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ABSTRACT: The seasonal predictability of rainfall over a small rice-growing district of Java, Indonesia is investigated in
terms of its daily characteristics during the September—December monsoon-onset season. The seasonal statistics considered
include rainfall frequency, mean daily intensity, median length of dry spells, as well as the onset date of the rainy season.
General circulation model retrospective seasonal forecasts initialized on August 1 are downscaled to a set of 17 station
locations using a nonhomogeneous hidden Markov model. Large ensembles of stochastic daily rainfall sequences are
generated at each station, from which the seasonal statistics are calculated and compared against observations using
deterministic and probabilistic skill metrics. The retrospective forecasts are shown to exhibit moderate skill in terms of
rainfall frequency, seasonal rainfall total, and especially monsoon onset date. Some skill is also found for median dry-spell
length, while mean wet-day persistence and daily rainfall intensity are not found to be predictable. Copyright © 2008
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1. Introduction

Seasonal climate forecasts are typically issued in terms
of three-month averages of rainfall or temperature, as a
compromise between maximizing the ratio of predictable
climate signal to unpredictable weather noise, while still
capturing seasonal evolution (e.g. Goddard et al., 2001).
However, such seasonally averaged forecasts are often of
limited use to decision makers, where risk management
in agriculture, for example, may require information on
aspects such as the onset of the rainy season, or the
probability of rainfall occurrence, long dry spells, or
rainfall extremes within the growing season. In addition,
the skillful spatial scale of current general circulation
modal (GCM) seasonal predictions is of the order of
several hundred kilometers (Gong et al., 2003), again
much larger than may be required for effective climate
risk management at the scale of a small administrative
district. Downscaling is required, within the physical
constraints of the regional climate system, and the
limitations of available downscaling methodologies.
Recent work suggests that in the tropics, rainfall fre-
quency at the station scale is more seasonally predictable
than the seasonal total of rainfall; this is primarily due
to the relatively higher spatial coherence of interannual
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anomalies of rainfall frequency compared to those of
mean daily rainfall intensity (Moron et al., 2006, 2007).

Probabilistic models of “weather within climate” with
daily resolution based on stochastic weather genera-
tors, hidden Markov models, and K-nearest neighbors
approaches have been used to express GCM-based sea-
sonal forecasts in terms of ensembles of stochastic local
daily weather sequences that can then, in principle, be
used to drive models of crop growth and yield (Hansen
and Ines, 2005; Ines and Hansen, 2006; Robertson et al.,
2007; Moron et al., 2008d). The nonhomogeneous hidden
Markov model (NHMM) has proved to be a promis-
ing method for constructing multistation weather genera-
tors (Hughes and Guttorp, 1994). Over northeast Brazil,
Robertson et al. (2004) found that interannual variability
in the frequency-of-occurrence of 10-day dry spells could
be simulated reasonably, using an NHMM with GCM
seasonal-mean large-scale precipitation as a predictor.
Similar downscaling results were obtained over Queens-
land, Australia (Robertson et al., 2006). The NHMM has
been applied to two other locations in Australia in down-
scaling studies (Charles et al., 2003, 2004).

In this paper, retrospective GCM seasonal precipitation
forecasts are downscaled to a set of rainfall stations over
Indramayu, a small (2140 km?) flat coastal district of
West Java, using an NHMM and their skill assessed
under cross-validation. We focus on a set of weather
statistics of potential relevance to agriculture, namely
daily rainfall frequency, mean daily intensity on wet
days, mean dry-spell lengths, wet-day persistence, and the
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monsoon onset date, in addition to the seasonal rainfall
total. Deterministic and probabilistic measures of skill are
quantified.

Rainfall over Indonesia is governed by the austral-
Asian (northwest) monsoon, whose onset progresses from
northwest-to-southeast during the austral spring (Aldrian
and Susanto, 2003). Many studies have shown that the
El Nifo — Southern Oscillation (ENSO) exerts its
strongest influence on Indonesian rainfall during the
September—December monsoon onset season (e.g.,
Hamada et al., 2002; Juneng and Tangang, 2005). The
impact of ENSO then diminishes during the core of
the rainy season in December—February (Haylock and
McBride, 2001; Aldrian et al., 2005, 2007; Giannini
et al., 2007), suggesting that the timing of monsoon onset
may be potentially predictable. Moron et al. (2008a,b)
have recently argued that much of the seasonal pre-
dictability in the September—December total rainfall is
associated with changes in monsoon onset date.

Indramayu, situated on the north coast of West Java,
is an important rice-growing district contributing about
one-quarter of Java’s rice production. Farmers experience
droughts and floods that cause significant losses in rice
production. The date of onset of the rainy season is
of particular importance, determining the suitable time
for planting crops, while delayed onset during El Nifio
years (Hamada et al., 2002; Naylor et al., 2002; Boer
and Wahab, 2007) can lead to crop failure. Earlier onsets
occur in La Nifia years, but these are generally less
pronounced than the delays during El Nifio (Moron et al.,
2008b); these may, however, be potentially beneficial to
farmers by extending the length of the growing season.
“False rains”, in which isolated rainfall events occur
around the expected onset date also present problems for
farmers.

This paper is motivated by the needs of the Indonesian
Bureau of Meteorology and Geophysics (BMG), which
has been working with the agricultural office to develop
climate forecasts that are specific to agriculture over
Indramayu. The September—December season is selected
for its importance to agriculture as well as its relatively
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high seasonal predictability of rainfall. The paper is
organized as follows. Section 2 describes the rainfall
data and GCM simulations, Section 3 describes the
hidden Markov model and statistical methods. The results
are presented in Section 4, with conclusions given in
Section 5.

2. Data

2.1. Observed rainfall data

Daily rainfall observations recorded at 17 station loca-
tions over Indramayu during the period 1979-2002, for
the September—December (SOND) season were used in
this study; these data were provided by BMG. Missing
values (<6% of station days) were simply flagged for the
NHMM. For the purposes of computing observed rainfall
statistics against which to validate the forecasts, the miss-
ing values were filled using a simple stochastic weather
generator (Wilks, 1999), considering the wet-to-wet and
dry-to-wet day persistence and a gamma distribution for
rainfall amounts on wet days. All parameters were com-
puted separately for each station and calendar month; if a
month is completely missing, this method simulates a cli-
matological daily sequence for that month. The average
number of wet days (defined here as receiving 0.1 mm
or more of rain) is 20-30 days, with mean intensities
(i.e. the mean amount of rainfall on wet days) of about
2—4 mm/day. Their spatial distributions are rather uni-
form, as shown in Figure 1.

An agronomical definition of monsoon onset (e.g.
Sivakumar, 1988) is adopted based on local rainfall
amounts. Onset is defined as the first wet day of the
first 5-day sequence receiving at least 40 mm, which
is not followed by a dry 15-day sequence receiving
less than 5 mm within the following 30 days from the
onset date. The latter criterion helps to avoid false starts.
Onset is computed from the 1st September. Changing
the length and/or the amount of rainfall of the initial wet
spell modifies the climatological mean onset date, but
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Figure 1. Observed climatological mean station values of (a) rainfall probability, and (b) mean rainfall intensity (mm/d).
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the impact on its interannual variability is found to be
minimal.

2.2. Seasonal climate forecast model

A set of retrospective seasonal forecasts from the
ECHAMA4.5 atmospheric GCM driven with constructed
analog predictions of sea surface temperature (SST) were
initialized on August 1 of each year 1979-2002 (Li et al.,
2007). In this “two-tier” system, SST is predicted on
a monthly basis from the previous month (here July)
using the constructed analog approach (van den Dool,
1994). The ECHAMA4.5 atmospheric GCM (Roeckner
et al., 1996) is then run at T42 horizontal resolution
(approx. 2.8° grid) using the SST predictions at the lower
ocean boundary, with the 24 ensemble members initial-
ized from slightly differing initial conditions taken from
long simulations with observed SSTs prescribed. There
is no initialization of the atmosphere (or land surface
conditions) through data assimilation. These retrospec-
tive forecasts were made at IRI and obtained through the
IRI Data Library.

3. Methods

3.1. Nonhomogeneous hidden Markov model
(NHMM)

The NHMM used here follows the approach of Hughes
and Guttorp (1994) to model daily rainfall occurrence,
while additionally modeling rainfall amounts; it is fully
described in Robertson et al. (2004, 2006). In brief,
the time sequence of daily rainfall measurements on a
network of stations is assumed to be generated by a
first-order Markov chain of a few discrete hidden (i.e.
unobserved) rainfall “states”. For each state, the daily
rainfall amount at each station is modeled as a finite
mixture of components, consisting of a delta function
at zero amount to model dry days, and a combination
of two exponentials to describe rainfall amounts on
days with nonzero rainfall. The state-transition matrix
is treated as a (logistic) function of a multivariate
predictor input time series obtained from the GCM
retrospective forecasts. Missing data is treated explicitly,
with parameter estimates derived from the days that are
present (Kirshner, 2005).

3.2. Downscaling experimental design and
cross-validation

The GCM retrospective forecasts are downscaled using
the NHMM to obtain a large ensemble of stochastic
daily rainfall sequences at each of the 17 stations, for
the period September 1 to December 31, 1979-2002.
Firstly, monthly GCM precipitation fields were obtained
for the months August—January over a regional window
(BOE—180E, 20S—15N) and standardized at each grid-
point by subtracting the mean and dividing by the stan-
dard deviation (SD). The resulting anomalies were then
weighted spatially using a Gaussian (o, = 60°, oy = 15°)
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to emphasize gridpoints over Indonesia, and then inter-
polated linearly to daily values, selecting the September
1 to December 31 period.

The NHMM was trained using the 24-member
GCM ensemble mean precipitation under 8-fold
cross-validation, omitting 3 consecutive years at a time.
A principal components analysis (PCA) of the daily-
interpolated GCM ensemble mean precipitation fields was
used to define the inputs to the NHMM, retaining the
leading 3 PCs (92.4% variance). The daily interpolation
was carried out linearly, with the monthly-mean values
specified at the mid-points of each month. The correla-
tions of the (seasonal averaged) PCs with the (seasonal
and station averaged) station rainfall are 0.59, —0.49, and
0.66 respectively, while the respective correlations with
the Nino3.4 index are —0.79, 0.69, and —0.85. For each
fold of the cross-validation, the PCs were recomputed on
the training subset of 21 years.

To make the rainfall simulations, we proceed as follows
for each of the 8-folds of the cross-validation. For each
of the 24 ensemble members, the (linearly interpolated)
daily GCM precipitation fields for the 3 left-out years
were projected onto the leading 3 empirical orthogonal
functions (EOFs) computed from the respective 21-year
training period. The resulting 24 time series (one per
GCM ensemble member) were then used in conjunction
with the NHMM trained on the 21-year training period
to make 3 NHMM simulations, yielding a total of 72
simulated daily rainfall sequences for each SOND season.
Note that the individual GCM ensemble members were
used for simulation, rather than the GCM’s ensemble
mean, in order to retain the distribution across the GCM
ensemble. Skill levels were found to decrease if the
individual ensemble members were used in the NHMM
training step, in place of the ensemble mean.

4. Results
4.1. NHMM training

The choice of the appropriate number of hidden states
k in the NHMM was guided by computing the log-
likelihood of models with different choices of k under
cross-validation (Figure 2). As is typical, the out-of-
sample log-likelihood increases sharply with & initially,
and then levels off, with diminishing returns for high
values. We chose k = 4; the downscaling results were
checked for k = 3—6 and found to be very similar. In
all cases, the NHMM was initialized 30 times from
random seeds, selecting the solution with the highest (in-
sample) log-likelihood. Note that the log-likelihood is
negative because the likelihood — which is the probability
of the observed rainfall data, given the model — is less
than unity; the model fit is not perfect even for large k
because (a) the NHMM is a simple representation of the
rainfall process and its relationship with large-scale GCM
monthly precipitation, (b) the GCM forecasts contain
errors, and (c) the parameters estimated in the NHMM
training are maximum likelihood estimates.
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Figure 2. Cross-validated log-likelihood as a function of the number of
NHMM states.

4.2. NHMM interpretation

Maps of rainfall properties associated with each of the
states are plotted in Figure 3, with the estimated state
sequence in time shown in Figure 4. The four rainfall
states describe daily rainfall conditions ranging from dry
(state 1) to wet (state 4), in terms of rainfall probability
at each station (Figure 3(a)—(d)), and the rainfall distri-
bution on wet days, with the latter plotted here in terms
of mean rainfall intensity (Figure 3(e)—(h)), calculated
from each state’s rainfall-distribution parameters. Rain-
fall probabilities are stratified rather monotonically by the
NHMM state, with much smaller differences between sta-
tions for a given state. Mean rainfall intensities vary less
smoothly between the states, with larger interstation dif-
ferences, especially for the dry state where there are few
wet days over which to estimate the rainfall distribution
parameters.
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The temporal evolution of rainfall in the dataset can
be described by estimating the most-likely sequence
of the four NHMM states. This is performed using
the Viterbi algorithm (Forney, 1978), which uses the
NHMM parameters (estimated here for the whole dataset
without cross-validation) together with the rainfall data.
Figure 4 provides a graphic illustration of the rainfall
variability at the district level, in terms of its seasonality,
subseasonal variability, as well as interannual variability.
The driest state predominates during September, with
spells of the wetter states becoming more prevalent
in November—December. The stochastic nature of the
model is clear, with a considerable variability of the
sequences from year to year, and within each season.
The monsoon onset was clearly substantially delayed
during the El Nifio events of 1982, 1987, 1994, and 1997.

4.3.

The downscaling experiment performed in this study
yields ensembles of retrospective forecasts, consisting of
stochastic daily sequences of rainfall at the 17 rainfall sta-
tion locations. In order to investigate the characteristics
of these daily sequences, we focus on six seasonal sum-
mary statistics: seasonal rainfall total, rainfall frequency
(days >0.1 mm), the mean daily intensity on wet days,
the average length of dry spells, the mean wet-day per-
sistence, and the monsoon onset date. The distribution
of dry-spell lengths is skewed to the right because of
the seasonal transition from the dry to the wet season,
and the mean dry-spell length is biased by the dry sea-
son. We thus choose the median dry-spell length that is
more indicative of post-onset conditions, and then take
its natural logarithm to further reduce the skew of the
distribution. Each summary statistic is computed at each
of the 17 station locations.

To assess model performance at the Indramayu district
level, we average each summary statistic over the 17
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Figure 3. Rainfall probabilities (a)—(d) and mean intensities (e)—(h) associated with the 4-state model. Intensities are in mm/day.
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Figure 4. Estimated state sequence of 4-state model. Gray scale denotes the state. The states are ordered from driest (white) to wettest (black)
as in Figure 3.

stations using a standardized anomaly index (SAI; Katz
and Glantz, 1986). The SAI is computed by standardizing
the interannual time series at each station (subtracting the
mean and dividing by the STD) and then averaging the
standardized anomalies spatially across the stations to
form an index; it thus gives each station equal weight
in the index.

4.4. Mean biases

Figure 5 shows the climatological (i.e. marginal) distri-
butions of the SAI of each of the six rainfall statis-
tics computed from the observations (panel a; 24 years)
and simulations (panel b; 72 simulations x 24 years);
note that the observed distribution is purely interannual,
whereas the simulated distribution contains both inter-
annual and intraensemble variability. In order to identify
biases in the simulations, the SAI was computed using the
station means and STDs computed from the observations
in both panels. Table I gives the observed and simulation
means in physical units, averaged simply across stations,
together with the percentage biases in the mean and STD.
The STD in Table I was computed at each station and for
each ensemble member individually, and then averaged.

Mean biases for seasonal total, rainfall frequency and
mean intensity are negligible (about 1% or less), and
about 10% for median dry-spell length and wet-day
persistence. Onset dates are systematically too early by
about 1 week on an average. The interquartile ranges
(IQR), given by the boxes in Figure 5, are generally
similar between the observed and simulated ensembles,
while the tails of the simulated distributions are longer.
The forecast distributions are generally less skewed

Copyright © 2008 Royal Meteorological Society

than their observed counterparts, with the median more
centrally located in the IQR.

The bias in the interannual STD is given in Table I,
averaged across members and stations. It is very small for
seasonal total, rainfall frequency and onset date (<2%).
Thus, the simulations generally do not suffer from
insufficient interannual variability that is often encoun-
tered in simple stochastic weather generators (Katz and
Parlange, 1998). However, the interannual STD is some-
what underestimated for mean intensity and wet-day per-
sistence (10—15%), and overestimated for median dry-
spell length (19%).

In general there will be some cancellation in these
biases between stations, so that the biases at individual
stations are larger than those given in Table I. For the
mean bias, however, this cancellation was found to be
minimal (the station-average of the absolute value of the
mean bias at individual stations is always within 2%
of the values in Table I). For the interannual STD the
cancellation of the bias between stations is larger: the
station-average of the absolute bias in STD increases to
about 13% for seasonal total and rainfall frequency, 19%
for mean intensity, 24% for median dry-spell length, 15%
for wet-day persistence, and 6% for onset date.

Ensemble forecasts can be expressed most simply in
terms of the ensemble mean, together with estimates of
its uncertainty. Figure 6 shows quantile—quantile (Q—-Q)
plots of the interannual distributions of observed ver-
sus the forecast ensemble mean, again using the SAI
without any bias correction. The 45° straight line would
be obtained, approximately, if the two samples (forecast
mean and observed data) came from the same distri-
bution. The forecast distributions of seasonal total and

Int. J. Climatol. (2008)
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Figure 5. Box plots of standardized anomaly index (SAI) of (a) observations, and (b) raw forecasts across all 24 years. The rainfall statistics are

seasonal rainfall total (T), daily rainfall frequency (F), mean daily intensity (I), median length of dry spells (D), mean wet-day persistence (W),

and monsoon onset date (O). Boxes denote the median and interquartile range (IQR). Whiskers extend 1.5 IQR from box ends, with outliers
denoted “+”. In panel (b) there are 72 simulations for each year.

Table I. Biases in the simulations, averaged over all 17 stations. The bias in the interannual standard deviation (STD) is computed
for each simulated ensemble member separately, and then averaged. Percentage biases are expressed as percentages of the observed

value.
Obs mean Mean bias Mean bias (%) STD bias (%)

Seas total (mm/d) 3.68 0.04 1.04 1.45
Frequency 0.21 0 —0.13 —0.31
Mean intensity (mm/d) 17.8 —0.15 —0.78 —14.06
Median dry spell (days) 2.89 0.26 10.35 19.01
Mean wet day persistence probability 0.39 —0.04 —9.06 -95

Onset date (days after 9/1) 60.81 —8.3 —134 1.55

(especially) rainfall frequency are quite accurate, while
late onset-date forecasts tend to be too weak. The fore-
casts distributions of mean intensity and wet-day persis-
tence ensemble mean are both much too narrow and thus
severely lack forecast resolution.

4.5.

Having assessed overall simulation biases and before
turning to measures of forecast skill, we examine the
spatial coherence of seasonal anomalies between stations.
The amplitude of the SAI for a particular year depends
on the size of the correlations between stations, and thus
its variance gives a measure of spatial coherence of the
field (Moron et al., 2006). For relatively homogeneous

Spatial coherence

Copyright © 2008 Royal Meteorological Society

regions such as Indramayu, the spatial coherence provides
a measure of potential predictability at the station scale
(Moron et al., 2006). The observed IQR of the SAI
(Figure 5(a)) are largest for seasonal total, rainfall fre-
quency, and monsoon onset date, while they are small-
est for rainfall intensity and dry-spell length, suggesting
higher predictability of the former quantities compared to
the latter ones. Values of the variance of the SAI (VSAI)
and the estimated number of spatial degrees of freedom
(DOF; Moron et al., 2006) are given in Table II. Each
statistic is computed for each of the 72 simulations sepa-
rately, with the mean and two-STD intraensemble range
on either side reported in the table. As seen in previous
studies of tropical rainfall (Moron et al., 2006, 2007),
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Figure 6. Quantile—quantile plots of the ensemble mean SAI of the forecasts against the observed values.

Table II. Spatial coherence statistics for the observations and simulations, in terms of the variance of the standardized anomaly
index (VSAI) and estimated number of degrees of freedom (DOF). For the simulations, the mean and 2-sigma values are given
(see text for details).

VSAI-obs VSAI-sim DOF-obs DOF-sim
Amount 0.6 0.81 +£0.40 2.55 1.99 £0.58
Frequency 0.61 0.95 +0.44 2.46 1.34£0.16
Mean intensity 0.25 0.11+0.08 6.34 8.87 £1.58
Median dry-spell length 0.19 0.86 £0.77 8.17 347+ 1.88
Mean wet day persistence probability 0.32 0.34 +£0.26 5.93 5.39 +£2.56
Onset date 0.62 0.68 +0.32 2.46 3.05£1.43

spatial coherence of interannual anomalies in the station
data is largest (high VSAI and low DOF) for rainfall
frequency, closely followed by seasonal total, with mean
intensity being much less coherent. Of the other statistics,
onset date also exhibits high coherence, as found recently
over Indonesia in the study of Moron ef al. (2008a,b). The
spatial coherence of the NHMM simulations generally
follows the observed behavior. The simulations have a
tendency to overestimate the coherence of seasonal total,
rainfall frequency, and median dry-spell length and to
underestimate it for rainfall intensity. However, except
for the latter, these differences do not consistently fall
outside the two-sigma confidence bounds of the simula-
tions, and thus cannot be considered highly statistically
significant.

4.6. Ensemble mean skill

Prior to assessing the skill of the forecasts, a simple
bias correction was applied at each station to remove
the biases in the mean and STD.

Copyright © 2008 Royal Meteorological Society

Skill is firstly assessed in terms of the forecast
ensemble mean. Figure 7 shows forecast reliability and
resolution in terms of the SAI of the verification given the
forecast [E(obs|fcst)], plotted against the forecast SAL
A bin-width of 0.2 was used to assign the forecasts to
categories, for which the observed outcomes were aver-
aged. Figure 7 thus shows the success of the forecasts
binned into categories and is plotted in the same format
as the Q—Q plots in Figure 6. In all panels the points lie
fairly close to the diagonal, indicating reasonably reli-
able forecasts; i.e. the (bias corrected) forecasts for each
bin indicated by a cross tend to be correct on average.
On the other hand, there are large differences in fore-
cast resolution between the six rainfall statistics, consis-
tent with Q—Q plots in Figure 6. Rainfall frequency and
seasonal total exhibit the most dispersion of the points
along the diagonal, indicating that forecasts across the
observed range of amplitude are indeed issued. In con-
trast, the mean intensity and wet-day persistence forecasts
are clustered about the climatological mean indicating
that the forecasts have no resolution. The dry-spell length

Int. J. Climatol. (2008)
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Figure 7. Reliability diagrams for the ensemble mean SAI of the forecasts. The 24 seasonal values of the ensemble mean forecast were binned
into 10 classes of width 0.30, and the observed outcomes for each class averaged on the ordinate. The diagonal line gives the expected value
for perfectly reliable forecasts.

forecasts also show too little forecast resolution. Forecast
skill is a combination of the reliability and resolution
of the forecasts. Values of the Pearson anomaly corre-
lation and p-value, given in each panel of Figure 7, are
generally consistent with these graphs. Thus, the highest
anomaly correlation skills are achieved for rainfall fre-
quency, followed by monsoon onset and seasonal total.
Median dry-spell length is intermediary, while the fore-
casts of mean intensity and mean wet-day persistence are
not significantly correlated with the verifications.

Figure 8 shows anomaly correlation skills at the indi-
vidual stations. The stratification between the different
rainfall statistics is quite clear in these plots. Inter-
station differences may reflect data quality at each
station, sampling issues as well as physical inhomo-
geneities — differences in skill across the small district
of Indramayu do not appear systematic, although skill
values at inland stations appear to be generally slightly
lower.

4.7. Forecast spread

Risk management applications require estimates of fore-
cast uncertainty, for which information contained in the
ensemble spread may be applicable (e.g. Palmer, 2002).
Figure 9 shows the observed SAI time series for each
rainfall statistic, together with box plots depicting the
forecast ensembles. The larger interannual variance of the
SALI for seasonal total, rainfall frequency and onset-date
is immediately apparent, indicative of the potential pre-
dictability in these three statistics. The skewness of the
simulations of median dry-spell length is also apparent,
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which may account for the overestimation of its variance
in the simulations (Table II).

Provided an interannual signal is present in the
observed SAI, a skillful forecast ensemble should bracket
the observed value, such that the probability of the obser-
vation given the forecast is as large as possible (Murphy
and Winkler, 1987). There is visible evidence that the
forecasts of seasonal total, rainfall frequency and onset-
date contain skill. Various forecast verification metrics
have been developed to quantify the skill of probabilis-
tic forecasts (e.g. Jolliffe and Stephenson, 2003). The
continuous ranked probability score (CRPS; Hersbach,
2000), for example, is a squared error metric that mea-
sures the distance between the cumulative distribution
function (CDF) of the forecast and the verifying obser-
vation; the latter “CDF” takes the form of a step function
at the value of the observation. Expressed with respect
to a baseline given by the CRPS of the climatological
forecast distribution, the median CRPS scores (across
years) of the six SAI quantities (seasonal totals, rain-
fall frequency, mean intensity, median dry-spell length,
mean wet day persistence, onset date) are —2.48, 7.74,
—20.24, —29.58, —29.20, and 6.40%, respectively. Neg-
ative values denote a forecast worse than climatology,
with a perfect forecast given by +100%. Only rainfall
frequency and onset date yield skill better than climatol-
ogy. The CRPS scores were also computed at individual
stations. At the station level, the downscaled forecasts
were only found to exhibit CRPS scores values better than
climatology for onset date; these are plotted in Figure 10.
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Figure 8. Correlation skills of hindcasts: (a) seasonal rainfall total; (b) rainfall frequency; (c) mean daily intensity; (d) median length of dry
spells; (e) mean wet-day persistence; (f) monsoon onset date. Circle diameter is proportional to magnitude of the correlation. Negative correlations
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Figure 10. Continuous ranked probability skill (CRPS) scores for monsoon onset date. Circle diameter is proportional to magnitude of the CRPS
score (in %).

To be well calibrated, the spread of the forecast
distributions should be such that the IQR *“prediction
interval” boxes in Figure 9 bracket the observation in
50% of years; values below indicate too little spread
(boxes too narrow), and values above 50% imply too
much spread in the forecast distribution (boxes to wide).
For the six SAI quantities in Figure 9, the percentage of
observed years within the simulated IQR (i.e. the capture
rates) are 58, 62, 37, 71, 46, and 46% respectively. Thus
in most cases the forecasts are reasonably well calibrated;
there is too little spread for rainfall intensity and too much
for dry-spell length.

4.8.

To visualize the reliability of the forecasts, the indi-
vidual ensemble members can be treated as estimates
of quantiles of the forecast distribution (Mason et al.,
2007). For example, given only one ensemble mem-
ber, there should be a 50% probability that the observed
value exceeds the forecast, regardless of the value being
forecast. Thus, a graph of this “conditional exceedance
probability” (CEP) against the forecast rainfall should
be a horizontal line with CEP = 0.5. Figure 11 shows
the CEP curves for each of the 72 ensemble members,
calculated across all years using generalized linear regres-
sion (Mason et al., 2007). For seasonal total, for example,
these are ranked from driest to wettest, from the top to
bottom in Figure 11(a).

The CEP curves for mean intensity, median dry-
spell length and wet-day persistence all lie close to
the climatological probability of exceedance (thin line),
showing that these forecasts do not deviate much from
climatology; this is consistent with the large negative
CPRS scores for these rainfall statistics. On the other
hand, the CEP curves for seasonal total, rainfall frequency

Conditional exceedance probabilities
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and onset date slope less extend over a larger range
of SAI and are more evenly spaced. There is still a
general tendency for the slopes to be negative, except
for onset date, indicating that the forecasts tend to be
over confident. However, the distributions are noisy,
indicating considerable sampling variability associated
with the short 24-year time series.

4.9. A real-time forecast

Figure 12 presents an example of a forecast distribution
made for the 2007 SOND season, expressed in terms
of probability of exceedance. The figure shows CDFs,
smoothed using a kernel density estimator, for the histor-
ical observed (solid) and 1979-2002 retrospective fore-
cast (dotted) climatological distributions, and the 2007
forecast distribution (dashed).

The observed and simulated climatological distribu-
tions are similar in all cases indicating no serious biases
in the retrospective forecasts over the 1979-2002 period,
recalling that the bias in the mean and variance has been
removed from each SAI (Section 4.6). The 2007 fore-
cast exhibits a dry tendency, with lower probabilities of
exceeding a given threshold of seasonal amount, rainfall
frequency, and wet-day persistence, and higher probabil-
ities of exceeding a given threshold of median dry-spell
length and onset date. The exceedance probabilities of
the forecast for rainfall intensity and wet-spell length also
deviate from climatology, despite the lack of skill in these
quantities.

5. Conclusions

5.1

We have demonstrated the methodology and evaluated
the skill of downscaled rainfall forecasts over Indramayu

Summary
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Figure 11. Conditional exceedance probabilities of SAL. Curves denote probability that the observed value in a particular year exceeds the
predicted value for that year, for a given ensemble member. Thin continuous line denotes the exceedance probabilities of the observations.

district, West Java, during the September—December
monsoon onset season, using a combined GCM-NHMM
approach. The quality of the cross-validated retrospective
forecasts was assessed for six rainfall summary statistics
computed from 72-member daily-rainfall-sequence sim-
ulations: seasonal rainfall total, daily rainfall frequency,
mean daily intensity, median length of dry spells, wet-day
persistence, and monsoon onset date.

Mean biases of the station-averaged rainfall simula-
tions (Table I; Figure 5) are under 1% for seasonal total,
rainfall frequency and mean intensity. The simulations
overestimate the lengths of dry spells and underestimate
the lengths of wet spell by about 8%, and simulated
onset date is premature by about a week. Interannual
STD are accurate (within 2%) for seasonal total, rain-
fall frequency and onset date; they are underestimated for
rainfall intensity (14%) and wet-day persistence (10%),
and overestimated for median dry-spell length (19%).

Various measures of skill of the forecasts were con-
sidered. In terms of anomaly correlation of the ensemble
mean, the SAI over the stations reaches 0.71 for rainfall
frequency, 0.61 for onset date, 0.58 for seasonal total, and
0.50 for median dry-spell length. Neither rainfall intensity
nor wet-day persistence exhibit skill. The ensemble mean
forecasts exhibit encouraging reliability for all quantities
(i.e. the expectation of the observations conditioned on
the forecasts is accurate), but with good forecast resolu-
tion only for rainfall frequency, seasonal total and onset
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date (Figure 7). At the station level (Figure 8), anomaly
correlations are most consistently high for rainfall fre-
quency.

Regarding the forecast distributions, the spread of the
distribution is generally reasonable: somewhat too broad
for seasonal total, rainfall frequency and (particularly)
dry-length, and too narrow for wet-spell length, onset
date and (markedly) rainfall intensity (Figure 9). Proba-
bilistic skill values using the CRPS score show better-
than-climatology values only for SAI of onset date and
rainfall frequency. At the station scale, only the mon-
soon onset date shows positive CRPS scores against a
climatological benchmark (Figure 10). CEP of the indi-
vidual ensemble members (CEPs; Figure 11) indicate the
highest reliability for onset date, followed by rainfall fre-
quency and seasonal total. However, clear deficiencies
are visible, with a general tendency toward overconfi-
dence of the ensembles (i.e. negative CEP slopes) in all
quantities except onset date. The CEP curves are noisy
and the short length of the verification series (24 points)
is a limiting factor. An example probabilistic forecast
was made for 2007, expressed in terms of exceedance
probabilities (Figure 12).

5.2. Discussion

The goal of this paper has been to assess the suitability
of the NHMM as a downscaling technique to obtain daily
rainfall sequences conditioned on seasonal forecasts.
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Taken together, the set of forecast metrics examined here
provide an overall picture of forecast quality.

Levels of skill can be differentiated according to the
district average versus individual stations, and anomaly
correlation versus the CRPS probabilistic score. In terms
of the anomaly correlation of ensemble mean forecasts
for district average (here SAI), results are consistent
with our previous studies of seasonal predictability of
tropical rainfall (Moron et al., 2006, 2007, 2008c,d;
Robertson et al., 2006, 2007), with highest skill for
rainfall frequency and lowest for mean rainfall intensity.
Onset date skill predictability is consistent with the
analysis of Moron ef al. (2008a) who found seasonal
predictability of seasonal total to be largely associated
with onset date over Indonesia. As argued by Moron
et al. (2006, 2007), interannual anomalies in rainfall
frequency are expected to be more spatially coherent than
those of mean daily intensity because tropical mesoscale
convective clusters can produce big differences in rainfall
intensity over short distances; this spatial noise in rainfall
intensity is largely unpredictable and can contaminate
even seasonal rainfall totals, while being largely filtered
out in the rainfall frequency field. The analyses of
Moron et al. (2008a,b) indicate that monsoon onset date
over Indonesia contains a substantial large-scale spatially
coherent signal, while post-onset rainfall over Java is
dominated by small-scale features and is much less
sensitive to ENSO. The anomaly correlation skill seen at

Copyright © 2008 Royal Meteorological Society

the district level is largely reproduced at the station level
as well. Most striking, however, is the lack of CRPS skill
except for rainfall frequency and onset date at the district
level, and only onset date at the individual stations. The
latter result was found robust to details of how the CPRS
score was estimated and is encouraging for climate risk
management applications where onset date is a critical
factor in crop planting.

The cross-validated anomaly correlation skill for the
SAI of seasonal total is comparable to raw correlations
between the station average rainfall and the GCM prin-
cipal component predictors. This is encouraging because
the summary statistics of the simulations were computed
a posteriori from the cross-validated NHMM daily rain-
fall sequences. While regression models built directly
on seasonal statistics can be expected to outperform the
NHMM, the latter is motivated by the need for the daily
sequences for crop modeling, etc. The NHMM provides
an attractive model for downscaling to stochastic daily
rainfall sequences because it extends the conventional
stochastic daily weather generator to a multistation set-
ting in which the weather-state variable spans all the
stations, providing a less-noisy bridge to larger-scale cli-
matic forcing. However, competing methodologies such
as resampling methods have been shown to perform with
similar skill (Moron et al., 2008d).

The generally low levels of bias in the simulations is
encouraging, with accurate levels of interannual variance
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for the more skillful quantities, i.e. onset date, seasonal
total and rainfall frequency. However, the mean onset
date of the simulations is premature by about 1 week.
This is probably largely due to biases in the GCM predic-
tors since use of reanalysis-based predictors was largely
able to remove this bias (not shown). Further work is
required to address this issue, before the GCM—-NHMM
simulated daily rainfall sequences could be used to drive
crop models, for example, which may be sensitive to tim-
ing of rainy season onset. Our results are likely to be
typical of what might be expected for downscaling over
other areas of Indonesia where the large-scale climate sig-
nal in onset is pronounced, such as Sumatra, Java, Nusa
Tengara, and Timor.
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