represents perfect reliability. The colored marks on the axes show the overall means of the forecast probabilities

or observed relative frequencies. The lower part of each panel shows the frequency with which each interval of

probability was forecast, where interval widths are 0.05 (e.g., 0.175–0.225 is labeled as 0.20), except that the clima-

tological (0.333) probability is also explicitly shown.
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recognition, albeit too weak, of the dominance of the

above-normal category in the forecasts that is rewarded

in RPSS and LSS but not in GROC, where only cor-

rect discrimination among the sampled cases is credited.

Figure 13 shows that, while discrimination among the

temperature forecasts within the 11-yr forecast sample

was better for temperature than for precipitation in the

tropics, it was generally low for both temperature and

precipitation outside of the tropics. The level of dis-

crimination for the outer categories for tropical temper-

ature is indicated by ROC scores in the low to middle

0.60s (Table 7), compared with the upper 0.50s for trop-

ical precipitation.

To summarize, the GROC helps to distinguish forecast

skill related solely to discrimination of mainly interannual

variability within the 11-yr forecast period, as opposed to

such discrimination combined with skill in correctly pre-

dicting overall 11-yr mean probability shift with respect

to the 30-yr climatological base period(s), as for example,

that associated with climate change. GROC shows minor

differences from RPSS and LSS (allowing for scaling

differences) for precipitation (Fig. 12), being more fa-

vorable because it is not penalized for the small wet bias.

For temperature (Fig. 13), GROC shows smaller areas

of positive skill than RPSS and LSS because the climate

shift in temperature was large enough that even partial

recognition of it in IRI’s probability forecasts (Fig. 10

and Table 7) was credited in RPSS and LSS but not

GROC. However, even for discrimination alone, per-

formance is seen to be stronger for temperature than for

precipitation in the tropics.

f. Skill of objective multimodel predictions;
comparison with issued forecasts

A comparison of the skill of IRI’s issued forecasts with

that of the objective multimodel ensemble forecasts in-

dicates the value of the human modification to the raw

model output. The objective output comes from several

AGCMs, each roughly calibrated to its mean and ter-

ciles, forced by multiple SST scenarios, and weighted

using two multimodel ensemble algorithms. Ideally, the

objective probabilistic model output should be capable

of being the final forecast product, but expert judgment

has further influenced the issued forecasts. As discussed

earlier, subjective modifications include a general weak-

ening of probability anomalies, more specific weakening

TABLE 7. Elements of diagnostic evaluation of skill and reliability of IRI forecasts over the tropics during 1997–2008 for (a) issued

forecasts of precipitation, (b) multimodel ensemble forecasts of precipitation, (c) issued forecasts of temperature, and (d) multimodel

ensemble forecasts of temperature. Forecast probabilities issued for each tercile-based category are diagnosed in each part, and overall

verification scores are shown in each panel heading. SD denotes std dev, res denotes resolution, rel reliability, BS Brier score, BSS Brier

skill score; subscripts f and c denote forecast and climatology reference forecast, respectively.

(a) Tropical precipitation —issued forecasts (RPSS 0.011, LSS 0.006, GROC 0.562)

Category Obs rel frequency Avg forecast Bias Slope Intercept SDf Res Relf Relc BSf BSc BSS ROC

Wet 0.317 0.329 0.012 0.922 0.016 0.070 0.0044 0.0003 0.0003 0.218 0.222 0.020 0.566

Near normal 0.320 0.340 0.020 0.424 0.177 0.021 0.0003 0.0007 0.0002 0.223 0.222 20.001 0.505

Dry 0.363 0.332 20.031 0.912 0.062 0.071 0.0046 0.0015 0.0009 0.219 0.223 0.018 0.572

(b) Tropical precipitation –—multimodel ensemble forecasts (RPSS 20.019, LSS .2004, GROC 0.555)

Category Obs rel frequency* Avg forecast Bias Slope Intercept SDf Res Relf Relc BSf BSc BSS ROC

Wet 0.313 0.339 0.026 0.451 0.149 0.110 0.0029 0.0042 0.0004 0.224 0.223 20.004 0.563

Near normal 0.316 0.339 0.023 0.133 0.279 0.066 0.0002 0.0037 0.0003 0.226 0.223 20.014 0.508

Dry 0.371 0.324 20.047 0.443 0.226 0.107 0.0024 0.0054 0.0014 0.225 0.224 20.007 0.550

(c) Tropical temperature—issued forecasts (RPSS 0.174, LSS 0.087, GROC 0.619)

Category Obs rel frequency Avg forecast Bias Slope Intercept SDf Res Relf Relc BSf BSc BSS ROC

Warm 0.678 0.433 20.245 0.974 0.256 0.097 0.0097 0.0605 0.1188 0.273 0.341 0.199 0.624

Near normal 0.220 0.335 0.115 0.875 20.073 0.030 0.0017 0.0143 0.0128 0.235 0.235 0.001 0.529

Cool 0.103 0.232 0.129 0.624 20.042 0.081 0.0027 0.0178 0.0535 0.237 0.276 0.139 0.650

(d) Tropical temperature—multimodel ensemble forecasts (RPSS 0.188, LSS 0.102, GROC 0.610)

Category Obs rel frequency * Avg forecast Bias Slope Intercept SDf Res Relf Relc BSf BSc BSS ROC

Warm 0.689 0.481 20.208 0.514 0.454 0.174 0.0091 0.0640 0.1265 0.277 0.349 0.205 0.611

Near normal 0.213 0.313 0.100 0.291 0.122 0.109 0.0012 0.0193 0.0145 0.240 0.237 20.015 0.547

Cool 0.098 0.206 0.108 0.331 0.030 0.124 0.0017 0.0220 0.0554 0.243 0.278 0.126 0.609

* Observed relative frequency for multimodel ensemble forecasts differs slightly from that of issued forecasts because of slightly differing

sets of grid squares forecast between the two forecast sets.
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of excessively sharp forecasts, spatial smoothing, spatial

MOS corrections for selected regions/seasons for pre-

cipitation, shifting of temperature probabilities toward

‘‘above normal,’’ and adjustments toward forecasts issued

by other producing centers. Weakening of forecast prob-

ability anomalies is done because the model weighting

scheme in the multimodel combination is based on his-

torical skills using observed rather than predicted SST.7

Probabilistic shifts toward above normal for tempera-

ture are done because the models do not fully capture

global warming, even with warmer SSTs forcing them,

because of constant and outdated prescribed model

greenhouse gas concentrations.

Figure 14 shows the geographical distribution of RPSS

for the multimodel precipitation and temperature pre-

dictions at 0.5-month lead for JFM and JAS. While a

comparison of the precipitation skills to those of the ac-

tually issued forecasts (Figs. 6a,c and 3 and Tables 7a,b)

indicates similar skills for both variables, differences are

discernible. For both seasons, spatially noisier skill pat-

terns are seen for the multimodel than for the issued

precipitation forecasts. Global and tropical mean skills

for JFM and JAS precipitation are very slightly higher for

the issued than for the multimodel forecasts, and in-

spection of the two RPSS fields suggests that this may be

largely due to the smoothing and weakening of predicted

deviations from climatological probabilities. The level of

spatial noise in the multimodel forecasts is greater for

precipitation than for temperature (Gong et al. 2003),

requiring more forecaster smoothing to optimize skill.

The same comparison using the GROC score (not shown)

leads to a qualitatively similar conclusion, except with

even smaller skill differences between the two forecast

FIG. 11. Geographical distribution of decadal (or lower frequency) climate change: (a) per-

centile of 11-yr median temperature in terms of the 1971–2000 climatology; (b) percentile of

11-yr median precipitation in terms of the 1971–2000 climatology. White areas in (a) lack

sufficient data to calculate the percentile meaningfully.

7 Although hindcasts using SST empirically predicted using

constructed analog (Van den Dool 1994, 1997) and persisted from

observed SST (Li et al. 2008) are available for the AGCMs run at

IRI (ECHAM and CCM), they have not been generated for the

AGCMs run at partner institutions.
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sets, likely because of approximately equal levels of basic

discrimination in both forecast versions, but better cali-

bration in issued than multimodel forecasts.

With relatively small trend components in precip-

itation, interpretation of results is related mainly to in-

terannual variability. The reliability plot for all-season

tropical precipitation multimodel ensemble predictions

(Fig. 15, comparable to Fig. 10 for issued forecasts)

shows somewhat shallower slopes, indicative of greater

overconfidence in the multimodel ensemble predictions.

Tables 7a,b provide attributes of reliability and skill for

the 0.5-month lead tropical precipitation multimodel

forecasts and issued all-season forecasts. The issued prob-

abilities are more conservative and have very slightly

higher skills by most of the verification measures. The

mean squared departures of the reliability curve from

the ideal 458 line (‘‘reliability’’ column in Table 7) are

greater, and exceed those of the climatology forecast

reference by greater amounts, for multimodel ensemble

forecasts than for issued forecasts for all three cate-

gories. A somewhat higher resolution is also seen in the

issued than the multimodel forecasts and is closely related

FIG. 12. Geographical distribution of all-season precipitation skill verified using (a) RPSS,

(b) LSS, and (c) GROC. White areas lack sufficient data to calculate RPSS meaningfully.
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to small increases in discrimination (indicated by greater

GROC and ROC by individual category), which is be-

lieved to be due to the forecasters’ additional spatial

smoothing and modifications resulting from the selected

regional spatial MOS corrections.

The right side of Fig. 14 shows the geographical distri-

bution of RPSS for multimodel temperature predictions

at 0.5-month lead for JFM and JAS. Comparison with skill

for the corresponding issued forecasts (Figs. 8a,c and 3)

shows for both seasons skill patterns of roughly similar

mean level, but spatially noisier, in the multimodel fore-

casts. However, global and tropical mean RPSS are just

slightly higher in the multimodel than the issued forecasts

(Figs. 3 and 14 and Tables 7c,d), mainly because of higher

scores in those tropical regions where skill is highest in

both forecast versions. In regions of low extratropical skill,

issued forecasts have milder negative RPSS than multi-

model forecasts. A comparison between objective and

finally issued forecasts using GROC (not shown) indicates

no edge in performance of the multimodel ensemble

forecasts over the issued forecasts. A likely explanation is

that the forecaster modifications change the calibration of

FIG. 13. Geographical distribution of all-season temperature skill verified using (a) RPSS,

(b) LSS, and (c) GROC. White areas lack sufficient data to calculate RPSS meaningfully.
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the forecasts (Fig. 15 versus Fig. 10; Tables 7c,d) but have

little effect on the basic discrimination present in the

multimodel ensemble forecasts. However, the combina-

tion of decreasing the confidence and weakly adjusting for

the underforecasting of above-normal temperature, while

leaving GROC unchanged as expected, slightly reduced

RPSS. Although the forecasters’ adjustments for the cool

bias increased RPSS, their reduction of perceived over-

confidence had a larger negative impact on RPSS by

weakening the highest probabilities for above normal.

While RPSS and LSS are slightly lower for the issued than

multimodel ensemble temperature forecasts, the GROC,

the ROC for individual categories, and the resolution

components (Tables 7c,d) suggest slight improvements in

discrimination in the issued forecasts and improved slopes

in the reliability curves.

In summary, overconfidence in the multimodel fore-

casts was corrected in the issued forecasts for both pre-

cipitation and temperature, but the objective forecasts

better captured the strong warming trend than the

issued forecasts. The issued forecasts featured equal

to slightly improved resolution/discrimination compared

with the model output, but the damping of above-normal

probabilities to correct for overconfidence contributed to

its underforecasting.

5. Summary

The IRI has issued seasonal probabilistic forecasts of

near-global temperature and precipitation for 11 years

since late 1997, using mainly a two-tiered, dynamically

based prediction system where a set of SST prediction

scenarios is made, which then serve as prescribed lower

boundary conditions for integrations of ensembles from

a set of AGCMs. Forecasts have been issued monthly,

for four upcoming running 3-month periods, for most of

the IRI’s history. Seven AGCMs have been used since

2004, whereby forecast ensembles numbering well over

100 members are postprocessed and merged into final

probability forecasts.

The skill of the forecasts ranges from near zero to

moderate, depending on season and location. Skills for

temperature average higher, are less seasonally and re-

gionally dependent, and decay more slowly with lead time

than skills for precipitation. Temperature skills benefit

from correct forecasts of continuation of a strong tendency

FIG. 14. Geographical distribution of RPSS for unmodified multimodel predictions at 0.5-month lead for JFM for (a) precipitation and

(b) temperature and for JAS for (c) precipitation and (d) temperature. White areas lack sufficient data to calculate RPSS meaningfully.
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for above-average temperatures (relative to a completed

30-yr base period) associated with global warming. Al-

though ENSO remains a source of temperature forecast

skill, warming trends have rivaled ENSO effects as a skill

source during the forecast period. Skills for precipitation,

by contrast, do not benefit appreciably from a trend com-

ponent because precipitation trends are weaker and vary

in direction depending on season and location. Hence,

precipitation skill is based mainly on correctly discrimi-

nated effects of interannual fluctuations involving ENSO

and SST anomalies outside the tropical Pacific.

Forecast skills are higher in the tropics than extra-

tropics for both temperature and precipitation. This is

consistent with the higher signal-to-noise ratios at low

latitudes documented for troposphere geopotential

height (e.g., Shukla and Kinter 2006; Kumar et al. 2007)

and in associated surface climate (e.g., Rowell 1998;

Peng et al. 2000). While the spatial pattern of tempera-

ture forecast skill shows a weak annual cycle, that of

precipitation is more strongly seasonally dependent,

roughly following both the annual cycle of low-latitude

monsoon rainfall and teleconnections to large-scale

tropical SST anomalies—particularly ENSO. At mid-

latitudes, positive precipitation skill, while not preva-

lent, is found in regions and seasons having successfully

modeled ENSO and non-ENSO tropical SST telecon-

nections. The skill results found here are consistent with

skill evaluations by other forecast-producing centers

and with theoretical predictability studies. Skill levels in

specific seasons and locations could benefit users who

understand the probabilistic aspects of seasonal climate

forecasts sufficiently for prudent decision making for

their application.

Over a period as brief as 11 yr, the variability in the

amplitude of ENSO extremes is likely to govern forecast

skill more strongly than incremental improvements in

models or forecast methodology. Hence, Fig. 3 indicates

highest forecast skills during the 1997/98 El Niño at the

beginning of the period, despite the fact that the simplest

SST prediction scheme and the fewest AGCMs were

used at that time.

Skills of the objective multimodel probability fore-

casts, used as the primary basis for the final issued

forecasts, are comparable to those of the final forecasts,

but they are somewhat overconfident. This is believed to

be due in part to the development of the multimodel

superensembling process using individual AGCM skills

when the AGCMs are forced by observed rather than

FIG. 15. Reliability plot for tropical (left) precipitation and (right) temperature for 0.5-month lead unmodified

multimodel predictions for all seasons. Green (red) denotes above normal and orange (blue) denotes below normal

for precipitation (temperature), and gray denotes near normal. Details are as described in caption of Fig. 10.

Forecasts for climatological probabilities (0.333) are not shown explicitly.
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predicted SST. Thus, while the relative weighting among

the models may be well estimated, their collective

weighting, and resultant departures from climatological

forecast probabilities, are overestimated.

The verification diagnostics challenge the suitability

of using completed 30-yr periods to define the current

temperature climatology from which to form anomalies

or quantile-based category boundaries, given the strong

nonstationarity. Reasons to consider alternative clima-

tological reference frames include the severely shifted

categorical frequencies of current observations, fore-

casts reflecting a mixture of time scales that may be

confusing to stakeholders, and the greater challenge in

conducting meaningful verification. Observational al-

ternatives to estimation of the current year’s tempera-

ture climate might include use of an annually updated

OCN-based climatology (Huang et al. 1996) or, at

higher risk, a linear trend fit of the observations in recent

decades (e.g., Livezey et al. 2007); a dynamical approach

might consist of a deemed optimal superensemble of

regionally specific Intergovernmental Panel on Climate

Change (IPCC) model forecasts (e.g., Tebaldi et al.

2005; Greene et al. 2006; Furrer et al. 2007; Christensen

et al. 2007; Gleckler et al. 2008) averaged over a period

centered on the current year. The above options all carry

uncertainties beyond those of a stationary climate, as

they contain predictive components.

The aspects of IRI’s prediction system in greatest need

of improvement or further development are 1) post-

processing: use of systematic spatial MOS corrections for

individual AGCMs, specific to the season and lead time,

before superensembling; 2) incorporation of time-varying

greenhouse gas settings in SST forecast models and in

AGCMs; and 3) movement toward a partially or totally

single-tiered prediction system. Implementation of 1)

occurred in late 2009, and progress on 3) is under way.

It is difficult to compare the operational predictive

skill of IRI’s forecast system with that of other systems

such as a single-tiered dynamical system [e.g., Palmer

et al. 2004 (and references therein); Graham et al. 2005;

Saha et al. 2006; Kug et al. 2008; Wang et al. 2008] or

a purely empirical system (Van den Dool 2007). Im-

provement in ENSO prediction has obvious value toward

improvement of climate prediction, and the potential

predictability of ENSO is an open question but believed

not fully realized (Chen and Cane 2008). Expansion of

available data from the Argo (Schmid et al. 2007), Pre-

diction and Research Moored Array in the Tropical

Atlantic (PIRATA) (Bourlès et al. 2008), and Research

Moored Array for African–Asian–Australian Monsoon

Analysis and Prediction (RAMA) (McPhaden et al.

2009) systems is expected to result in more fully realiz-

able predictive skill for SST in tropical oceans outside of

the Pacific. Improved modeling of the ocean–atmosphere

system, through better representation of physical pro-

cesses, should increase skill toward the theoretical limit

and reduce the need for postprocessing and forecaster

intervention.
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