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Abstract We assess the deterministic skill in seasonal climate predictions of Sahel rainfall made with
the North American Multimodel Ensemble (NMME). We find that skill for a regionally averaged rainfall
index is essentially the same for forecasts for the July–September target season made as early as
February/March and as late as June. The two dominant influences on the climate of the Sahel, the North
Atlantic and the global tropical oceans, shape this predictability. Multimodel ensemble skill hinges on the
combination of skillful predictions of the El Niño–Southern Oscillation made with one model
(CMC2-CanCM4) with those of North Atlantic sea surface temperatures made with another
(NASA-GEOSS2S).

Plain Language Summary The seasonal climate outlook forum for the Sudano-Sahelian region
of West Africa convenes in middle/late April at the earliest, because the statistical models currently in use
to make predictions for the July–September rainy season have little skill before then. Here we show that the
North American Multimodel Ensemble (NMME), a seasonal climate prediction system based on dynamical
models, predicts Sahel-wide July–September rainfall anomalies in February/March with essentially the
same skill as in June. An earlier, by 2–3 months, outlook is consequential to decisions that can exploit it
for better preparedness, such as purchasing, stocking, and distributing adapted seed varieties or triggering
humanitarian intervention to prevent regional food insecurity. The NMME prediction system owes its
skill to the correct characterization of oceanic influence on Sahel rainfall, which is achieved by combining
output from two models particularly skillful at predicting North Atlantic and tropical Pacific sea surface
temperature anomalies respectively. Recognition that the oceanic source of predictability is the same for
the entire region means that whether the forecast for the regional average holds in a given year, at a specific
location, largely depends on the strength of oceanic influence in that year, rather than on any local
condition or consideration.

1. Introduction
Rainfall in the Sahel, the semiarid southern edge of the Sahara, is characterized by high spatiotemporal
variability. Variability in time is evident in Figure 1, an update of Ali and Lebel's (2009) analysis, in the mul-
tidecadal swings between the anomalously wet 1950s and 1960s and the anomalously dry 1970s and 1980s.
Interannual variability is particularly marked in the current epoch, which has been labeled a partial recovery
(AGRHYMET, 2010; Nicholson, 2005). Variability in space is an intrinsic property of convective precipita-
tion (Le Barbé & Lebel, 1997; Rio et al., 2019). Despite this apparent complexity, seasonal and subcontinental
anomalies are coherent. The strength of observed regionally averaged precipitation anomalies is propor-
tional to the area characterized by anomalies of consistent sign; that is to say that the larger the anomaly in
the regional average, the more extensive the area of anomaly of the same sign (Ali & Lebel, 2009). A leading
Empirical Orthogonal Function of sub-Saharan African rainfall variability defines the Sahel as the pole-
ward edge of the Northern Hemisphere summer monsoon (Giannini et al., 2005). In models, this pattern is
present in atmospheric simulations run over climatological sea surface temperature (SST) and amplified in
the presence of observed SST variability.
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Figure 1. Standardized Sahelian rainfall index from rain gauge
observations. Updated from and calculated over the same region as Ali and
Lebel (2009), covering the countries of the CILSS, from the Atlantic coast
to Chad.

For societies where a large fraction of the population finds employment
in the agricultural sector, skillful seasonal prediction is a valuable tool
to manage crop risk related to climate variation (Ouedraogo et al., 2018;
Tall et al., 2018). Indeed, the West African climate outlook forum has
met annually since 1998 to produce consensus forecasts (Ogallo et al.,
2000; Traoré et al., 2014). Initially a single forum, referred to as PRE-
SAO from the French acronym for Prévisions Saisonnières en Afrique de
l'Ouest (Seasonal Predictions in West Africa), the process has recently
split into two, PRESA-GG and PRESA-SS, involving the Gulf of Guinea
and Sudano-Sahelian countries, respectively, in recognition of differences
in seasonality. The original prediction methodology was statistical and
exploited multilinear regression to relate the predictand, that is, precipi-
tation at broad subnational scales, with predictors chosen among a small
set of SST indices (e.g., Baddour, 1998; Folland et al., 1991; Ward et al.,
1993). In current practice, during the preforum experts from the National

Meteorological Services present their predictions, still largely statistical in nature. Discussions combining
these quantitative assessments with the qualitative assessment of predictions made by research and opera-
tional centers worldwide are distilled into a consensus forecast, which is communicated to stakeholders in
the forum.

Globally, seasonal prediction has evolved from a two-tier to a one-tier approach. In the two-tier approach
of the mid-1990s, SSTs were predicted first, usually with a combination of statistical and dynamical mod-
els, and used as boundary conditions for atmospheric models (e.g., Barnston et al., 2003). In the current
one-tier approach, a coupled ocean-atmosphere model is used to simultaneously predict SST and atmo-
spheric variables of interest, typically temperature and precipitation. Operational centers, labeled Global
Producing Centres of Long-range Forecasts by the World Meteorological Organization, make predictions
with dynamical models. In fact, current prediction systems combine repeated simulations—termed ensem-
bles, made up of members started from slightly different initial conditions—with different coupled models
into a multimodel ensemble (MME). These efforts started with Development of a European Multimodel
Ensemble system for seasonal to inTERannual prediction, a European project (Palmer, 2004). Efforts to
increase access to the output from dynamical forecasts are more recent. The North American Multimodel
Ensemble (NMME Kirtman et al., 2014), the prediction system exploited here, is one such system. It started
sharing real-time forecasts in 2011. These are updated monthly and are openly accessible through the IRI
Data Library (see supporting information for a brief tutorial).

To facilitate the production of national forecasts at PRESAO, IRI developed the Climate Predictability Tool
(CPT Mason & Tippett, 2017). Using dynamical model output as the predictor field, Ndiaye et al. (2008)
demonstrated the improvement in skill when using the 925 hPa wind field for Sahel rainfall instead of rain-
fall itself. The use of a dynamical prediction system over a statistical one is advantageous, because once a
robust model output statistics (MOS) routine is put in place, such routine is independent of lead time. In
contrast, because there is no guarantee that the predictors extracted from observations for a given lead time
would be the same for all lead times, development of statistical routines requires that a model be developed
for each lead time. To illustrate this difference, let us presume that predictability in our region of interest
is defined by the El Niño–Southern Oscillation (ENSO). The skill of a statistical prediction system is con-
strained by the ability to identify the signature associated with ENSO evolution in observations at the desired
lead time. In contrast, a dynamical prediction system relies on the system's ability to predict ENSO with the
desired lead time. Ndiaye et al. (2011) first demonstrated the potential for increasing forecast lead time in the
Sahel using dynamical models, highlighting the ability of the National Center for Environmental Prediction
Climate Forecast System (CFS) to capture the ENSO. Sheen et al. (2017) showed skill in forecasts initialized
in November for the following June–August season in the UK Met Office forecast system DePreSys.

Because it still relies primarily on statistical schemes, the PRESAO process does not attempt predictions
earlier than April or May for the June–August and July–September seasons in the Sudano-Sahel. Here we
report on the breakthrough in increased lead time of a skillful prediction for Sahel precipitation, which is
made all the more robust by exploitation of a multimodel ensemble, the NMME. Second, we reflect on the
spatiotemporal nature of predictability, specifically its oceanic origin and implications for the provision of
local information typically demanded by real-world decisions.
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Figure 2. (Top panel) Sahel rainfall time series, the average over the “subcontinental Sahel” region (10–20◦N, 20◦W to
40◦E), in the multimodel mean of five NMME models, in colors according to prediction start time (see legend insert),
and in observations (CHIRPS) in black. (two rows of panels) Skill of NMME predictions for the July–September season.
Predictions are started from the previous January, on the right in each panel, to June immediately before the season, on
the left, corresponding to lead times from 6 to 1 month. Skill is measured by Spearman (solid line) and Pearson (dashed
line) correlations over 1982–2016: the thick, red line is for the multimodel mean, and the thinner lines of different
colors are for single models, with the thick gray dotted line representing the 5% significance level. (top row) Sahel-wide
predictions. (bottom row) Predictions over Senegal. (left column) prediction of the spatial average. (middle column)
Grid point prediction, averaged over the area. (right column) Predictions based on Sahel average rainfall of (top row)
the fraction of Sahel area under positive rainfall anomaly and (bottom row) Senegal average rainfall.

2. Data and Methods
Predictors are derived from the precipitation fields output by five models in the NMME, one per model-
ing group (Environment Canada, NASA/Goddard Space Flight Center/Global Modeling and Assimilation
Office, NCAR/Center for Ocean-Land-Atmosphere Studies/Rosenstiel School for Marine and Atmospheric
Sciences, NOAA/Geophysical Fluid Dynamics Laboratory, and NOAA/National Centers for Environmental
Prediction/Climate Prediction Center). The model versions selected were current as of the 2018 PRESA-SS,
which was held in Abidjan, Côte d'Ivoire from 30 April to 4 May. Details of the simulations are reported in
Table S1 in the supporting information. The predictors are as follows:

1. regional rainfall averages, over two domains of extremely different size: a subcontinental Sahel (10–20◦N,
20◦W to 40◦E), and a rectangular domain encompassing a single country (Senegal: 13–16◦N, 17–12◦W).

2. the full precipitation fields over the same domains specified in (1).
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Predictands are derived from CHIRPS (University of California, Santa Barbara's Climate Hazards group
InfraRed Precipitation with Station data Funk et al., 2015). They mirror the two types of predictors defined
above, that is, spatial average or explicit grid point-by-grid point field. Specifically, in the left and middle
columns of the rows in Figure 2, discussed in section 3, predictor and predictand quantities are the same.
In addition, to measure the spatial coherence of predictions, we consider a third type of predictand:

3 the fraction of area characterized by abundant rains, that is, the portion of grid points in a region with
rainfall anomalies greater than 0.5 times the local standard deviation.

We assess predictions at two different spatial scales, namely, subcontinental and country-wide, in part to
highlight the large-scale nature of predictability of Sahelian climate and in part to give a sense of how such
predictability is affected when national perspectives are taken into account. The specific choice of Senegal
is relevant to discussions of the heterogeneity of climatic variations between the western and central Sahel
(Biasutti, 2013; Lamptey, 2008; Lebel & Ali, 2009; Panthou et al., 2018; Salack et al., 2014). We provide recipes
to download predictor fields from the IRI Data Library in the supporting information.

We are interested in seasonal prediction of precipitation accumulation for the core monsoon season, that is,
July–September (JAS). We refer to the shortest lead time, that of a prediction for JAS made at the beginning
of June, as a 1 month lead and to the longest lead time, that of a prediction made for the same JAS target at
the beginning of January, as a 6 month lead. For each model we compute the average of all available ensem-
ble members, with ensemble size varying with model and/or between hindcasts (1981–2010) and real-time
forecasts (2011–2016) as reported in Table S1. Single-model ensemble means are weighed equally when
averaged into the multimodel mean. We use deterministic measures of skill, that is, both Pearson and Spear-
man correlations (Barnston et al., 2019; Becker et al., 2014), meaning that we only take into consideration
information derived from the ensemble mean, not from the ensemble spread.

3. Results
The top panel of Figure 2 shows time series of NMME predictions of Sahel-wide rainfall anomaly at different
lead times, in color, and compares them to observations, in black. Qualitatively, it is possible to associate
successes in prediction with the recurrence of La Niña events and abundant rainfall, for example, in 1988,
1998–99, and 2010, and of El Niño events and deficient rainfall, for example, in 1987, 1997, and 2009. It is
also possible to identify calamitous forecast failures, most notably, in 1984, the driest year in the twentieth
century.

3.1. Prediction Skill as a Function of Lead Time and Spatial Extent
Panels in the lower portion of Figure 2 quantify skill dependence on forecast start date. Skill is measured by
correlation between predictions and observations of rainfall over the 35 year period of study (1982–2016: the
5% significance level with 33 degrees of freedom is 0.33, plotted in the thick gray dotted line). In each panel,
the forecast made for the shortest lead time, at the beginning of June, is on the left, with lead time increasing
to the right. Panels on the top of two rows in Figure 2 are for the subcontinental Sahel, and panels on the
bottom of two rows are for a box including Senegal. In each panel, solid lines denote Spearman correlation
and dashed lines Pearson correlation, in the thick red line for the multimodel mean and in thinner lines of
different color for the single models.

The panels in the left column of the rows in Figure 2 represent correlations of regional averages, that is,
the skill in predicting the spatially averaged anomaly in accumulation for the region under consideration.
Predictor and predictand are the same. For the subcontinental Sahelian average (top row, left) multimodel
mean values are remarkably consistent across lead times, varying between 0.5 and 0.6. Two models show
skill comparable to the multimodel mean, those in the orange and turquoise lines. Orange model correla-
tions are lowest for forecasts with start dates in January and February and increase as lead time decreases.
Turquoise model correlations are lowest for forecasts with an April start date. When Senegal average rain-
fall is used to predict itself (bottom row, left) the situation is more unstable: (i) Values are overall lower,
(ii) the multimodel mean is surpassed by two models, in purple and especially in orange, and (iii) there is
greater variation with start date, with a tendency for skill to increase as lead time decreases (with the notable
exception of the orange model).

The panels in the middle column of the two rows in Figure 2 represent anomaly correlation as defined
in Becker et al. (2014): Correlations in time between the ensemble mean predicted and observed fields,

GIANNINI ET AL. 4 of 9



Geophysical Research Letters 10.1029/2020GL087341

Figure 3. Regressions of predicted July–September Sahel rainfall with simultaneously predicted sea surface temperatures, for start dates from January on the
right to June on the left. The separate top row is for the multimodel mean. Rows below are for single models. Values are in degrees Celsius: contour starts at
0.1◦ and is every 0.2◦. Color, red for positive values and blue for negative values, indicates statistical significance of the regression values at the 5% level.

regridded to the same 1◦ × 1◦ grid in longitude and latitude, are first computed locally, at each grid point, then
averaged over all grid points in the domain, again for the entire subcontinental Sahel in the top row and for
Senegal in the bottom row. Again, predictor and predictand are the same. The loss of skill when comparing
grid point value (middle column) and regional average (left column) predictions is large. The average of
local correlation values varies around 0.3 for the multimodel mean of subcontinental Sahel rainfall, against
values between 0.5 and 0.6 for the regional average, and is consistently lower for single-model forecasts. The
loss of skill is smaller in the case of Senegal, where it was lower to begin with.

To further characterize the nature of local predictability, the panels in the right column in the rows in
Figure 2 depict the skill in predicting measures of spatial coherence using the Sahel regional average as pre-
dictor. In the top row, right column, Sahel average accumulation is used to predict the fraction of Sahelian
domain covered by a positive anomaly 0.5 times the local standard deviation or greater. Ali and Lebel (2009)
found consistency in the relationship between the magnitude of a regionally averaged anomaly and its spa-
tial coherence, that is, the spatial extent of anomalies of the same sign. We interpret the comparison of skill
in predicting the area with significant positive precipitation, in the top row, right column of Figure 2, with
that in predicting the regional average, in the top row, left column, consistently with Ali and Lebel (2009).
The regional average is a good measure of the strength of the signal: The stronger the signal, the larger the
number of points behaving consistently with it. However, the loss of skill in the top row, middle column
implies that exactly which points or locations will behave as predicted, and which will deviate from pre-
diction, is unpredictable. In the bottom row, right column, Sahel average accumulation is used to predict
Senegal average accumulation. Comparison of the bottom row, left and right columns in Figure 2 shows that
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the Sahel average is a better predictor of Senegal average rainfall than the Senegal average itself and that,
once more, the orange model is more skillful than the multimodel mean.

3.2. Oceanic Sources of Predictability
To characterize the oceanic origin of NMME predictability, we regress predictions of subcontinental
July–September average Sahel rainfall onto the simultaneous SST field. In Figure 3, the predicted rainfall
index is regressed against predicted SST fields. In Figure S1 in the supporting information, the same pre-
dicted rainfall index is regressed against observed SST fields. Panels in each row of Figure 3 (and Figure S1
in the supporting information) are ordered by forecast start date, with the shortest lead, June, on the left
and the longest, January, on the right. The single row at the top of Figure 3 (and Figure S1) represents the
multimodel mean. The following five rows represent each model's ensemble mean.

ENSO is the strongest source of predictability (Ndiaye et al., 2011). As expected, above-average Sahel rainfall
is associated with the negative phase of ENSO, or La Niña conditions in the tropical Pacific (Giannini et al.,
2003; Janicot et al., 1996; Ward, 1998). The ENSO signature is present in the multimodel mean and in most
models at all lead times. The long-lead skill in ENSO prediction of CMC2-CanCM4, the turquoise model in
the rows in Figure 2 and the third row in the bottom of Figure 3, is well known (e.g., Gonzalez & Goddard,
2016). This model's skill in predicting Sahel rainfall rivals that of the multimodel mean for all start dates
except April, as noted in the previous subsection. This loss of skill in predicting Sahel rainfall in view of the
model's skill in predicting ENSO can be interpreted as a relic of the spring predictability barrier.

The North Atlantic Ocean is a complementary source of predictability. Its contribution is best captured in
two models, in the middle and especially in the bottom of two rows in Figure 3, which shape the multimodel
mean picture. These correspond to the turquoise and orange lines in the rows in Figure 2, respectively. In the
turquoise model, CMC2-CanCM4, the North Atlantic warming that is positively correlated with Sahel rain-
fall is extratropical in winter and propagates, for lack of a better word, along the eastern boundary toward the
tropics as the Sahelian rainy season approaches. In the orange model, NASA-GEOSS2S, the 5% statistical sig-
nificance of positive regression values colors the entire North Atlantic basin starting in January, with largest
values in extratropical latitudes, between 30◦N and 60◦N. Regression values in the tropical North Atlantic
weaken in March–May and strengthen in June, while regression values with ENSO strengthen, peaking in
May. In the multimodel mean, the fact that extratropical North Atlantic Ocean anomalies are strongest in
winter (January and February start dates) supports relating these to wintertime North Atlantic Oscillation
(NAO) forcing of SST anomalies. The late-spring strengthening of tropical North Atlantic anomalies is sug-
gestive of reemergence mediated by the response of trade winds to higher-latitude SST anomalies (Chiang
et al., 2003; Czaja et al., 2002; Clement et al., 2015; Seager et al., 2000) and is worthy of more detailed research.

3.3. Translating Insights Into Practice at PRESA-SS
Finally, to relate directly to the practice of making seasonal predictions at PRESA-SS, we run CPT to test our
insights about the spatiotemporal predictability of Sahel rainfall. As an illustration, we consider predictions
made at the beginning of April, the start date most closely preceding the current PRESA-SS calendar. The
predictor field is NMME multimodel mean precipitation in the 10–20◦N, 20◦W to 40◦E region. The predic-
tand field is CHIRPS precipitation in the same region. To filter out spatial noise, when running canonical
correlation analysis (CCA; Bretherton et al., 1992), CPT extracts the dominant spatiotemporal pattern(s)
applying principal component analysis (PCA Preisendorfer, 1988) to the predictor and predictand fields. The
resulting leading patterns of variability in each field are correlated in CCA to predict the best correlated pat-
tern(s). CPT conveniently automates this routine and provides cross-validated measures of skill. One such
summary measure is the goodness index, defined as the spatial average of Kendall's tau rank correlation
(Alfaro et al., 2018; Wilks, 2011). CPT computes this index for all combinations of predictor and predic-
tand principal components (PCs) and retains as the predictive model the one associated with the highest
goodness index.

In our case, when we test retaining a maximum of 10 PCs of the predictor and predictand fields to predict a
single precipitation pattern, the best model is composed of all 10 predictor and only 1, the first, predictand
PCs. These retain, respectively, 96% of the total variance of the predictor field and 46% of the predictand field.
This model essentially predicts Sahel-wide rainfall. The goodness index varies between 0.247 and 0.359,
when 1 and 10 predictor PCs are retained, respectively. In comparison, when we use the Sahel-wide precip-
itation average as the single predictor, CPT computes a goodness skill of 0.226. These values are consistent
with the multimodel mean anomaly correlation values plotted in Figure 2, in the top row, middle column,
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Figure 4. Correlation maps of the five leading NMME precipitation predictor fields in the region 10–20◦N, 20◦W to 40◦E extracted from CPT with
(left) precipitation and (right) SST. Predictions are made in April for the July–September season over 1982–2016. Only values statistically significant at
the 5% level, corresponding to a value of 0.33, are plotted. Contour is every 0.2, starting at 0.4.

varying between 0.25 and 0.35. As a cross-check, to see whether we missed any potential sources of pre-
dictability, we extract the 10 predictor (precipitation) PCs from CPT and correlate them with predictions of
precipitation and SST in the NMME multimodel mean. The first five patterns are shown in Figure 4. The
first is a Sahelian pattern. Not surprisingly, over the 1982–2016 period it correlates strongly with ENSO. The
second is a Gulf of Guinea pattern which strongly correlates with local SSTs but has no projection on the
Sahel (Giannini et al., 2003, 2005). Despite the intriguing SST patterns of PCs 3 and 4 in the North Atlantic,
the projection onto Sahel rainfall of the remaining patterns is nonexistent. This behavior raises the concern
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that a model that essentially takes as many predictor PCs as are available may be contaminated with arti-
ficial skill—statistical skill that has no physical counterpart—and strengthens our conclusion that the
predictability is all in a Sahel-wide pattern.

4. Conclusions
We assessed the deterministic skill of the NMME, an operational, state-of-the-art seasonal climate prediction
system, in predicting July–September precipitation over the Sahel. We found skill in predicting regionally
and seasonally averaged rainfall anomalies as early as February/March. Skill in the multimodel mean is the
combination of skillful predictions of ENSO in one model and of North Atlantic sea surface temperatures in
another. That such distinct behaviors simply add up to shape multimodel mean skill is exemplary of the value
of multimodel ensemble prediction systems. Interestingly, the skill of a system composed of only these two
best models, which correspond to the turquoise and orange lines in the rows in Figure 2, is more variable: It
is higher in some instances, lower in others, than the skill of the system based on all models considered here
(see Figure S2 in the supporting information). At the smaller scale of Senegal, the greater skill of the model
that best predicts North Atlantic temperatures is indicative of the greater relative influence of the adjacent
basin on the westernmost portion of the Sahel. This behavior points to east-west differences in subregional
dynamics that merit following up.

We emphasize that this level of skill, consistent with the large-scale, oceanic origin of predictability, is
achieved at the very largest spatial scales, that is, the subcontinental scale of the entire Sahel. As illustrated
in the rows in Figure 2, the skill in regionally averaged precipitation (in the left column) is different from
and significantly larger than the regional average of local skill (in the middle column). Further, the stronger
the predictable signal, captured in SST anomalies, the greater the spatial coherence of the outcome. A local
forecast scheme could be envisioned that calculated probabilities based solely on the regionally averaged
signal weighted by its strength.

The skill at lead times of 3–4 months on the start of the rainy season that is described here is a significant
advancement. Its practical implications are profound, considering that the current regional climate outlook
forum process, largely based on statistical prediction models, convenes in May or April at the earliest. Await-
ing a further quantitative assessment, this level of skill should be sufficient for the timely communication
of an early qualitative outlook. This may be relevant for national governments to assure timely approval of
the budget items supporting the agricultural sector, in the form of purchasing and stocking for inputs that
are best adapted to the predicted character of the upcoming season. It may be even more relevant for insti-
tutions concerned with regional food security, such as the CILSS (Comité Permanent Inter-États de Lutte
contre la Sécheresse dans le Sahel, or Permanent Interstate Committee for Drought Control in the Sahel)
and its global partners, including the UN World Food Programme, the Famine Early Warning Systems Net-
work, and the Réseau de Prévention des Crises Alimentaires, because it could buy them more time to secure
donor funding ahead of a potential large-scale crisis, such as a repeat drought year.

Finally, we find confirmation that Sahelian variability is shaped by the interplay of independent, North
Atlantic and global tropical, sources of predictability, encapsulated in the North Atlantic Relative Index
(Giannini et al., 2013). Indeed, the competition in warming between North Atlantic and global tropical
oceans under the influence of greenhouse gases is one way to interpret the increased interannual variabil-
ity that is qualitatively manifest in any Sahelian rainfall time series since the mid-1990s, including that in
Figure 1—behavior which makes seasonal prediction all the more valuable.
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Introduction

This Supplementary Information includes additional Figures and a Table. Figures S1

and S2 are extensions of figures 3 and 2, respectively. Table S1 provides detailed informa-

tion about the model simulations analyzed. It also includes a template recipe to define and

download rainfall predictors from the NMME archive maintained in the IRI Data Library.

Figure S1. The Sahel precipitation index derived from NMME predictions is correlated

with the observed patterns of sea surface temperature (SST). The intent is to compare

these correlation patterns with those that result from correlating the same index with

predicted SSTs, in Figure 3, to gauge the extent to which NMME captures the SST-Sahel

precipitation relationship.

Figure S2. The left panel is repeated from the top row, left column of Figure 2, which

details the skill dependence on lead time for the 5-model ensemble. It is compared to

the same skill for a 2-model ensemble based on the best models, in the right panel. As

discussed in the Conclusions section, while the skill of the smaller ensemble is at times

larger, the skill of the larger ensemble is more stable across lead times.

Table S1. This table contains details about the simulations analyzed, made with the 5

models named in the Data and Methods section of the article.
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Accessing the NMME in the IRI Data Library

The IRI Data Library (IRIDL) maintains a regularly updated archive of NMME model

output, including hindcasts and proper real-time forecasts (see Table S1) at http://

iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/. In this note we document the

steps to (1) select model output, e.g., choose models and variables, and define spatial

domain, start date and lead time, (2) combine models into the multi-model mean, and

(3) download in a format compatible with the Climate Predictability Tool (CPT).

Working behind the scenes is ingrid (See http://iridl.ldeo.columbia.edu/dochelp/

Documentation/funcindex.html for function documentation), the coding language ger-

mane to the IRIDL, developed to select, analyze and visualize data in a web browser

environment. The coding becomes visible by clicking on the Expert mode tab. This ac-

tion opens a window, to which the lines of code described below, in Courier font, can be

copied and pasted directly. (Clicking on the OK button below the Expert mode window

executes the code.)

Let us start with an NMME model that archives hindcasts and forecasts in the same di-

rectory, and select the precipitation (prec) variable. From http://iridl.ldeo.columbia

.edu/SOURCES/.Models/.NMME/, first select the model, COLA-RSMAS-CCSM4, by clicking

on its name, then the MONTHLY directory, which contains the archive of predictions, and

finally the variable, prec. These actions are explicited in Expert mode as:

SOURCES .Models .NMME .COLA-RSMAS-CCSM4 .MONTHLY .prec

We specify the geographic domain of interest by applying the function RANGEEDGES to the

X and Y grids:
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X -20 40 RANGEEDGES

Y 10 20 RANGEEDGES

where X and Y are typically longitude and latitude respectively. In ingrid longitudes west

of the Greenwich meridian and latitudes south of the Equator are identified by negative

values, longitudes east and latitudes north, by positive values. The ranges set above

correspond to the sub-continental Sahel as defined in this study: 10-20
�
N, 20

�
W-40

�
E.

We average gridpoints in the domain into a regional index with the command line

[X Y] average

Start date and lead time of prediction are typically indicated by S and L respectively.

The following:

S (0000 1 Apr ) VALUES

L (3.5) (5.5) RANGEEDGES

denotes a prediction made on 1 April, with lead times comprised between 3.5 and 5.5

months. Since months are typically identified by the mid-month date, e.g., 16 Jan, 16

Feb, 16 Mar, etc., this combination of selections on S and L identifies the July-September

period. A prediction made on 1 April for the June-August period looks like this:

S (0000 1 Apr) VALUES

L (2.5) (4.5) RANGEEDGES

In addition, M typically denotes ensemble member. Therefore, [M] average denotes the

ensemble mean over all members available.

The combined specifications for the case of a model archiving hindcasts and forecasts in

the same directory, resulting in April predictions for July-September Sahel average rainfall
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over the entire period covered by the NMME (1982 to present), can be copied and pasted

directly to the Expert mode window, where they look like this:

SOURCES .Models .NMME .COLA-RSMAS-CCSM4 .MONTHLY .prec

X -20 40 RANGEEDGES

Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES

L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

The same specifications for the case of a model archiving hindcasts and forecasts in

separate directories look like this:

SOURCES .Models .NMME .CMC2-CanCM4 .HINDCAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

SOURCES .Models .NMME .CMC2-CanCM4 .FORECAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

appendstream
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In other words, the specifications are repeated for hindcasts and forecasts, and the two

data streams are combined using the function appendstream.

To combine more models into the multi-model mean, models are added together and

divided by their number. Using the two models described thus far:

SOURCES .Models .NMME .CMC2-CanCM4 .HINDCAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average [M X Y]average

SOURCES .Models .NMME .CMC2-CanCM4 .FORECAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average [M X Y]average

appendstream

SOURCES .Models .NMME .COLA-RSMAS-CCSM4 .MONTHLY .prec

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

[L] /keepgrids average

[M X Y]average

add 2 div

yields the result sought, with the last line, add 2 div, signifying that the two data streams

are first added up and then divided by 2. Note that in ingrid space and line break are

equivalent.
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Manipulations to consider in order to tailor data selection to user needs include:

• selecting a di↵erent spatial domain. The domain is set using the functions RANGE or

RANGEEDGES operating on the X and Y grids. For example, in the country case investigated

in this study, the rectangular domain comprising Senegal, defined by 13-16
�
N, 17-12

�
W,

is rendered as Y 13 16 RANGE X -17 -12 RANGE;

• including the line [X Y]average computes a regional average. Eliminating it results

in longitude/latitude fields, or maps of the predictor variable;

• start date (S) and lead time (L) need to be adjusted consistently, depending on the

time that the prediction is made, and the period to be predicted.

The end result is an up-to-date time series of Sahel average precipitation predictions,

concatenating hindcasts and forecasts starting in 1982, and using the 5 models analyzed

in this study. In Expert mode it looks like this:

SOURCES .Models .NMME .CMC2-CanCM4 .HINDCAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

SOURCES .Models .NMME .CMC2-CanCM4 .FORECAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average
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[M X Y]average

appendstream

SOURCES .Models .NMME .NCEP-CFSv2 .HINDCAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

SOURCES .Models .NMME .NCEP-CFSv2 .FORECAST .EARLY MONTH SAMPLES .MONTHLY

.prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

appendstream

add

SOURCES .Models .NMME .NASA-GEOSS2S .HINDCAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

SOURCES .Models .NMME .NASA-GEOSS2S .FORECAST .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES
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S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

appendstream

add

SOURCES .Models .NMME .GFDL-CM2p1-aer04 .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

add

SOURCES .Models .NMME .COLA-RSMAS-CCSM4 .MONTHLY .prec

X -20 40 RANGEEDGES Y 10 20 RANGEEDGES

S (0000 1 Apr ) VALUES L (3.5) (5.5) RANGEEDGES

[L] /keepgrids average

[M X Y]average

add

5 div

/missing value -999.0 def

SLtoT L removeGRID
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When needed, forecasts are appended to hindcasts using appendstream, then each model

is added to the previous, using add, and finally, the total sum is divided by the number

of models, in this case 5, using div.

When model output is ready for download, the user clicks first on the Data files tab

above the Expert mode window, then chooses the relevant format on the following web

page. In addition to a format compatible with CPT, frequently used formats include

formats for direct input into NCL or Matlab scripts, and downloads into netCDF files.
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Figure S2. Skill of NMME predictions for the July-September season. Predictions are started from the previous

January, on the right in each panel, to the June immediately before the season, on the left, corresponding to lead times from

6 months to 1 month. Skill is measured by Spearman [solid line] and Pearson [dashed line] correlations over 1982-2016: the

thick, red line is for the multi-model mean, the thinner lines of di↵erent colors are for single models, with the thick grey

dotted line representing the 5% significance level. The left panel is the same as in Figure 2, for the multi-model system of

all 5 NMME models considered in this study. The right panel is for the 2-model system using only the best models.

March 27, 2020, 6:56pm



X - 14 GIANNINI ET AL.: NMME PREDICTIONS OF SAHEL RAINFALL

M
o
d
e
l

L
e
a
d
tim

e
H
in
d
c
a
s
t
p
e
r
io
d

E
n
s
S
iz
e

F
o
r
e
c
a
s
t
p
e
r
io
d

E
n
s
S
iz
e

C
M
C
2
-C

a
n
C
M
4

0
-1
1

J
a
n
1
9
8
1
-D

e
c
2
0
1
0

1
0

J
a
n
2
0
1
1
t
o
p
r
e
s
e
n
t

1
0

C
O
L
A
-R

S
M
A
S
-C

C
S
M
4

0
-1
1

J
a
n
1
9
8
2
-D

e
c
2
0
1
0

1
0

J
a
n
2
0
1
1
t
o
p
r
e
s
e
n
t

1
0

N
A
S
A
-G

E
O
S
S
2
S

0
-8

F
e
b
1
9
8
1
-J
a
n
2
0
1
7

4
N
o
v
2
0
1
7
t
o
p
r
e
s
e
n
t

1
0

N
C
E
P
-C

F
S
v
2

0
-9

J
a
n
1
9
8
2
-D

e
c
2
0
1
0

2
4

M
a
r
2
0
1
1
t
o
p
r
e
s
e
n
t

3
2

G
F
D
L
-C

M
2
p
1
-a
e
r
0
4

0
-1
1

J
a
n
1
9
8
2
-D

e
c
2
0
1
0

1
0

J
a
n
2
0
1
1
t
o
p
r
e
s
e
n
t

1
0

T
a
b
le

S
1
.

S
p
ecifi

cs
of

th
e
N
M
M
E

sim
u
lation

s
u
sed

.
T
h
e
lead

tim
e
is

in
m
on

th
s.

March 27, 2020, 6:56pm


	Abstract
	Plain Language Summary

