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ABSTRACT

A method for predicting the timing of winter rains is presented, making no assumptions about the
functional form of any relationships that may exist. Ideas built on classification and regression trees and
machine learning are used to develop robust predictive rules. These methods are applied in a case study to
predict the timing of winter rain in five farming towns in the southwest of Western Australia. The variables
used to construct the model are mean monthly sea surface temperatures (SSTs) over a 72-cell grid in the
Indian Ocean, Perth monthly mean sea level pressure (MSLP), and monthly values of the Southern Oscil-
lation index (SOI). A predictive model is constructed from data over the period 1949-99. This model
correctly classifies the onset of the winter rains approximately 80% of the time with SST variables proving
to be the most important in deriving the predictions. Further analysis indicates a change point in the
mid-1970s, a well-known phenomenon in the region. The prediction rates are significantly worse after 1975.
Furthermore, the important region of the Indian Ocean, in terms of SSTs for prediction, moves from the
Tropics down toward the Southern Ocean after this date.

1. Introduction

Australian rainfall has been the subject of a consid-
erable body of research. The existence of a relationship
between Australian rainfall and the El Nifio-Southern
Oscillation (ENSO) has been well established. Nicholls
(1991) defines El Nifio as a marked temperature in-
crease that occurs every few years in the Pacific Ocean.
El Niiio is linked with the Southern Oscillation, which
is a global pattern of fluctuations that occur both in the
ocean and in the atmosphere. The Southern Oscillation
index (SOI) (the standardized difference in pressure
between Tahiti and Darwin) is used as a measure of the
behavior of ENSO. Nicholls (1985) finds that ENSO is
related to many aspects of Australian rainfall, including
the onset date of the wet season in north Australia.
However, the relationship between the SOI and rainfall
is not as strong in the southwest as it is in the north and
east of Australia (McBride and Nicholls 1983). Nicholls
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(1989) finds that variations in rainfall in the southwest
occurred at the same time as changes in Indian Ocean
sea surface temperatures (SSTs) and thus suggests that
SST may be a factor influencing rainfall.

In the last five years there has been much research
into the relationship between Indian Ocean SSTs and
rainfall in the southwest. This research has shown
that winter rainfall in the southwest is highly correlated
with Perth mean sea level pressure (MSLP; Hunt et al.
2000; Nicholls et al. 2000). Nicholls et al. (2000) find
that, although there is a weak relationship between
variations in Indian Ocean SSTs and rainfall in the
southwest, this relationship is most likely due to the
relationship between SOI and both SST and rainfall.
Their climate models involving SSTs also failed to
pick up the decline in mean rainfall that has occurred
since the mid-1970s. Thus, they conclude that the varia-
tions in SST and rainfall are unlikely to be causally
related. However, Campbell et al. (2000) raise a con-
cern about using methods that assume a linear relation-
ship to assess nonlinear climate processes. The dangers
of assuming linearity have been noted previously by a
number of authors, including Palmer (1999) and Graf
and Castanheira (2001). Both of these papers argue
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that the climate system consists of a number of quasi-
stationary regimes or modes of variation. This implies
that conventional linear methods in effect collapse
separate, coherent modes into one mode of variation
from which a signal is, at best, difficult to extract. We
therefore regard Indian Ocean SST, SOI, and MSLP as
all being potential explanatory variables for our non-
linear model to predict the onset of the southwest wet
season.

In our case study the onset of the wet season is re-
garded as a categorical variable with three categories:
early, mid, or late season onset. We therefore seek to
develop a model to classify each wet season as either
early, mid, or late according to the values of the covari-
ates (SST, SOI, and MSLP) relating to that year. Our
aim here is not to model the underlying mechanisms of
the rainfall system but to use statistical techniques to
identify important variables that can be used for pre-
dictions. These statistical techniques include linear re-
gression, logistic regression (for a two-class problem),
discriminant analysis, and classification and regression
tree (CART) analysis (Gower 1998). Nicholls (1984)
used logistic regression when seeking to predict wheth-
er or not the wet season in northern Australia will be
late. However, we are faced with far more explanatory
variables. The SST, SOI, and MSLP sets all contain
monthly averages over 12 months and the SST data are
measured over 72 grid cells in the Indian Ocean. The
data covers the years 1949-99 and we used five farming
towns to represent the southwest region. This means
that there are nearly 900 explanatory variables for 50
years of data for five towns. Application of logistic re-
gression would require a huge reduction in the number
of predictors, which can result in a loss of the amount of
information available for the prediction. Furthermore,
it can also lead to a situation where there are a multi-
tude of models that are essentially equally good, but
each gives a different idea of the relationship between
the response and explanatory variables (Breiman
2001b).

Our preferred classification method is random for-
ests, a technique developed by Breiman (2001a) based
on CART analysis (Breiman et al. 1984). This algorith-
mic approach has a number of advantages over classical
model-based classification techniques. A random forest
classifier does not assume linearity nor that the data are
drawn from a particular distribution. It has the ability to
handle a large number of explanatory variables without
requiring optimal subsets to be selected. Rather, a ran-
dom forest averages the results of many classification/
regression trees, a process than can improve overall
prediction accuracy (Breiman 2001b).

The remainder of this paper is structured as follows.
The next section contains an overview of classification
trees and the extension to random forests. The predic-
tion error for random forests is calculated using a tech-
nique called out-of-bag estimation, which is described.

ET AL. 773
In section 3, we provide a case study and the particulars
of our implementation of random forests. A discussion
of the results obtained and some concluding remarks
are given in section 4.

2. Methodology

a. Classification trees

Classification trees seek to assign individuals to pre-
determined classes by means of an hierarchical parti-
tion of the data. The aim is to produce a tree-based
classifier that will assign any newly observed individual
to its correct class with high probability. The fundamen-
tal principles are perhaps most easily understood
through an illustrative example. Suppose that data on
two (explanatory) variables are observed on five indi-
viduals, as given in Table 1. These are the training data
used to build the classifier. A tree can be constructed by
defining a sequence of binary splits with respect to the
variables. The result is an increasingly fine partition of
the data. Figure 1 provides an example. Here ¢, repre-
sents the root node, a group containing all the individu-
als in the dataset. This node is then branched into two
daughter nodes, labeled ¢, and 3 , by a binary split using
the second variable. The splitting process continues un-
til only terminal nodes (i.e., those which are not split
further, e.g., t5) remain.

Three fundamental questions in the construction of
the tree are (i) how are the splits selected?; (ii) when
should a node become a terminal node?; and (iii) which
class should be assigned to each terminal node?

Node splitting: At each node the choice of variable to
split by, and the value at which the split occurs, is de-
termined so as to maximize the “purity” of the resulting
daughter nodes. Intuitively speaking, impurity is the
extent to which there is a mixture of classes among the
individuals at a node. There are a number of ways of
quantifying node purity, including entropy and the Gini
index (e.g., see Hastie et al. (2001, chapter 9). All the
results reported in this article were obtained using the
Gini index. Note that any given variable may be used to
define multiple binary splits on any given branch of the
tree, allowing for a very flexible representation of the
relationship between class membership and the predic-
tor variables.

TABLE 1. Data for illustrative example.

Individual Class Variable 1 (var 1) Variable 2 (var 2)
1 A 26 374
2 A 22 303
3 B 26 396
4 B 29 377
5 B 20 341
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F1G. 1. Classification tree for data in Table 1.

Terminal nodes: A node can be declared terminal for
a number of reasons. First, if all the individuals at a
node are from the same class (so that the node is pure),
then the node is terminal. Second, it is usual to set a
minimum node size so that a node cannot be split fur-
ther if its daughters would be too small. Third, a node
will be terminal if there are no possible splits that would
decrease the impurity by a “significant” amount.

Terminal node assignment: Each terminal node is as-
signed a class. Any new observation can then be clas-
sified by running it down the tree and giving it the class
of the appropriate terminal node. A straightforward
approach to this problem is to allocate a class according
to majority rule. The example tree in Fig. 1 is particu-
larly simple in that each terminal node is pure and,
hence, is assigned the class of a 100% majority of its
members.

See Breiman et al. (1984) for further details regard-
ing classification (and regression) tree analysis.

b. Random forests

Classification trees are easy to interpret and imple-
ment. However, they tend to be unstable in the sense
that, if the original dataset is changed slightly, the re-
sulting tree can be different but with a similar error rate
(Breiman 1996a). For example, if the value of variable
2 for the first individual in Table 1 was changed to 378,
then a tree very different to that in Fig. 1 would result.

Random forests is a method that seeks to improve
the instability of the classification trees. Breiman
(1996a) shows that an unstable classifier can be stabi-
lized by aggregating the results over a large number of
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these unstable classifiers. The aggregated classifier also
has a lower prediction error. In terms of random for-
ests, aggregating means that a large number of trees are
grown and each is used to classify the individuals. The
class that is most often assigned to each individual is
chosen as its final class label. There are many ways in
which the multiple trees can be constructed. Some of
these methods involve generating new training sets
(datasets that are used to fit the model) while others
involve altering the internal construction of the tree.
We employ bagging and random feature selection to
grow the forest for our analyses.

Bagging (bootstrap aggregating): In principle, we
would like to use a large number of training sets, all
drawn from the population of interest, to create the
random forest. However, this is not possible in practice.
Nevertheless, we may approximate this idea by using
bootstrap sampling (Efron and Tibshirani 1993). That
is, we take samples (with replacement) from the origi-
nal training set and grow a tree from each of the new
samples. We grew forests of 1000 trees using this ap-
proach.

Random feature selection: Breiman (1998) shows
empirically that, although bagging reduces the variance
of the aggregated classifier, it can increase the bias.
Random feature selection involves randomly choosing
a subset of covariates from which to derive the optimal
explanatory variable at each split for each tree. This
technique does not reduce the variance as much as bag-
ging, but the bias does not change (Dietterich and Kong
1995). Therefore, the two methods can be combined to
produce better results. Breiman (2001a) empirically
showed that bagging improves the accuracy of the pre-
diction error when random feature selection is used.

The performance of a classifier is determined by its
misclassification rate. If this rate is calculated directly
from all the data to which the forest is fitted, then this
will give an optimistic estimate of the true prediction
error because the forest will be fine-tuned to the par-
ticular training data at hand. A much better approach is
out-of-bag estimation, which utilizes for each tree those
individuals that were not selected for the bootstrap
sample.

Each tree is used to classify members of its out-of-
bag sample, with final classification for an individual
being determined by majority vote over all trees in the
forest. The forest classification is compared with the
true group for each individual, allowing a misclassifica-
tion rate to be computed. Empirical testing shows that
this out-of-bag estimate is generally very close to the
value calculated with truly new data (Breiman 1996b).

¢. Measuring variable importance

Although random forests produce a better prediction
error than classification trees, they are not as easy to
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interpret. It can therefore be difficult to see the rela-
tionship between the response and explanatory vari-
ables. One way that these relationships can be exam-
ined in the random forest is by determining the vari-
ables that were important in terms of predicting the
response variable (Breiman and Cutler 2001). The im-
portance of a variable indicates the magnitude of its
effect in producing accurate predictions. There are a
number of ways that this importance can be measured.
Some popular ones measure how much the predictions
change when the values of a given variable for each
individual in the out-of-bag sample are randomly per-
muted. The more important the variable is for predic-
tion, then the greater the effect of such spoiling on the
misclassification rate. An alternative approach is to
consider the effect that each variable has on the node
impurity measure when each tree is constructed.

d. Practical implementation

Our implementation of random forests was done us-
ing the statistical package R (lhaka and Gentleman
1996, with library: randomForest) running under Linux
on a 1.9GHz Pentium 4 personal computer. We used
the default settings for must tuning parameters in our
work, but set the forest size to 1000 trees (rather than
the default of 100) in order to stabilize estimates of
misclassification rates. We investigated the effect of
changing other tuning parameters, and in particular the
terminal node size, as recommended by (Breiman and
Cutler 2001). We found our results to be very robust to
changes around the default values. In assessing variable
importance we examined the four measures imple-
mented in the randomForest library, the first three of
which are based on permutation methods and the last
of which employs a node impurity measure.

3. Case study

Our case study is focused on the wheat growing re-
gion of southwest Western Australia. The region expe-
riences a “mediterranean” climate with mild, wet win-
ters and hot, dry summers. On average 80% of rainfall
occurs in the period from May to October with the
wettest months being June and July. The winter season
is a very important time of year for farmers in the re-
gion planting crops. The onset of the winter rains is
difficult to predict, although there are many rules of
thumb in the farming community. This makes it difficult
and financially risky to determine appropriate sowing
times for crop plants. The aim of this study is to develop
a model to predict the timing of the winter rains. From
a practical viewpoint this work is important not only for
farmers but for the whole country, as Western Austra-
lian agriculture makes a significant contribution to the
nation’s economy. In 2000/01, the agricultural produc-
tion value was $4.664 billion, with $3.802 billion of this
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exported. Cereal crops made up 54% of these exports
(Robertson 2001). From a theoretical perspective this
study has the potential to improve our general under-
standing of southwestern Australian climate.

a. Data and study area

As mentioned in the introduction, our aim in this
case study is to predict the onset of the wet season for
five Western Australian farming towns, namely Corri-
gin, Merredin, Geraldton, Wongan Hills, and Lake
Grace (see Fig. 2). For data from 1949 to 1999 we used
soil moisture levels to determine the onset of winter
rainfall, rather than the rainfall level itself, because this
gave a better indication of when there was enough rain-
fall to penetrate the soil and aid crop growth. In the
original data the onset date was set as the date of the
beginning of (approximately) continuous positive soil
moisture. We chose to categorize the onset date (in line
with the recommendations of Nicholls 1984), with the
result that April was defined as early season onset, May
as midseason, and June as late season.

The explanatory variables in our analysis are the av-
erage monthly SSTs, SOI, and MSLP from 1948 to
1999. The SSTs came from version 2 of the Global Sea
Ice and Sea Surface (GISST2) dataset and covered a
region of the Indian Ocean ranging between the Aus-
tralian and African coasts and extending from the
Southern Ocean to the Tropics (9.5°-39.5°S, 50.5°-
110.5°E). This area was divided in a 6 X 12 grid of cells,
each 5° X 5°, for which SST was recorded. MSLP data
for Perth were supplied by the Australian Bureau of
Meteorology.
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b. Results

For each year from 1949 to 1999, SST, SOI, and
MSLP for the 12 months prior to the onset date were
included as potential predictors. As the 12 months prior
to the onset differed according to the onset class, we set
up two slightly different prediction problems. Problem
1 is to predict in March whether or not the onset will be
early using explanatory variables dating back to April
of the previous year. For those years for which the
onset is not early, problem 2 is to predict in April
whether the onset will be mid or late season using ex-
planatory variables dating back to May of the previous
year. The results from both problems were combined to
compute the misclassification rate, with a year being
classified correctly only if the classification for prob-
lems 1 and 2 (if required) were both correct.

The fact that we have multiple response variables
(i.e., five, rather than one, towns for which we seek
predictions) needs to be addressed. Originally we con-
sidered two approaches. First, we considered the pre-
diction problems for each town separately. In the sec-
ond approach we constructed a single random forest for
prediction in all towns simultaneously, but included an
indicator variable for each town as an explanatory vari-
able. The latter approach provided better predictions,
as one might expect, because it allowed the data from
one town to “borrow strength” from data for the other
towns. Only Geraldton, which is coastal and located at
a much higher latitude than the other towns, showed no
difference in misclassification rate between the two ap-
proaches.

We shall refer to our initial random forest using all
predictor variables (SST, SOI, and MSLP, as described
above) as Classifier A. This classifier gave an overall
misclassification rate, and town-specific rates, as given
in Table 2. The random forest predictions have an ac-
curacy rate of around 80% overall, with Geraldton suf-
fering in comparison to the other towns. This compares
very favorably to predictions using a single classifica-
tion tree, which had an accuracy rate (estimated by
leave-one-out cross- validation) of 57.3%, and classifi-
cation using principal components logistic regression,
which had an accuracy rate of 61.6%. The measures of
variable importance for Classifier A provided some evi-
dence that SST was more influential in determining
predictions than SOI or MSLP, but the picture was not

TABLE 2. Misclassification rates (MRs) for Classifier A as a
percentage.
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TABLE 3. Overall MRs for Classifiers B and C.

Classifier MR (%)
B 20.39
C 20.78

entirely clear. To investigate this issue further, we cre-
ated two new random forest classifiers.

¢ Classifier B: Random forest using only SST predictor
variables.

¢ Classifier C: Random forest using only SOI and
MSLP predictor variables.

The results for these new classifiers are displayed in
Table 3. We see that the misclassification rate for the
random forest constructed using only SST predictor
variables is identical to that from the original random
forest, while the random forest grown with just MSLP
and SOI variables suffers only slightly in comparison.
We discuss this matter further in the final section of this
article.

c. Before and after 1975

On close inspection, the results seemed to indicate
that the misclassification rates got worse after the
mid-1970s. This is illustrated by Fig. 3, which gives
the number of misclassified towns by year and ac-
cording to the classification problem, as described
in section 3b. A formal statistical comparison of the
overall error rates before and after 1975 does not indi-
cate a significant drop in performance for the classifier
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TABLE 4. The misclassification rates for the 1949-75 and
1976-99 forests using all predictor variables.

Year range MR (%)
1949-75 15.56
1976-99 25.83
(p value = 0.119). However, there is a significant in-

crease in the misclassification rate for problem 2 (p =
0.022), indicating that it becomes more difficult to pre-
dict mid versus late season onset after 1975. The timing
of this change in the predictability of the onset of the
wet season coincides with a decline in the southwestern
rainfall in the mid-1970s, as documented by a number
of researchers including Nicholls et al. (2000).

We further explored the changes that occurred in the
mid-1970s by dividing the data into two subsets, one
containing observations for years 1949-75 and the other
containing observations for 1976-99. Random forest
classifiers were grown from both subsets. The misclas-
sification rates are given in Table 4, and show the ex-
pected worsening of performance of the classifier in the
latter period. For both periods the SST explanatory
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variables were most influential in determining the pre-
dictions, but a detailed analysis unearthed marked
changes in the important SST grid cells between the
two periods. These results are displayed pictorially in
Figs. 4-7, which show important SST cells (by area and
month) for prediction under various scenarios. Impor-
tant cells are further differentiated using a scale of 1
(moderate) to 3 (high) corresponding to the number of
importance measures that recognized the cell’s influ-
ence.

Figures 4 and 5 indicate that the area of the Indian
Ocean where the SST is important for problem 1 (pre-
dicting early/not early onset) has changed. Prior to 1975
the important region was in the Tropics. This now
seems to have moved down toward the Southern
Ocean. Figures 6 and 7 also show this change, although
it is not as strong. Before 1975 the important region
stretched over all latitudes from where SSTs were mea-
sured (10°-40°S), but after 1975 the Tropics no longer
appears to be important. Furthermore, these problem 2
(mid/late onset) forests also show a change in the
months in which the SST is important. After 1975,
March was the important month for the purposes of
prediction, but before 1975 the important SSTs oc-
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F1G. 5. As in Fig. 4 but using 1976-99 data.

curred three months earlier in December. This suggests
that not only has the important region in the Indian
Ocean been altered, but that the lead time for SST
influences has also changed.

4. Discussion and conclusions

The aim of our case study was to develop a model to
predict when the wet season in the southwest of West-
ern Australia would begin using SST, SOI, and MSLP
as potential explanatory variables. The model that we
developed correctly predicted the onset approximately
four out of five years. The SST variables proved the
most influential in deriving the predictions. Indeed, the
misclassification rate did not change when a random
forest was constructed with SOI and MSLP data omit-
ted. However, this finding should be interpreted with
care for two reasons: First, there were many more SST
variables than SOI or MSLP variables since SST data is
recorded over 72-cell grid. Hence the amount of infor-
mation per SST cell may be quite modest. Second, our
statistical classification algorithm aims to detect asso-
ciations rather than causal links. One might well expect
the association between SST and the onset date for the

winter rains to be explained by other factors. See
Nicholls et al. (2000) for related comments.

An interesting finding in our analysis was the change
in the misclassification rate, and the important explana-
tory variables, that occurred in the mid-1970s. This
change occurred at the same time as the rainfall decline
observed in much of southwest Western Australia
(Nicholls et al. 2000). These results are suggestive of
some significant change in the climatic processes for
this region at this time, reflected in a changed region of
Indian Ocean SST influence on wet season onset. The
region of influence appears now to be in the south In-
dian Ocean rather than the Tropics. It is interesting to
note that the decline in rainfall over southwest Western
Australia is predominantly in early winter rainfall. One
hypothesis to explain this is that bands of moisture from
the Tropics now appear to be less common so that there
is less scope for interaction between these so-called
northwest cloud bands and frontal systems from the
south [the Indian Ocean Climate Initiative (IOCI)
2002]. Such interactions produce substantial rainfall
when they occur. Our case study suggests that there
may be a link with Indian Ocean SSTs. Dynamic mod-
eling of the climatic system might begin to provide
some insight into the underlying physical causes.
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We note that this analysis could be extended to in-
clude the effects of the Southern Ocean. Recent re-
search has found the existence of the Antarctic “Cir-
cumpolar Wave,” a current that moves continuously
around Antarctica, completing the circuit approxi-
mately every eight to nine years (White and Peterson
1996). This current advects alternating regions of warm
and cold water, which seem to interact with atmo-
spheric pressure and wind patterns. There is some evi-
dence linking the warm regions with warm, wet winters
and the cold regions with cool, dry winters in the south
of Australia. The effects of the Indian Ocean, Pacific
Ocean, and Southern Ocean anomalies are most likely
dependent. Thus, the Antarctic circumpolar wave could
be an important factor in the timing of the wet season
onset.

We observe that classification trees do not assume
normally distributed observations or that the responses
are related to the predictors in a linear fashion. Given
the complex nature of the climate system it is a clear
advantage to avoid simplistic assumptions such as
these. For example, the Australian Bureau of Meteo-
rology’s seasonal forecast system uses principle compo-

nents of sea surface temperature anomalies over the
Indian and Pacific Oceans (Drosdowsky and Chambers
2001). These are then used in a linear discriminant
analysis to produce probabilities that seasonal rainfall
will be above or below the long-run median; in some
applications terciles are forecast (“below normal,”
“near normal,” and “above normal”). The discriminant
analysis model assumes that each observation belongs
to one of a set of mutually exclusive groups, which is a
form of nonlinear relationship. In our implementation
of the CART methodology this is also true, but the
contribution of predictors to the modeling is more gen-
eral as no particular functional form for the relationship
between explanatory variables and prediction is as-
sumed. The random forests approach is also able to
handle a large number of predictors, so there is no need
to first reduce the number of predictors via principle
component analysis, for example.

Our case study suggests that random forests is a po-
tentially useful tool in climate research. It is capable of
identifying important predictors, and physical insights,
and of generating forecasts that appear to have signifi-
cant skill.
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