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Why Forecast Infectious Diseases?

® |[nfectious disease patterns continually shift

® \Within outbreak response to infectious diseases is
principally reactive (based on ongoing surveillance)

® Accurate, reliable forecasts with sufficient lead times
would provide greater opportunity to plan adaptive
mitigation and control efforts




Modeling the Seasona
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Can We Predict Individual Outbreaks?

* Seasonal flu dynamics are nonlinear and =
irregular
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* Qutbreaks, though in winter, vary
enormously from year-to-year

«©
£ 30001
]




Can We Predict Individual Outbreaks?

* Seasonal flu dynamics are nonlinear and =
irregular
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* Qutbreaks, though in winter, vary
enormously from year-to-year
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* There are other systems with similar
Issues that are predicted
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Our Forecasting Approach

* Seasonal flu dynamics are nonlinear and =
irregular
* Qutbreaks, though in winter, vary
enormously from year-to-year
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To predict influenza, we mimic strategies
used in numerical weather prediction

Requires 3 ingredients:
1) Observationally-validated model of influenza transmission dynamics
2) Real-time estimates of influenza infection rates (i.e. observations)

3) Data assimilation method to rigorously combine #1 and #2.



Humidity-forced SIRS Model
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Here p is a function of observed

daily specific humidity, a measure

of absolute humidity

Assessed fit to excess weekly P&l

mortality via a conversion factor
cases->lagged deaths




IL1+

* For municipal forecasting, we often use a more specific
estimate of influenza incidence

« We multiply municipal GFT ILI estimates by regional WHO/
NREVSS influenza positive test proportions

* The resulting metric (IL1+) eliminates signal from other
respiratory infections, such as rhinovirus
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Data Assimilation

Recursive (iterative) filtering of
observations in a statistically
rigorous fashion into an evolving
model construct

* Particle Filtering g

* Kalman Filtering N

* Variational Methods .
oo 7

Methods used in many disciplines,
iIncluding numerical weather
prediction where it is used to
generate improved forecasts
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Prior to Forecast: Training the Model

 Errors in the model structure, model parameters and
initial model state amplify through time

o Left to its own devices the model forecast will deviate
from reality
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Prior to Forecast: Training the Model

The real-time observations and data assimilation
methods are used to recursively adjust and optimize the

model

By entraining observations up to the present the model
forecast commences from a ‘truer’ starting point

Because the unobserved variables and parameters
have also been optimized, the model will evolve along
more representative trajectories when integrated into
the future

The ensemble forecast itself is run following
assimilation of the latest observation



Example Real-Time Forecast During 2012-2013

Forecasts (grey lines)
made with an SIRS
model

Model recursively
trained using real-time
observations (black ‘x’)
and data assimilation
methods up to the point
of forecast (Week 50)
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the time of forecast are shown as
red ‘x .



A Calibrated Forecast

Do not simply want to
predict an outcome (e.g.
the peak will occurin 5
week)

Want to know the
certainty of the forecast
as it is made

Is there a 90% chance
the peak will occurin 5
weeks?

Is there a 20% chance?
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Accurate ascription of forecast
certainty provides the public health
user a much richer, more
actionable prediction



A Calibrated Forecast

It turns OUt’ we Can use Salt Lake City Week 50 Forecast
the spread of each coool[* Observed (Traiming] =4
ensemble of predictions " Psterior
to estimate the B
certainty of a forecast
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be used to calibrate
forecasts made in real Above plot now shows the

time individual trajectories within a
single ensemble forecast




Predicting Peak Timing

A number of issues to be verified:

— The accuracy of the forecasts -- by Week 52 of
the 2012-2013 season 63% of forecasts for 108
cities were accurately forecast (84% of cities
peaked Week 2 or later)
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Predicting Peak Timing

A number of issues to be verified:

— The expected accuracy of the forecasts

Would hope that the forecasts gauged to be correct 80% of the
time are correct 80% of the time (and the forecasts gauged to be
correct 20% of the time are correct 20% of the time)
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— The forecast lead: Up to 9 weeks 16



Much Work Remains

* Can we build a more

reliable forecast model?
Testing Alternate Model Forms (age-
stratified, stochastic v. deterministic,

multiple strains, spatially explicit) (A) Unmodified particle filter (B) SR particle filter

* Can we improve model

optimization? ;
Testing and creating different data
assimilation methods (ensemble filters, [ e

particle filters)

=0 =10 =20 =30 =0 =10 =20 1=30
(big changes) (big changes)

* Can we provide forecasts

for local public health use?
Testing different observations of
influenza (Google, CDC, Twitter,
Wikipedia, WHO)

Yang and Shaman, 2014
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Possible Uses:
General Public

® Nightly Flu Forecast

® [ ead Times for Peak Sufficient for
Vaccination and Adaptive Immune
Response/Antibody Production

® Awareness of Germs Circulating
Locally may Affect Behavior -- stay
home from work or keep kids
home from school when sick,
cancel play dates, etc.




Possible Uses:
Public Health Officials

® Distribution of vaccines,
medicines and supplies to regions
with more urgent need

® Inform school closure decisions
in the event of a virulent outbreak
® Hospital resource and staffing
management p|a NN ng Data for New York, NY, week ending: Sat Apr 09 2016

Using observations through week 66
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