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Climate prediction is about quantifying risks and
probabilities. Changes in rainfall distributions
could have far more impact than the more-
often-cited risk of global warming, but
systematically quantifying the likelihood of such

changes is only beginning. We cannot hope to predict the
exact climate of 2050, still less the weather on a particular
day, but we can assess the relative likelihood of different
long-term trends given the constraints provided by
observations and physical understanding available today. 

Here we will explore the range of possible externally
driven changes in the hydrologic cycle that may have taken
place over the twentieth century or be in prospect for the
twenty-first, emphasizing the question of what can be said
about future climate1,2. We will not attempt a
comprehensive review of the literature, which is amply
provided by the recent Third Assessment Report (TAR) of
the Intergovernmental Panel on Climate Change (IPCC)3,4.
Instead, we review the present status regarding
quantitative estimation of the distribution of likely
precipitation changes, and their impact on other aspects of
the atmosphere–ocean system, focussing on the evidence
provided by the twentieth century and its implications for
the next few decades. Evidence from past climates may
provide additional constraints, particularly on the more
distant future. The interpretation of such data and the
challenge of disentangling causes and effects are discussed
by Kump on pages 188–190 of this issue. 

We will focus on the impact of anthropogenic carbon
dioxide, both for reasons of space and because CO2 is
expected to dominate climate change in the coming
century4. Other anthropogenic factors are probably having
significant impacts on the hydrologic cycle, notably
various forms of aerosol (see ref. 5, and the review in this
issue by Kaufman et al., pages 215–223). Changes are also
anticipated6–10, and may have already been detected11,12, in
how precipitation is distributed between low- and high-
intensity events7. Regional details of the precipitation
response to greenhouse warming are much less clear, as
are hydrologic feedbacks on other aspects of the climate
system, notably the strength of the oceanic thermohaline
circulation (refs 13, 14, and see review in this issue by
Rahmstorf, pages 207–214).

Physical arguments, such as those discussed in the 
preceding articles, indicate the qualitative changes in the
hydrologic cycle expected to result from a variety of external
influences. They do not, however, provide much more than
order-of-magnitude constraints on the likely size of these
changes under anthropogenic climate change (ref. 15, and
see review in this issue by Pierrehumbert, pages 191–198).
Ideally, forecasts of climate change should be constrained
objectively by uncontentious physical principles, possibly
but not necessarily through simulation models, combined
with actual climate observations. This approach may
already be yielding results for predictions of global-mean
temperature16–20, but extending it to regional temperature
change or changes in the hydrologic cycle presents new chal-
lenges which may require a whole new generation of climate
modelling experiments21.

Constraints on global-mean temperature change
Anticipating difficulties in placing quantitative constraints
on changes in the hydrologic cycle, we shall begin with a 
better constrained problem to show what can be done. 
Forecast global-mean temperatures are likely to be better
constrained by recent climate observations than almost any
other climate variable, both for physical reasons and
because the historical temperature record is more accurate
than for any other global variable. The constraint of 
global energy conservation means that the global-mean
temperature response to an increase in CO2 is controlled
largely by three basic properties of the climate system: 
(1) the strength of atmospheric and surface feedbacks,
which determine the so-called ‘climate sensitivity’ (equilib-
rium warming on doubling CO2); (2) the effective heat
capacity of the fraction of the oceans in contact with the
atmosphere on short (sub- to inter-annual) timescales; and
(3) how heat export to the ocean depths depends on recent
changes at the surface.

In the absence of a sudden nonlinear climate change (in,
say, ocean circulation) these properties of the climate may be
expected to change slowly, if at all, in response to an imposed
external forcing. Indeed, they are assumed to be constant in
most simple and intermediate prognostic models of
climate22,23. Even the most complex climate models suggest
that strong nonlinearities are unlikely to be important in

Constraints on future changes 
in climate and the hydrologic cycle
Myles R. Allen* & William J. Ingram†

*Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK (e-mail: myles.allen@physics.ox.ac.uk)
†The Hadley Centre, Met Office, London Road, Bracknell RG12 2SZ, UK (e-mail: william.ingram@metoffice.com)
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exploring the range of model behaviour that is consistent with observations. It will be substantially harder to
quantify the range of possible changes in the hydrologic cycle than in global-mean temperature, both because
the observations are less complete and because the physical constraints are weaker.
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global-mean temperature change over the next half-century or so.
For example, in all but one of the 19 coupled atmosphere–ocean 
general circulation models (AOGCMs) in CMIP-2 (the second 
Coupled Model Intercomparison Project24,25), an annual 1% com-
pound increase in CO2 concentrations (a linear increase in radiative
forcing) results in a near-linear global-mean temperature response
up to and beyond the time of CO2 doubling after a few years’ initial
adjustment (ref. 26; and see Fig. 9.3a of ref. 4). Likewise, global-mean
precipitation increases roughly linearly in these experiments 
(Fig. 9.3b of ref. 4), albeit with rather stronger unforced and effective-
ly random variations from year to year.

The net radiative forcing in the CMIP-2 experiments is at the high
end of projected anthropogenic changes over the coming decades.
Hence current AOGCMs suggest that a strongly nonlinear global-
mean temperature response to greenhouse forcing is unlikely over
the next few decades at least. In that case, the constraint of global
energy conservation means that estimates of past radiative forcing,
recent observed near-surface temperature change and the accumula-
tion of heat in the global oceans27,28 place objective, albeit still 
rather weak, constraints on the overall strength of atmospheric 
feedbacks16,17,19,20. These in turn provide the basis for an objective
probabilistic forecast of the temperature response to a given 
emissions scenario18,29,30 of the type we would like, ultimately, to 
provide for the hydrologic cycle.

The curve in Fig. 1 shows an estimate of the probability distribu-
tion of global-mean warming at the time of CO2 doubling under a
scenario of CO2 concentration increasing by 1% annually (the 
‘transient climate response’, or TCR), which is consistent with recent
observations of large-scale surface, atmospheric and oceanic 
temperature change19,31. Note that this empirical distribution is, if
anything, likely to underestimate the range of uncertainty in TCR, as
the analysis on which it was based assumed a negligible impact of 
natural forcing on temperature changes in the twentieth century17.

The crosses in Fig. 1 show the TCR of the 19 AOGCMs in the
CMIP-2 multi-model comparison. If the CMIP-2 models were a 

random sample of possible climate-system behaviour consistent
with these observations, then we should expect to find approximately
equal numbers of models in each decile (vertical band) of the empiri-
cal TCR distribution and a more-or-less flat histogram in the inset
panel. Instead, the models are concentrated near the centre of the 
distribution. Only one model displays a TCR in the uppermost two
deciles of the distribution, and this turns out to be fortuitous. 
Warming accelerates in this particular model32 owing to some form of
nonlinearity in the response. The empirical distribution (which
assumes that both climate sensitivity and the nature of the ocean
response are constant over these timescales) would immediately
become much broader if it were to allow for such nonlinearity, pushing
even this high-response model down into a relatively low percentile.

If current models underestimate the range of global-mean 
temperature responses consistent with recent observations, the prob-
lem can be expected to be worse for variables such as precipitation,
which are not so well constrained by the available data. Hence any
assessment of the risk of precipitation change exceeding a given
threshold by a given date based solely on the spread of responses of
currently available climate models10 will be underestimated, perhaps
by a substantial margin.

Of course, the fact that current climate models do not span the
range of responses consistent with recent warming is no indictment
of the models: they were not designed to do so. The IPCC TAR was
careful not to interpret the spread of the models as a direct measure of
uncertainty in climate forecasts, for precisely this reason. Far from
being designed to provide random samples of possible representa-
tions of the climate system, AOGCMs are generally designed as ‘best
guess’ representations of the system based on a limited set of observa-
tions. Hence some clustering of model results towards the centre of
the range of physically plausible behaviour should be expected.
Because we cannot quantify the extent of this clustering bias a priori,
we cannot predict the likelihood of the response in the real world
lying above or below the range of model simulations with modelling
alone. The only objective probabilistic forecast is provided by the
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Figure 1 The range of transient climate response (TCR) consistent with recent
observed temperature trends, compared to TCRs of some current AOGCMs. The curve
shows the warming at the time of CO2 doubling after an increase in CO2 concentration
of 1% per year (TCR), estimated from comparing an intermediate-complexity model
with observations of recent large-scale temperature change, allowing for uncertainty
due to internal variability as simulated by an AOGCM (refs 19, 31, with supplementary
data supplied by M. D. Webster). The curve has been smoothed for clarity and the
vertical bands show equal-area deciles of the distribution. The crosses are the TCRs of
the AOGCMs in the CMIP-2 ensemble4,25. Superimposed red diamonds show models
used in the TAR summary range of ‘1.4–5.8 7C warming from 1990 to 2100’. The
inset histogram shows how many of the CMIP-2 models fall into each decile of the
observationally constrained distribution.
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Figure 2 Global-mean temperature and precipitation changes in AOGCM simulations
(scatter plots), and probability distributions obtained by requiring consistency with
recent observations (curves). Red triangles show global-mean temperature and
precipitation changes in a wide range of equilibrium CO2-doubling experiments with
simple thermodynamic (‘slab’) oceans4,45, with the red line showing the best-fit (least
squares) linear relationship. Green diamonds show the same, at the time of CO2

doubling, for those CMIP-2 models for which the data are available25. Blue crosses are
the green diamonds adjusted for disequilibrium in the CMIP-2 runs by adding kFs/kT

to DT (equation (2)), with a single value of k (.1) estimated from the data to remove
the bias with the best-fit line through the ‘slab’ experiments. All these points would lie
on the dashed line labelled C–C if precipitation were to follow the Clausius–Clapeyron
relation44. The green dashed curve is the observationally constrained estimate of the
distribution of global-mean temperature change at the time of CO2 doubling from 
Fig. 1. The blue curve is the same, but adjusted for disequilibrium like the blue
crosses. The red curve shows the distribution of global-mean precipitation changes
implied by the blue curve, assuming the same straight-line relationship observed in
the ‘slab’ experiments, with the same amount of scatter (assumed Gaussian).
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constraint of consistency with actual climate observations. Can we
identify analogous constraints on future changes in the hydrologic
cycle?

Constraints on hydrologic indicators
Tropospheric humidity 
The distribution of moisture in the troposphere (the part of the
atmosphere that is strongly coupled to the surface) is complex, but
there is one clear and strong control: moisture condenses out of
supersaturated air. This constraint broadly accounts for the humidity
of tropospheric air parcels above the boundary layer, because almost
all such parcels will have reached saturation at some point in their
recent history. Physically, therefore, it has long seemed plausible that
the distribution of relative humidity would remain roughly constant
under climate change33, in which case the Clausius–Clapeyron 
relation implies that specific humidity would increase roughly 
exponentially with temperature. This reasoning is strongest at higher
latitudes where air is usually closer to saturation, and where relative
humidity is indeed roughly constant through the substantial temper-
ature changes of the seasonal cycle. For lower latitudes it has been
argued that the real-world response might be different (see ref. 34 and
references therein). But relative humidity seems to change little at low
latitudes under a global warming scenario, even in models of very
high vertical resolution35, suggesting this may be a robust ‘emergent
constraint’ on which models have already converged.

Consistent with this picture of tropospheric specific humidities
rising in line with surface warming and more-or-less unchanged rela-
tive humidity, apparently significant increases have been observed in
surface36–38, boundary-layer39 and lower- to mid-tropospheric40

specific humidity levels over some land regions in the Northern
Hemisphere. In the tropics and Southern Hemisphere, in situ obser-
vations remain sparse and satellite records are too inhomogenous to
estimate long-term humidity trends41. Estimated trends in upper 
tropospheric humidity — the most important for climate sensitivity,
but also the most difficult to observe — are also ambiguous42. On
shorter timescales, current climate-model simulations of the overall
strength of water vapour feedback seem reasonably accurate in the
case of the eruption of Mount Pinatubo, with the observed reduction
in specific humidity being accompanied by only small changes in 
relative humidity43.

Equilibrium global-mean precipitation changes
If tropospheric moisture loading is controlled by the constraints 
of (approximately) unchanged relative humidity and the

Clausius–Clapeyron relation, should we expect a corresponding
exponential increase in global precipitation and the overall intensity
of the hydrologic cycle as global temperatures rise? This is certainly
not what is observed in models. The red triangles in Fig. 2 show the
long-term equilibrium global-mean near-surface warming, DT, and
precipitation increase, DP, in response to doubling CO2 in a number
of atmospheric models coupled to ‘slab’ (thermodynamic mixed
layer) ocean models44,45. They appear to lie, to a reasonable 
approximation, on a straight line46 with slope 3.4% precipitation
change per kelvin (much less than the 6.5% per kelvin implied by the
Clausius–Clapeyron relation44) and intersecting the temperature
axis around 1.4 K. Why?

The explanation for these model results is that changes in the
overall intensity of the hydrologic cycle are controlled not by the
availability of moisture, but by the availability of energy44,47: specifi-
cally, the ability of the troposphere to radiate away latent heat released
by precipitation. At the simplest level, the energy budgets of the 
surface and troposphere can be summed up as a net radiative heating
of the surface (from solar radiation, partly offset by radiative cooling)
and a net radiative cooling of the troposphere to the surface and to
space (R) being balanced by an upward latent heat flux (LP, where L is
the latent heat of evaporation and P is global-mean precipitation):
evaporation cools the surface and precipitation heats the tropos-
phere.

We can approximate the perturbation energy budget of the 
troposphere as47

DRC&DRT 4LDP (1)

separating the perturbation radiative cooling, DR, into a component,
DRC, that is independent of DT and a component, DRT, that depends
on DT. The perturbation latent heating, LDP, is about 1 W m–2 for a
1% increase in global precipitation. DRC is the change in R that is due
directly to external drivers of climate change (that is, change in R that
is not mediated via the temperature response to these drivers, and
hence approximately independent of DT ). For example, doubling
CO2 decreases net outgoing infrared radiation through the
tropopause (top of the troposphere) by 3–4 W m–2 (depending on the
details of stratospheric adjustment4), but also increases downward
infrared flux at the surface by about 1 W m–2 (ref. 47), giving a 
negative DRC of –2 to –3 W m–2. In the absence of any significant
change in tropospheric temperatures, therefore, increasing CO2

concentrations reduce the intensity of the hydrologic cycle, an effect
observed in early modelling experiments using prescribed sea surface
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Figure 3 Changes in observed global-mean
temperature (a) and land precipitation (b) over the past
55 years compared with a climate model. The model
data are from a four-member initial-condition
ensemble of the HadCM3 climate model run with
estimates of anthropogenic, solar and volcanic forcing
(dashed line shows ensemble mean). Model data were
included only where and when observations exist and 
a five-year running mean was applied to suppress
variability such as El Niño, which we would not expect
to be coherent between them. Model simulations
courtesy of P. Stott, The Met Office, and precipitation
data courtesy of M. Hulme, Tyndall Centre38,71.
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temperatures48 (prescribing surface temperatures introduces an infi-
nite heat sink at the surface, but the energy budget of the troposphere
still has to balance).

The enhanced radiative cooling due to tropospheric warming,
DRT, is approximately proportional to DT : tropospheric tempera-
tures scale with the surface temperature change and warmer air 
radiates more energy, so DRT4kTDT, with kT.3 W m–2 K–1 (ref. 47).
Changes in sensible heat flux at the surface are relatively small and the
net effect of water vapour changes on kT is small assuming (as dis-
cussed above) only small changes in the vertical profile of relative
humidity47. Contributions from clouds vary considerably between
models34 and presumably provide the main source of scatter in the
relationship of DT versus DP shown in Fig. 2.

Both DRC and DRT are determined largely by basic features of the
radiative and (in the case of DRT) thermal response. Broad features of
the pattern of warming, including a reduced equator–pole surface
temperature gradient and reduced tropical ‘lapse rate’ (decrease of
temperature with height) are much more consistent across climate
models than the overall predicted magnitude of the change. Hence
both DRC and kT are much less model-dependent and thus more 
reliable than is either DT or DP individually (another potentially 
useful emergent constraint). This simple picture can explain the
main features of the equilibrium responses shown in Fig. 2, including
a slope much less than that implied by the Clausius–Clapeyron 
relation and the line not intersecting the origin. It also has some 
interesting implications. The 10–90% range in equilibrium warming
on doubling CO2 that is consistent with recent large-scale warming is
1.8–6.5 K (ref. 19), based on the analysis behind Fig. 1. Translating
this into a range in the equilibrium precipitation response using the
best-fit line shown in Fig. 2 gives a 10–90% range of 0.6–18%
(accounting for the scatter of points about the best-fit line, but 
ignoring uncertainty in the estimated slope, which would make 
the range slightly larger). Hence we cannot rule out, at even the 
10% level, precipitation changes either above or below all currently
available model predictions. As for the temperature response, the
spread of available AOGCMs underestimates the only available
objective estimates of uncertainty in future precipitation change.

Transient  global-mean precipitation changes
A further consequence of equation (1) is that the expected precipita-
tion change per degree of global warming, DP/DT, depends on the
nature of the forcing. In a change driven by short-wave heating at the
surface (for example, resulting from solar variability or scattering

aerosols), DRC is small and DP/DT is likely to be larger than in a 
CO2-induced change. This effect is illustrated in Fig. 3 where
observed global-mean temperature (Fig. 3a) and observed terrestrial
precipitation (Fig. 3b) are compared over the past 55 years with the
corresponding quantities diagnosed from an ensemble of four 
simulations using the Met Office’s HadCM3 climate model forced
with a combination of estimated anthropogenic and natural 
forcing49.

Ensemble members and observations seem to move together,
suggesting that both global-mean temperature49 and, to a surprising
extent, also continental-mean precipitation seem to be controlled by
the external forcing. The correlation between the observed (5-year
smoothed) precipitation time-series and the ensemble mean over
this period is 0.55. This is greater than any correlation found in 98%
of cases if we replace the observations with a similar-length, similarly
sampled and smoothed segment of the HadCM3 control integration.
Hence we can claim to have detected, in the simplest possible
sense50–52, the influence of external forcing on global-mean land 
precipitation.

It is, however, clear that terrestrial precipitation is not simply 
following the global temperature response. Precipitation changes
seem to be dominated by the natural (solar and volcanic) forcing,
which varies on shorter timescales, whereas the temperature
response is dominated by the anthropogenic forcing, which increases
comparatively steadily over this period. This is to be expected, as 
CO2 is less effective in driving changes in global precipitation than 
is short-wave forcing of a similar magnitude because, in the 
former case, DRC and DRT in equation (1) tend to cancel each other
out. Of course, both forcings could alter the distribution of 
precipitation between land and sea: we would prefer to compare
global precipitation changes, but the necessary long-term data sets
are not available38.

Thus, although there is clearly usable information in Fig. 3, it
would be physically unjustified to estimate DP/DT directly from
twentieth-century observations and assume that the same quantity
will apply in the future, when the balance between climate drivers will
be very different53. Likewise, the approach of ref. 18 (estimating the
size of the anthropogenic change from the observed record and using
this to recalibrate anthropogenic changes simulated by climate 
models), although applicable in principle to precipitation, is unlikely
to be useful at present. This is because the anthropogenic contribu-
tion to precipitation changes during the twentieth century is still
weak compared with natural fluctuations (both unforced and 
externally driven). How, therefore, can we set about constraining the
future transient response of the hydrologic cycle to anthropogenic
forcing?

The transient responses of the CMIP-2 experiments, shown by the
green diamonds in Fig. 2, seem to cluster above the distribution of
equilibrium responses in the DT versus DP plane. Although the basic
tropospheric energy budget displayed in equation (1) still applies, the
relationship between DRT and DT seems to be slightly different in the
transient case. This discrepancy is probably due, at least in part, to
systematic differences between transient and equilibrium patterns of
warming: in particular, land areas tend to warm faster than oceans in
transient experiments in all models. To first order, we might expect
the discrepancy to be proportional to the net heat flux into the oceans
in the transient experiments, Fs, which is a measure of the extent to
which these experiments are out of equilibrium. Hence the tropos-
pheric energy budget for a CMIP-2 scenario can be written 

DRC&kTDT1kFs4LDP (2)

with DRC and kT taking values appropriate to the equilibrium
response experiments and the empirical constant k being estimated
from the CMIP-2 results. The relationship between DP and DT in the
CMIP-2 results is too weak either to confirm equation (2) or to 
constrain k effectively, so we are simply proposing this as a plausible
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Figure 4 Log–log plot of the distribution of an AOGCM’s daily precipitation and how it
changes around the time of CO2 doubling (J. M. Gregory, personal communication).
Distribution of daily precipitation (all locations and seasons included) in years
2070–2100 of a transient climate-change simulation95 (red) and in the corresponding
control simulation (purple). Their ratio is shown by the green curve and right-hand
(linear) axis. The global-mean warming is 3.6 K and the tropical mean 3.3 K, giving a
Clausius–Clapeyron limit on this ratio of about 22%.
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A climate forecast is intrinsically five-dimensional, spanning space,
time and probability. Mainstream climate modelling has, so far,
sacrificed probabilistic resolution almost completely in favour of the
other four dimensions1. Correcting this imbalance requires a new
approach. Hitherto, forecasts have explored uncertainty in initial
conditions2,3 (see Box 1 Figure opposite) as well as the impact of
altering boundary conditions, such as adopting different scenarios of
future concentrations of greenhouse gases4. For many variables,
however, the main uncertainty in multi-decade climate prediction is
not in the initial state nor in the external driving, but in the climate
system’s response5. Where this issue has been addressed with
atmosphere–ocean general circulation models (AOGCMs) it is
primarily through unconstrained ‘ensembles of opportunity’ based on
comparisons between different models with no direct reference to
observations4,6. These, we have argued, are likely to provide a
misleadingly small (over-optimistic) impression of forecast
uncertainty7.

At the most basic level, the community needs to agree on what is
meant by a ‘correct’ estimate of risk in climate forecasting. A
probabilistic climate forecast (for example, of the risk of global
precipitation increasing by more than 10% by 2050) cannot be
checked against observations as can a probabilistic weather forecast.
If a two-day weather forecast is wrong at the 5% level much more than
5% of the time, then something is amiss with the forecasting system. If
a 50-year climate forecast is ‘wrong’ at the 5% level, we could simply
have been unlucky. This apparent difficulty with verification has led to
the view that estimates of uncertainty based on expert opinion (for
example, the range for climate sensitivities used by ref. 8) are as good
as any other9. This leaves the field open to the charge of subjectivism.

Objectively, we need to ask: ‘given the observations available now,
what range of forecasts might we have obtained had we started again
from scratch many times over and made completely independent sets
of decisions about model formulation and resolution?’ A probabilistic
forecast can only be said to have converged when including additional
models is unlikely to make much difference to the forecast distribution
of a particular variable. But there are complications. For example, we
have no way of defining how ‘close’ two models are solely in terms of
their formulation7, so we cannot design a representative sampling
strategy over ‘all possible AOGCMs’ even if we had the resources to
do so. In practice, therefore, a probabilistic forecast must begin with a
very large ensemble of possible models, obtained by varying
parameter values, parameterization schemes, resolution and entire
model components, and extracting a sub-sample weighted according
to the different models’ ability to simulate recent observed climate
change. A probabilistic forecast based on this sub-sample will have
converged if its spread is determined primarily by the constraint of
consistency with observations and not by the choice of models within
the original ensemble — this is the crucial distinction between a
constrained ensemble and an unconstrained ensemble of opportunity.

For some variables, probabilistic forecasts may be converging
already. Given the emergent constraints relating past to future
greenhouse warming that seem to hold across all available climate
models, the distribution of forecast global-mean temperature
changes in Fig. 1 is determined not by the choice of model(s), but by
uncertainty in how much recent warming can be attributed to CO2

increase. This uncertainty is due primarily to other signals and internal
variability in the observed climate record. It will reduce as the signal
strengthens5, but it may not change much as models improve. We
would argue that this is both more robust (less subject to short-term
revision) and more reliable (acceptable to non-specialists as a basis
for action) than a forecast based on expert opinion.

When will we be able to say that forecast changes in the
hydrologic cycle have converged enough to be trusted? We made a
tentative estimate of the distribution of global-mean precipitation
change in Fig. 2, primarily to show that distributions based only on
the spread of current AOGCMs should not be trusted. To extend this
to regional changes, we need to repeat the analysis behind Fig. 1 with
a full-scale AOGCM. Figure 1 required many hundreds of integrations
to explore just three uncertain parameters in a two-dimensional
climate model10, and there are hundreds of such uncertainties in an
AOGCM. The chaotic nature of an AOGCM means that many of the
techniques used in shorter-range forecasting to select perturbations11

are not directly applicable to the climate problem12; it also means that
several simulations will be needed to assess the impact of every
perturbation to the model’s formulation.

Thus, objective probabilistic forecasts of regional changes in
rainfall and other climate variables will require numbers of simulations
several orders of magnitude larger than the CMIP-2 experiment, the
largest ensemble of AOGCM simulations undertaken to date. New
approaches utilizing distributed computing and the emerging
electronic ‘grid’ may provide a way forward13,14, and readers
interested in participating in such an initiative15 may wish to contact
us on http://www.climateprediction.net.

Dave Stainforth is at Atmospheric, Oceanic and Planetary Physics, 
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Box 1
Towards objective probabilistic climate forecasting
Myles R. Allen & David A. Stainforth

Box 1 Figure The three-dimensional surface shows a forecast probability distribution 
of a one-dimensional quantity (global-mean warming above pre-industrial), accounting
for uncertainty in the climate response, while the lines show the (smaller) impact of
initial condition uncertainty in an ensemble of model simulations. Data courtesy of 
P. Stott (Met Office) and J. Kettleborough (Rutherford Appleton Laboratory)5, based on
the IPCC SRES A2 scenario.
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correction for disequilibrium. The scatter of CMIP-2 results is 
consistent with what we would expect from the equilibrium response
experiments. Thus, the problem is not too much noise, but too little
signal — we do not have a wide enough range of DT or DP from the
transient experiments to identify the relationship between them (see
Box 1).

Drawing this evidence together, we can infer a distribution for DP
at the time of CO2 doubling under a scenario of an annual 1%
increase in CO2 concentration from the distribution of DT shown in
Fig. 1 (the green dashed curve in Fig. 2) augmented with kFs (blue
dashed curve in Fig. 2, with the distribution of Fs estimated using the
same analysis that yields Fig. 1; ref. 19). We translate this into a 
distribution for DP (red dashed curve in Fig. 2) using the best-fit line
through the equilibrium response experiments, including additional
variance to account for the scatter. It must be emphasized that these
distributions use information on TCR and climate sensitivity only as
constrained by observations of recent changes in temperature and
ocean heat content. They do not depend on precipitation changes in
the intermediate-complexity model used to derive the distribution
function in Fig. 1 (which are likely to be model specific54), nor do they
make use of observed precipitation changes. It may seem counter-
intuitive to use temperature and ocean heat content rather than 
precipitation observations to constrain future precipitation, but with
global precipitation controlled by energetic constraints, and with the
precipitation response to anthropogenic forcing being difficult to
disentangle from other signals in the observations, this could be the
best strategy available.

The precise distributions shown on Fig. 2 naturally depend on
details of the analysis, but the key conclusion is that the current range
of uncertainty in DP is considerably larger than the spread of current
model responses. This analysis suggests a 25% chance of DP >5%, the
highest response of the coupled models shown in Fig. 2, and a 15%
chance of DP >6%, the response of the ‘outlier’ model mentioned
above4 (for which the data needed for Fig. 2 are unavailable). The
upper 5th percentile, often used in decision-making as a standard
upper bound, could exceed the highest DP observed in current 
models by over 50%. The message is clear: impact assessments that
rely on intermodel spread55 could seriously underestimate the range
of uncertainty in precipitation change in the twenty-first century.

A similar analysis could easily be extended to any variable that
shows a simple functional relationship across a wide variety of 
models to quantities that are constrained by current observations,
such as global temperatures and rates of ocean heat uptake over the
coming decades. Of course there are caveats. In particular, the limited
diversity of available slab and coupled AOGCMs makes it difficult to
establish whether any relationship (such as the straight line in Fig. 2)
has converged or is simply an artefact of resolution or sampling.
Moreover, the use of an intermediate-complexity model to derive the
forecast temperature distribution may underestimate the complexity
of responses that are consistent with recent observations. Both of
these caveats mean the spread of the forecast distribution of precipi-
tation change is likely to be underestimated, so that the problems

with using inter-model spread would be even worse than suggested
by the comparisons above. Both caveats could be substantially
resolved with the use of much larger, systematically perturbed
ensemble forecasts with AOGCMs (see Box 1).

Changes in precipitation extremes
Long-term mean precipitation is a useful summary indicator of the
intensity of the hydrologic cycle, but details of the distribution of pre-
cipitation over time, including the peak intensity of precipitation
events and duration of prolonged droughts, are likely to be the most
important issues in determining impacts of precipitation changes9.
Although global-mean precipitation is primarily constrained by the
energy budget, the heaviest rainfall events are likely to occur when
effectively all the moisture in a volume of air is precipitated out, 
suggesting that the intensity of these events will increase with the
availability of moisture7 (that is, significantly faster than the global
mean). Thus we might expect the uppermost quantiles of the rainfall
distribution to increase by about 6.5% per kelvin (ref. 44) if the ambi-
ent flows change (most likely at higher latitudes). In the tropics,
where the flows leading to precipitation are themselves driven largely
by the latent heat released by precipitation, larger increases still might
occur7. In particular, the maximum thermodynamically possible
rainfall and winds in hurricanes are predicted to increase rapidly with
warming56.

The red and purple curves in Fig. 4 show the magnitude of daily
precipitation as a function of percentile of the precipitation distribu-
tion in one AOGCM under climate change and control conditions,
respectively. The green curve (and right-hand axis) shows the ratio
between them. At the highest end of the distribution (all tropical
cases), it appears to be converging to about a 25% increase, which is
indeed slightly more than we would expect from the
Clausius–Clapeyron relationship.

Because such increases are more than double the increase in 
global-mean precipitation (that is, the change summed over all 
percentiles, which is constrained by the energy budget, not by the
Clausius–Clapeyron relation), there must be decreases lower down
the distribution. Indeed, the increase at the heaviest rain events is
large enough that the energy constraint on the total implies that only
on one day in ten does precipitation increase (the control and 
perturbed distributions cross around the 90th percentile in Fig. 4). It
would be interesting to know how other models compare — if this
were be another emergent constraint generic over all models in
regions of interest, then we could use forecast temperature changes to
constrain extreme as well as mean precipitation. Given the acknowl-
edged difficulties in relying on model simulations of extreme events
and in observing changes in extremes directly57, this could be a 
powerful result. In particular, this convergence to a particular frac-
tional increase, possibly related to the Clausius–Clapeyron limit,
could even improve as we move to the highest percentiles, which are
generally the least tractable under more direct approaches.

Even modest increases in the magnitude of events in the tails of the
distribution can have a very substantial impact on the expected
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over all the members of the CMIP-2 ensemble for which the data
were available (14 models), for the 20 years centred on the time of
CO2 doubling.
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return times of events of a given magnitude8–10,58. Such changes may
already be occurring59,60: the model used by ref. 61 suggested that,
over the United Kingdom, floods of the magnitude expected to occur
every 20 years in 1860 might now be expected every 5 years. Figure 4
implies that the corresponding changes might be even more 
significant in tropical regions10.

Regional precipitation
Although the large-scale temperature response to climate-change
forcings is predicted to be relatively smooth (usually with the same
sign everywhere), precipitation varies much more in space and time
and is notoriously much harder to simulate correctly in models. It is
no surprise then that predicted changes in local precipitation vary
considerably both in space and between models. Figure 5 shows the
CMIP-2 ensemble-mean pattern of regional precipitation change
around the time of CO2 doubling, while Fig. 6 shows the zonal-mean
changes in each model.

The ensemble-mean precipitation change conceals a wide variety
of responses across the CMIP-2 ensemble. Only 30% of the variance
between models of predicted precipitation changes on a 57257grid is
accounted for by a single common response pattern, compared to
over 90% for temperature. The standard deviation between the vari-
ous models’ predictions is greater than the mean response shown in
Fig. 5 everywhere between 507 N and 507 S apart from a small region
in the equatorial West Pacific. The natural assumption that there can
then be no useful information there may be over-pessimistic, as the
small scales of precipitation variation tend to mask a closer agree-
ment in physical terms. For example, if some set of models all shifted a
particular rainband in the same direction, but its position varied
between their base climates by as much as its width, one would see
completely inconsistent results at a single point. 

The zonal-mean response (Fig. 6) is more coherent across models,
with strong increase in precipitation near the Equator, some 
reduction in sub-tropical subsidence regions and a smaller but more
consistent increase in mid-latitudes. In short, the general tendency is
for precipitation to increase in regions where it is high and decrease
where evaporation is high, which is just what one might expect from
the increased specific humidities leading to increased atmospheric
fluxes of humidity from its sources to its sinks62. One consequence of
this is that mid-continental summer droughts may become more 
frequent and intense63, a common feature of model simulations of
greenhouse warming64,65. In interpreting any such features, however,
it must be emphasized that imperfections in AOGCMs affect precipi-
tation more than many other fields of general interest. For example,
AOGCMs generally do not allow for the time convection takes to
develop and hence simulate incorrectly the timing of precipitation
over the course of a day. This can have knock-on effects on total 
precipitation.

The pattern of change shows a ‘horseshoe’ pattern reminiscent of
the El Niño/Southern Oscillation (ENSO) phenomenon. Hence the
interpretation of any trend is closely related to the question of
whether the apparent66, albeit debatable67,68, increase in the frequency

and intensity of ENSO events over the past few decades is genuine
and, if so, anthropogenic69,70.

Figure 6 also shows the zonal-mean 100-year trend in observed
precipitation from the Hulme dataset of land-based station observa-
tions38,71. We see an increase in southern equatorial regions and in
mid-latitudes, broadly consistent with the models and our physical
expectations53. But this is only a qualitative comparison, given that
the land-based data sample less than a third of the world, the
strongest precipitation changes in Fig. 5 seem to be occurring over
the oceans, the forcing over the twentieth century is very different
from the CMIP-2 experiments, and different forcings may well be
associated with different patterns of response. Anthropogenic
aerosols, in particular, are so geographically concentrated that 
circulation changes and other local effects might swamp the driving
mechanism outlined above. Additionally, aerosols might affect 
precipitation more directly through their impact on cloud micro-
physics (ref. 5, and see review in this issue by Kaufman et al., pages
215–223). Nevertheless, the apparent robustness of the basic features
and agreement with a simple physical explanation are encouraging.

Because land-based precipitation records may miss most of the
signal (Fig. 5), the advent of global satellite-derived precipitation
analyses72–76 is welcome. Apparently significant positive trends in
tropical precipitation and the strength of the Hadley circulation (the
zonal-mean flow at low latitudes, fuelled by latent heat release) have
been reported77,78, although issues over decadal variability and the
long-term stability of observationally based data sets remain79,80.

An important factor for the regional details of the precipitation
response to external forcing is the change in atmospheric 
circulation6,81. In particular, an intensification of the North Atlantic
Oscillation — more westerly winds across the North Atlantic and
into Eurasia — has been observed over the past few decades81,82.
Although models (and simple theory) indicate that such a change,
which would increase mid-latitude land precipitation, might be
expected to accompany an anthropogenic greenhouse warming83,
most models seem to underestimate the magnitude of this circula-
tion change84. Extra-tropical circulation and precipitation anomalies
may well be strongly influenced by driving from the tropics (refs 85,
86, and M. Blackburn and B. Hoskins, personal communication),
and it remains very doubtful whether current AOGCMs respond 
correctly to localized but remote forcing83,87.

Interactions with aerosols and oceans
We have concentrated above on the effects of CO2, the largest single
driver of temperature changes over the twentieth century and expect-
ed to be the dominant one in the twenty-first century88. But aerosols
also seem to have contributed significantly to recent large-scale 
temperature changes49,50 and may have had important effects locally.
The most important overall are thought to be sulphate aerosols from
volcanic and anthropogenic sources in the stratosphere and tropos-
phere, respectively. Their primary radiative effect is to increase the
scattering of sunlight away to space, either directly or in the case of the
troposphere via (very uncertain) effects on clouds (refs 5, 88, and see
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review in this issue by Kaufman et al., pages 215–223). Thus, their 
primary effect is to provide a surface cooling and so a greater precipi-
tation response compared to changes in CO2 concentrations.

Aerosols can also produce direct tropospheric heating (refs 5, 88,
and review by Kaufman), with similar effects to CO2 on the hydrolog-
ic cycle. The effects of warming on the atmospheric moisture content,
maximum rainfall amounts and the zonal-mean precipitation dis-
cussed above should all apply regardless of the cause of the warming.
Aerosol-driven changes in precipitation efficiency could in principle
disturb the energy-balance arguments by changing the sensible heat
flux between surface and troposphere. It should be noted, however,
that calculating the forcing due to well-mixed greenhouse gases, with
well-defined spectral properties that can be measured in the labora-
tory, is much easier than the forcing due to the many possible types of
aerosol, with their shorter lifetimes and complex distribution, so
here we must expect rather more modelling uncertainty.

A potentially important effect of precipitation changes is on the
thermohaline circulation (THC) of the North Atlantic34. This brings
warm water northward to give an important warming of northern
mid-latitudes (refs 13, 89, and see review in this issue by Rahmstorf,
pages 207–214). The apparently robust increase in high-latitude
rainfall discussed above would tend to weaken the THC by stabilizing
the oceanic water column in regions of deep convection (refs 13, 14,
90, and the review by Rahmstorf). The possibility has even been
raised of a complete and long-term collapse in the THC, which would
have a major impact on European climate in particular. Most climate
models show some weakening of the THC under greenhouse-
gas-induced warming, but the amount of weakening is 
model-dependent14,91, and no constraint analogous to that shown in
Fig. 2 has yet been found when comparing different models. Hence
we cannot yet quantify the chance of a THC collapse during the 
twenty-first century.

Underestimated uncertainties
The climate modelling community has, for lack of any alternative,
long used the spread of results from their AOGCMs as a subjective
indicator of the range of uncertainty in climate forecasts. Modellers
have, however, always understood that this range does not provide a
meaningful confidence interval, as each model is designed largely as a
‘best guess’ and modellers share views, data, algorithms and hence,
inevitably, errors92. The spread of results from such an ‘ensemble of
opportunity’ is therefore likely to underestimate the true range of
uncertainty in a climate forecast.

In the absence of objective probabilistic forecasts with numerical
models that systematically investigate the range of possible responses
of the hydrologic cycle to anthropogenic climate change93,94, we have
here attempted to constrain the expected changes by other means. We
have, nominally, detected the influence of external forcing on recent
terrestrial precipitation changes, but isolating the anthropogenic
contribution is difficult as observed large-scale changes in precipita-
tion — unlike temperature — seem to be dominated by natural 
forcing. Hence we cannot constrain future precipitation directly with
recent precipitation trends.

Alternatively, we combine an observationally constrained 
estimate of 1.8–6.5 K for the 10–90% range in equilibrium warming
on doubling CO2 with a precipitation increase of 3.4% per 7C of
warming (plus an offset and some scatter) as obtained from a number
of coupled models with idealized oceans. This gives a corresponding
range for the equilibrium precipitation response of 0.6–18%. This
exceeds the range of simulations of the precipitation response given
by current ‘best guess’ climate models.

Precipitation changes predicted from climate models depend
heavily on the simulations of present-day precipitation, which have
many deficiencies. Hence we will continue to need conventional
model development, including additional processes and exploring
the impact of higher resolution. But we should not sacrifice every-
thing on the altar of spatial resolution: ultra-high-resolution models

are too expensive to be used systematically to identify the constraints
(linking observable to predicted climate variables) that are essential
to probabilistic climate forecasting. We believe (see Box 1) that 
objective probabilistic forecasting using AOGCMs is now possible,
and that it is worth rising to the challenge. A forecasting system that
rules out some currently conceivable futures as unlikely could be far
more useful for long-range planning that a small number of ultra-
high-resolution forecasts that simply rule in some (very detailed)
futures as possibilities. ■■
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