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Abstract
The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming,
conceals some drought features that exacerbate food security. The new rainfall features include false
start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing
number of hot nights andwarmdays and a decreasing trend in diurnal temperature range.Here, we
explain thesemixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving
into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and
erratic distribution of events, and other atmospheric variables crucial in agro-climaticmonitoring and
seasonal forecasting. Further composite investigations of seasonal droughts, oceanswarming and the
regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern,
often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns,
associates to basinwarmings in theNorthAtlantic and theMediterranean Sea to trigger hybrid rainy
seasons in the Sahel.More challenging to rain-fed farming systems, our results suggest that these new
rainfall conditions willmost likely be sustained by global warming, reshaping thereby our
understanding of food insecurity in this region.

1. Introduction

According to recent global warming perspectives,
increased heating may not cause droughts but it is
expected that when droughts occur they are likely to
set in quicker and be more intense [1]. What if the
often discussed recovery of Sahel rainfall [2–5, 7] is
attributable to an increased frequency of intense rain
events while the spatio—temporal distribution is
similar to drought conditions? Such hybrid—mixed
dry and wet features–rainy conditions would be more
challenging to food security. Even if seasonal average
rainfall amounts are recovering from the previous
drought years, the distribution of rain events and

associated maximum and minimum temperature
extremes [8] determine the success or failure of local
smallholder farming systems.

However, the use of areal agro-meteorological
monitoring metrics does not depict these potential
risk factors. On the one hand, the adhoc droughtmon-
itoring metrics, based on rainfall and other variables,
are proven sensitive to mathematical formulations
and the baseline period used to establish the reference
climatology [1, 2]. On the other hand, seamless predic-
tions are hampered by large uncertainties resulting
from limited information concerning the future of El-
Niño Southern-Oscillations (ENSO) [1], the possible
combined effects of oceans warming [5, 9],
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anthropogenic aerosols and atmospheric green-
house-gases (GHGs) forcing on the natural variability
of rainfall [10, 11]. The need arises to investigate new
standards for agroclimatic drought (flood) monitor-
ing, and provide regional perspectives for predictions.

In the Sahel, adequate monitoring metrics need to
include rainfall timing (i.e., principal season of occur-
rence, delays in the start of the rainy season, occur-
rence of rains in relation to sensitive crop growth
stages), the distribution of rain events (i.e. rainfall
intensity, number of rainfall events) and the spatial
coverage [12–14]. Other factors such as high diurnal
temperature ranges, high wind speeds, low relative
humidity, high evapotranspiration and soil moisture
depletion, often associated with drought conditions,
may increase the severity of the event. In this paper, we
define a new basis for drought identification by recon-
ciling observational datasets. We further investigate
how both oceans basin warming and the regional
dynamic features in the low-to-mid level atmosphere
are involved in triggering droughts and hybrid rainy
seasons. These hybrid rainy seasons are considered as a
new threat to rain-fed farming systems that calls on the
use of novel climate information services for food
security in the region.

2.Data andmethods

2.1.Data sets
2.1.1. In situ and gridded data
The Sahel is defined here as the sub-Saharan region
that stretches from the western coasts of Senegal in
West Africa to the North-Eastern edges of the Sudan
and Ethiopia in East Africa between 10 to 20°N. The
rainy season of this region is dominated by the West
African monsoon which is confined between May to
October with June–September explaining the most
important amount of the seasonal totals. Observed
station data (In-situ data), including daily rainfall,
maximum and minimum temperature and other
variables, were contributed by the meteorological
services and agencies of the West African countries to
www.wascal.org and www.agrhymet.ne following spe-
cific data sharing policies. In this assessment, 112
rainfall recording stations have quality controlled daily
time series from 1950 to 2010. Among these 112
stations, there are 65 primary synoptic stations that
provide also daily minimum and maximum tempera-
tures from 1960 to 2012. They are well spread across
10–20°N and 16°W–20°E and the majority fall within
the region where average annual rainfall is between
200 mm to little less than 1100 mm (supplementary
figure 1). All historical data sets of rainfall and
temperatures are used to compute some agroclimatic
indices. This in situ data is reconciled with three other
open source gridded data sets to extract the cluster of
spatially coherent, synchronous and persistently dry

seasons irrespective of baseline climatology (see
methods).

Monthly precipitation data sets of NOAA’s Pre-
cipitation Reconstruction over Land (CPC-P/L),
CRU.TS3.21, and GPCC v6 are processed on a regular
0.5°×0.5° grid based on world-wide station records.
CRU.TS3.21 daily temperature range (DTR) data are
also used. CRU.TS3.21 data are available from http://
badc.nerc.ac.uk/browse/badc/cru/data/cru_ts/cru_
ts_3.21/data. The gridded data has longer time series
than the in situ data set. We extracted only the longest
common time series to all data sets (i.e. 1960–2010) for
the consensus analyses (figure 1). Monthly Extended
Reconstructed Sea Surface Temperature (ERSSTv4)
dataset is available on global 2°×2° grids, surface
pressure and U-V wind components are taken from
NCEP/NCAR Reanalysis 1 on a 2.5°×2.5° grids,
model-calculated soil moisture depth (CPC Soil
moisture) is on a 0.5°×0.5° grid and NOAA’s top of
atmosphere Outgoing Longwave Radiation (OLR)
dataset comes from a 1°×1° grid (1979–2012). CPC-
P/L, GPCC, CPC soil moisture, ERSSTv4 and NCEP/
NCAR Reanalysis 1 data sets are provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
from their Web site at http://www.esrl.noaa.gov/
psd/.

2.2.Methods
2.2.1. Agroclimatic monitoring indices
The seasonal and intra-seasonal agro-climatic indices
are defined based on the combination of in situ data,
gridded data and cropmodel simulations (supplemen-
tary tables 1 and 2). From the daily in situ data, we
define the date of the first efficient rainfall as the day
afterMay 1 when 20 mm totaled over 1 to 3 days is not
followed by a dry spell �20 days in the next 30 days.
The cessation date is the day after September 1 when
soil water content is�0.05 mmmm−1 [6, 13]. The soil
water content criterion is based on a simple water
balance model for which the average potential soil
evaporation per day is taken as 5 mm d–1 and storage
limit as 100 mm. For the crop simulations, we used the
Decision Support System for Agrotechnological Transfer
version 6 (DSSATv4.6) cropping system model [32],
calibrated and tested for some millet, maize and
cowpea cultivars. It was calibrated for pearl millet
cultivars (HKP, Souna 3, Zatib), cowpea cultivars
(IT98k-205-8 and IT98K-503-1) using experimental
data collected at AGRHYMET (Niamey) in 2002–2003
(detailed descriptions of the experiments are provided
in Salack et al [6]), at Bambey station (Senegal) in
1996–1997 and 2008–2009 for cowpea (detailed
descriptions of experiments are found in Belko et al
[16]). The CERES and CROPGRO modules of
DSSATv4.6 are calibrated and tested using both on-
farm surveys and field trials conducted at and around
experimental stations of Bambey (Senegal), Kano
(Nigeria), Niamey (Niger) and Sarria (Burkina Faso).
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The sensitivity tests simulations are described in
supplementary note 2. Using DSSATv4.6 [32], we
define the planting date as the first day between April 1
and July 31 when at least 40% soil moisture in the top
20 cm depth is reached, daily minimum temperature
does not drop below 11 °C for millet and cowpea
cultivars (below 8 °C for maize) and maximum temp-
erature does not exceed 35 °C [6]. Post-floral dry spells
are consecutive dry days observed fifty days after
planting date. For agronomic reasons a dry day is
defined as the day when cumulated rainfall is
<1 mm d−1 [13] and intense rainfall is the 95th
percentile of the 6month block daily rainfall.

2.2.2. Areal classification of dry seasons
Due to differences in data assimilation methods,
interpolation techniques and the number of stations
involved, rainfall information provided by gridded
data sets of different global data centers vary signifi-
cantly [1, 17] (supplementary figure 2). To work
around this discrepancy, spatially coherent, synchro-
nous and persistently dry seasons are extracted from
the consensus of both meteorological station data

(in situ data, 1960–2010) and the aforementioned
gridded data sets (1960–2012) for the Sahel region.
Our main hypothesis is that the rainy season at each
station can have a spatially uniform component shared
simultaneously with several other stations in the
region. We write the individual j station (grid point)
time series of the seasonal agro-climatic indices as Iij

b

where i denotes the year (i=1K N), and
b={1960–2010, 1961–1990, 1971–2000, 1981–2010,
1991–2010} denotes the baseline period

l
=

< ( )
⎪

⎪

⎧
⎨
⎩I

1, if 0,

0, otherwise.
1ij

b ij
b

where

l
s

=
-x x

,ij
b ij jb

jb

with lij
b as the zero mean and unit variance anomaly,

xjb and sjb are the mean and inter-annual standard
deviation for baseline b at station j, ( j=1KM). The
sampling of the baseline takes into account the
sensitivity of the anomaly to baseline climatology
shown by Trenberth et al [1]. It enables composite

Figure 1.Classification of dry/wet seasons fromdifferent data sets. The clusters of dry seasonswith area coverage from the in situ data
and gridded data sets CRU-TS3.21, CPC-Prec/L andGPCC v6. The consensus years of strong and very strong El-Niño (La-Niña)
years [15] are underlined.
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group of dry (wet) seasons to be formed based on the
most persistently negative (positive) trend of the index,
irrespective of baseline climatology. This baseline
sampling embeds the long term trends and variability
found in historical rainfall assessments over this region
namely wet, dry and recovery [2, 3, 6]. In the case of
the 6month (May–October) seasonal rainfall amount,
we choose the threshold −0.25 as the number of
standard deviations from the mean at which a year is
considered abnormally dry over the region in order to
approximately match the intensity of abnormally dry
years in the case of other monitoring indices [18, 19]
and ensure a minimum spatial coherence of identified
dry spells [14]. The spatial extent (SE) of a drought
event is measured from the anomaly index synchro-
nous overM stations:

å=
=

( )*
⎛
⎝⎜

⎞
⎠⎟B

ESE 100
1

, 2i
b

B

i
b

1

where å= =E
M

I
1

.i
b

j

M

ij

b

1

For every baseline period b, SEi indicates the seaso-
nal area coverage of synchronized drought over the
region. All SE time series are clustered using an
agglomerative hierarchical clustering technic based on
pairwise Euclidean distance between individual base-
line values. The number of classes is chosen, from the
dendrogram of classes, at the maximum branching
gap below which the interclass differences are statisti-
cally significant at the 5% level according to a ‘pooled
variance’ two-tailed t test. Three clusters of rainy sea-
sons are hereby identified. The drought cluster (DtC)
is composed of years with a precipitation deficit of at
least −0.25 standard deviation and at least 50% area
coverage (figure 1). The seasons with a precipitation
deficit of at least−0.25 standard deviation and an area
coverage less than 25% are considered ‘locally dry’ but
with a regional scale wet index. They form the wet
cluster (WtC). We define a consensus amongst the
observational data sets when a season is found dry
(wet) in all data sets. Years which do not fall within the
DtC (WtC) category are considered intermediate
(INT). The sensitivity of the SEi index was tested over
the entire region, by sampling country-by-country
catchment (to test the sensitivity of change in number
of stations per sample) , and by gridding the in situ data
on regular 0.5°×0.5°, 1°×1° and 2°×2° grids
respectively.

For further analyses, we also consider SST anoma-
lies (SSTAs) for the Niño 3.4 region (5°N–5°S,
120–170°W). We computed the November–Decem-
ber–January running average SSTAs taken from
ERSST v4 for which El-Niño (La-Niña) are defined
according to the thresholds given by NOAA-Climate
Prediction Center [15]: weak El-Niño (La-Niña)when
the anomalies fall between 0.5° and 0.9° (−0.5° and
−0.9°), moderate between 1.0° and 1.4° (−1.0 and
−1.4 anomaly), strong between 1.5 and 1.9 and very

strong when the anomalies are �2.0 (�−2.0). As
found earlier, years in which the north Atlantic is war-
mer than the global tropical oceans the Sahel will
receive abundant rains as a result of increased moist-
ure supplied in monsoon flows [5, 9, 21]. Here, the
new seasonal predictability index we are suggesting
consists of subtracting the north Atlantic (10–75°N,
75°W–15°E) from the global SST before computing
the anomalies by subtracting the average climatology
from the time series. Other oceanic basins SSTAs ana-
lyzed during the June–September season include sub-
tropical north Atlantic (sub_NATL, 10–40°N, 15–75°
W), the extra-tropical north hemispheric Atlantic
(NH_NATL, 30–75°N, 15–75°W), the Mediterranean
sea (MEDIT, 0–35°E, 30–44°N), the equatorial Atlan-
tic (Eq_ATL, 5 S–5°N, 40°W–15°E), the South Atlan-
tic (SH_ATL, 10 s-0°N, 20°W-10°E) and the Eastern
Equatorial Indian ocean (Eq_IND, 15°S–15°N,
50–90°E) (figures 3(c)–(d) and supplementary
figure 5).

3. Results

3.1. Seasonal droughts, SSTwarming and regional
atmospheric circulation nexus
The rainy seasons of the DtC are characterized by
higher rainfall deficit with larger spatial variancewhich
is also visible in the seasonal cycles (supplementary
figure 3), including late onset and shorter durations of
the cropping season (figure 2). Long dry spells after
planting and during the flowering phase of rain-fed
crops are the key hazards that determine the failure of
rain-fed farming systems [6, 13, 14]. The soil moisture
deficits added to low soil fertility, high temperatures
and evaporation rates increase the rate of agroclimatic
risks inherent to seasonal droughts. Further analyses
reveal also a significant inverse co-variability of DTR,
rainy days and rainfall amount which is enhanced
during extreme droughts (supplementary figures 4(a)–
(b)). All over the Sahel, dry seasons exhibit larger
amplitude of DTR anomalies compared to wet years as
a result of seasonal fluctuations in moisture fluxes and
radiative heating (supplementary figures 4(c)–(d)).
The strong relationship between DTR, rainy days and
rainfall amountmakes DTR anomalies useful to detect
drought flags such as intra-seasonal spells, the sub-
seasonal heat stress and can also determine onset/
cessation of cropping season in the Sahel. Table 1
summarizes the threshold values which combination,
during the life cycle of staple field crops, strains their
growth, development and production, if optimum
crop management measures are not applied by the
farmer. These average values are estimated from the
seasons of the DtC and constitute the critical limits for
most cropping systems to be sustained over larger
portions of the Sahel region. We also believe that any
environmental variable drawn from the DtC cluster
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can be considered as reference baseline threshold
useful in monitoring and early warning under climate
change.

The Sahel is a remote ENSO-sensitive tropical
region and usually, droughts cover more than twice
the land area in years of a strong versus weak El-Niño

Figure 2.Agro-climatic indices comparison between drought andwet clusters. The percent difference is given by the number between
boxes (**) is statistically significant at 95% confidence level according to a pulled-variance Student t-test. The boxes andwhiskers
denote the spatial distribution across the Sahel. The horizontal segment inside boxes:median andwhiskers:minimum/maximum.

Table 1.Threshold values characterizing seasonal droughts in the Sahel and their percent difference with 1991–2013 time series. The para-
meters l and ssp are the area average and spatial distribution offset (standard deviation). The positive (negative) sign is an increase
(decrease).

Index

Drought cluster 1991–2012
Difference

l ssp l ssp (%)

Total rainfall (mm) 569.8 299.4 721.4 48.8 +21a

Number of Rainy days (#) 42 22.5 47.3 3.1 +12a

Date of first rain event (DOY) 138 35d. 133 34d. −3

Extreme dry spell (days) 18 16 9 1 −109a

Planting date (DOY) 154 44d. 151 15.6 −1

Dry spell after onset (days) 9 2 8.6 1 −1

5-daywet spell (mm) 73.7 22.1 91.2 8.8 +19a

Intense rainfall (mm) 108.9 66.7 154.9 86.5 +30a

Post-floral dry spell (days) 10 6 9 1 −17a

Cropping duration (days) 102 44 116 6 +12a

Cropping cessation date (DOY) 244 13d. 245 14d. +1

Soilmoisture (mm) 165.8 94.3 276.3 21.6 +40a

Daily temperature range (°C) 10 1.9 10 1.3 −1

a Statistically significant at 95% confidence level using a pulled-variance Student t-test. **d.=day(s).
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event (warm ENSO) [19]. The rainy seasons in the
Sahel are also affected by other regional scale atmo-
spheric factors which may trigger dryness even when
ENSO signal is weak or neutral (supplementary note
1). In dry years associated with strong/very strong
November–December–January ENSO signal (strg
ENSO, herewith), warm sea surface temperature
anomalies (SSTAs) are found in the Equatorial east-
ern/central Pacific (Nino3, Nino3.4 regions) [15].
Spatially coherent droughts are regulated by stronger
East-West Walker circulation cells forcing anomalous
subsidence of dry air over the West and East African
regions [20, 21]. The descending air weakens the Had-
ley cell by slowing down the near surface, low level
southerly winds and reducing both moisture flux and
the rate of deep convection over the region [22, 23]
(figures 3(a)–(c)). Meanwhile, a wide spread con-
tinental radiative heating, resulting from less cloud
cover, increases the diurnal temperature range (DTR)
and reduces the meridional temperature gradient over
the continent. This situation coincides with a dipole in
the Atlantic Oceanwith negative SSTAs north of 10°N,
positive south and in the equatorial Indian Ocean. As
the Sahel dries, the intensity of the Indian monsoon
also reduces [20]. The weakening of the tropical diver-
gent circulations (i.e. the Walker and local Hadley cir-
culations) causes changes in energetic maintenance of
the Tropical Easterly Jet (TEJ) [24, 25]. The African
Easterly Jet (AEJ) becomes more enhanced and

extended (figure 3(g)), suppressing convective activ-
ities in the Inter-tropical Convergence Zone (ITCZ). A
weaker TEJ aligned with an enhanced AEJ, and a
southward-shift of the ITCZ result in a reduced fre-
quency of westward propagatingmesoscale convective
systems (MCS) [25]. TheseMCS contribute themajor-
ity of rainfall events in the Sahel [26]. Late onset and
extreme dry spells are experienced in such dry seasons
and the energy thresholds needed to supply moisture
into the ITCZ and trigger deep convection are met late
July [14].

When ENSO signal is weak or neutral (no ENSO,
herewith), drought may occur as well. In this case,
there is a shallow generalized warming of the tropical
oceans and deep convection is observed over the East-
ern Latine America which contributes to weaken the
sub-tropical high pressure center at its northerly posi-
tion in the south Atlantic (figures 3(d)–(f)). This redu-
ces the strength of the penetrating cross-equatorial
south-westerlies causing the shallow low-levels moist-
ure inflow [22, 23]. In the North Atlantic, the sub-tro-
pical basin becomes warmer than the extra-tropical
North Atlantic basin (NH_NATL). The negative
SSTAs in the NH_NATL and the Mediterranean Sea
(MEDIT) are associated with positive surface pressure
anomalies of the subtropical high pressure belt includ-
ing its Libya-Egypt eastern extension. This creates a
strong and consistent inflow of northeasterly winds
over the Sahel preventing further migration of the

Figure 3.Average June–September anomalies and atmospheric wind profile in drought clusters (DtC) of strong/very strong ENSO
(strg ENSO), weak/neutral ENSO years (noENSO). Only statistically significant features are drawn. The black rectangle determines
the Sahel. Factors in (a)–(f) include Sea Surface temperature anomaly (SSTA), Top-of-atmosphere-Out-going Longwave Radiation
anomaly (OLRA), Surface Pressure anomaly (Pres.)&925 hPawind anomaly.Westerly and southerly directions indicate positive
anomalies. Only vectors forwhich at least one component is larger than 1.5 m s−1 are plotted. The u-wind anomalies in (g)–(j) are
relative to 1981–2010 climatology. Above 700 hPa, positive (negative) u-wind anomalies represent weakened (strengthened) easterly
wind.
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rain-belt [22, 25]. These particular atmospheric pat-
terns found in the seasons of the drought cluster (DtC)
are reversed or absent in the wet cluster (WtC) (sup-
plementary figures 5(a)–(f) and supplementary
figure 6).

3.2. Explaining the post-1990 hybrid rainy seasons
From the consensus of all data sets, only five (six)
seasons of the DtC (WtC) fall within the period post-
1990 (including the year 1990) (figure 1). Ten dry
seasons encountered in this assessment are categorized
as intermediate (INT) with an area coverage in the
interval ] [25%; 50% . The comparative analysis of
the 1991–2012 periods with DtC seasons shows a
similarity of distribution of rainfall events even though
a higher rainfall amount is recorded (table 1). This
confirms that the rainfall distribution exhibits drought
characteristics and the recovery of average rainfall
amounts is explained by an increase of intense rainfall
and wet spells [6, 7]. The spatial variability of these
parameters is relatively homogenous over the region
as opposed to DtC (table 1). In this mixed dry/wet
sub-seasonal characteristics of rainy seasons, farm
planning becomes difficult.

The ENSO signal in the seasons of the INT cluster
is weak-to-moderate El-niño (except for 1997 which

was classified as very strong El-niño year) [15]. The
June-to-September regional low-to-mid level circula-
tion patterns of the INT (post-1990) are stationary
relative to those found in dry years of weak-to-neutral
El-Niño signal (figures 4(a) and (b)). In contrast there
is a top-to-bottom asymmetric wind speeds in the INT
(pre-1990) in which the TEJ is strong coinciding with
much warmer sub-tropical north Atlantic and south
Atlantic (figures 4(c) and (d)). The warming of these
basins has a combined positive effect of raising the
thresholds for deep convection to occur by increasing
moisture supply to the monsoon flow [5, 9, 21]. With
the strong TEJ, the upper-level divergence is enhanced
[24, 25], sustaining thereby a relatively strong Hadley
cell circulation over the region that counter balances
the large scale subsidence imposed by weak-to-mod-
erate El-Nino [20]. However, in the post-1990 INT
types of drought, the TEJ becomes weak. The AEJ is
relatively enhanced with extended core and its vertical
axis aligning with that of the TEJ like in the case of
1983 described byNichoson [25]. Similarly to DtC (no
ENSO) situations, shallow warming occurs in the
north Atlantic but much in the MEDIT. A warmer
MEDIT enhances moisture content in the lower tro-
posphere that is advected southwards into the Sahel by
the low-level mean flow across the eastern Sahara [27].

Figure 3. (Continued.)

7

Environ. Res. Lett. 11 (2016) 104008



These basin warmings and the regional-to-sub-regio-
nal atmospheric circulation features make the INT
droughts not wide spread droughts like the DtC cate-
gory but tend to be mixed dry and wet seasons i.e.
hybrid rainy seasons.

Years since 1970s are believed to include anthro-
pogenic climate change signature with the indirect
GHGs forcing-induced SSTAs which caused past

droughts in the Sahel [5]. With the increasing global
warming, tropical oceans are also warming [9] and
temperatures in most parts of the Sahel increased in
the recent years [4, 5, 8, 10]. While most of the atmo-
spheric large scale and sub-regional scale drivers of
rainfall such as the Sahara Heat Low have become
more enhanced [4, 21], recent climate model experi-
ments suggest a direct influence of higher levels of

Figure 4.Average June–September atmospheric wind profiles and SSTAs in oceanic basins of INTdrought cluster. Pre-1990 (1965,
1968, 1970, 1974, 1976–77, 1979, 1980–81, 1988–89) and Post-1990 (1991, 1995–97, 2000, 2004–05, 2004–07, 2009). The dashed
thick iso-line is the−10 m s−1 contour ofDtC (noENSO). In (a) and (b), the solid and dashed u-wind anomaly profiles are relative to
DtC (strg ENSO)&DtC (noENSO) respectively. Panel (c) and (d) the box plot show SSTAs spread acrossmonths in each basin. The
latter include the sub-tropical northAtlantic (sub_NATL), the extra-tropical north hemispheric Atlantic (NH_NATL), the
Mediterranean sea (MEDIT), the equatorial Atlantic (Eq_ATL), the SouthAtlantic (SH_ATL) and the Equatorial Eastern Indian ocean
(Eq_IND).
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GHGs in the atmosphere as the main cause of this
recovery in rainfall amounts [10], with an additional
role for surface air temperatures [4, 10, 21]. Although,
these climatemodel results need further investigations
to better established the direct influence of GHG on
the long term climate of the Sahel [5, 28], the rapidly
increasing air pollution might have also affected the
regional climate [11]. Like the seasonal rainfall totals,
MCS sizes, organization and intensity have also
increased slightly after the mid-1980s [26]. The com-
bination of the aforementioned factors with the upper
wind patterns will most likely lead to increasing hybrid
rainy seasons.

4.Discussion and recommendations

The recent partial recovery of annual rainfall amounts
fluctuating around the long-term mean with an
increase in extreme rainfall events, indicate an intensi-
fication of the hydrological cycle [5]. The local climate
is drier in the sense of persistent dry spells compared to
the 1950s–1960s [14], while at the same time there is
an increased probability of floods [7, 8]. The statistical
significance levels of this recovery, for the years after
1990 (including its features of high variability), have
been demonstrated [2, 3, 5–7]. However, the process-
based assessments needed to explain and hypothesize
on plausible future trends are lacking [28]. The recent
model-based arguments provided byDong and Sutton
[10], stating that green-house gases forcing has the

most important role in this recovery, are to be taken
with caution because of the internal errors inherent to
single model results [5, 28]. In this paper, we bring
forth additional process-based arguments provided by
observations consensus and reanalysis data. The post-
1990 recovery in the Sahel is dominated by hybrid
rainy seasons explained by the combined effects of
Ocean basins warming and the asymmetric regional
low-to-mid-level atmospheric winds pattern. All
atmospheric features displayed on figures 3 and 4 (and
supplementary figures 5 and 6) have been rated
statistically significant (only features significant at 95%
confidence level according to a pulled-variance Stu-
dent t-test were highlighted for surface pressure, wind,
and SSTAs). Therefore, these results add value to
hypotheses proven by previous other works concern-
ing the importance of the internal variability of the
regional climate [4, 9, 11, 21, 26, 28].

For a variety of agricultural practices, many risk
factors are inherent to hybrid rainy seasons which are
only observable from on-farm surveys and experi-
ments. The erratic distribution of events leads to
higher rates of re-planting, post-flowering water stress
of up-land crops, flooding and water-logging of low-
land cereals. The potential depletion of arable land and
micronutrients due to water erosion is higher as a
result of intense rainfall events. The increase in tem-
peratures leads to heat stress, increased crop water
demand, increased respiration rate, suppressed floral
development, hastening crop maturity and reduce
productivity [6]. The drought thresholds presented

Figure 4. (Continued.)
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here are useful for agroclimaticmonitoring better than
some areal droughtmetrics based on rainfall and other
variables which tend to be relatively sensitive to certain
mathematical formulations, the variables used to
compute them, or the baseline period used to establish
the reference climatology. If droughts were to occur
[1, 29] or hybrid rainy seasons remain the dividends of
the natural climate variability in this region, the profil-
ing analysis of drought thresholds will improve the
operational monitoring and early warning services for
water management and farming systems. With the
consistent relationship between seasonal droughts and
DTR anomalies, the use ofDTRwill improve themon-
itoring of hybrid rainy seasons (i.e. DTR as a proxy
variable beside rainfall amount and number of rainy
days). Under global warming, we recommend the use
seasons belonging to the DtC and their associated
threshold values as the new standards for early detec-
tion of agroclimatic extremes to complement the
existing arealmonitoring indices.

In all Sahel countries, there is a limited availability
of high quality, real-time in situ data because the den-
sity of local observation networks is mostly low
[17, 30], some crucial atmospheric variables are less
observed [11], and data collection and transmission
are done manually with many outdated equipment.
Our other recommendation is that longer term pro-
grams, supporting climate information services,
should include infrastructural improvement of the
hydro-climate observation networks but also the ser-
vices value chain must include climate field schools
and response farming [6, 31] to translate the seasonal
rainfall variability into farming options that will spur
smallholder farming system to build resilience. This
will improve the quality of local climate information,
its use by farmers and the availability of real-time
in situ data, improve seamless predictions, and enable
transboundary data sharing policies amongst coun-
tries so that global data centers can also improve their
products for the region. We urgently advocate that the
national adaptation programs of action, in countries
of the Sahel, address hydro-climate observation net-
works and agroclimatic extension services.
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