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Why Forecast Infectious Diseases? 
• 	  Infec(ous	  disease	  pa0erns	  con(nually	  shi5	  
• 	  Within	  outbreak	  response	  to	  infec(ous	  diseases	  is	  
principally	  reac(ve	  (based	  on	  ongoing	  surveillance)	  
• 	  Accurate,	  reliable	  forecasts	  with	  sufficient	  lead	  (mes	  
would	  provide	  greater	  opportunity	  to	  plan	  adap(ve	  
mi(ga(on	  and	  control	  efforts	  



Modeling the Seasonal Cycle of Influenza 



Can We Predict Individual Outbreaks? 
•  Seasonal flu dynamics are nonlinear and 
irregular 

•  Outbreaks, though in winter, vary 
enormously from year-to-year 
 



Can We Predict Individual Outbreaks? 
•  Seasonal flu dynamics are nonlinear and 
irregular 

•  Outbreaks, though in winter, vary 
enormously from year-to-year 

•  There are other systems with similar 
issues that are predicted 
 



Our Forecasting Approach 
•  Seasonal flu dynamics are nonlinear and 
irregular 

•  Outbreaks, though in winter, vary 
enormously from year-to-year 
 
To predict influenza, we mimic strategies  
used in numerical weather prediction 
 
Requires 3 ingredients: 
 
1) Observationally-validated model of influenza transmission dynamics 
 
2) Real-time estimates of influenza infection rates (i.e. observations) 
 
3) Data assimilation method to rigorously combine #1 and #2. 



Humidity-forced SIRS Model 

S RI
Here β is a function of observed 
daily specific humidity, a measure 
of absolute humidity 
 
Assessed fit to excess weekly P&I 
mortality via a conversion factor 
cases->lagged deaths 
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ILI+ 
•  For municipal forecasting, we often use a more specific 

estimate of influenza incidence 
•  We multiply municipal GFT ILI estimates by regional WHO/

NREVSS influenza positive test proportions 
•  The resulting metric (ILI+) eliminates signal from other 

respiratory infections, such as rhinovirus 



Data Assimilation 
Recursive (iterative) filtering of 
observations in a statistically 
rigorous fashion into an evolving 
model construct 
 
•  Particle Filtering 
•  Kalman Filtering 
•  Variational Methods 
 
Methods used in many disciplines, 
including numerical weather 
prediction where it is used to 
generate improved forecasts 



Prior to Forecast: Training the Model 

•  Errors in the model structure, model parameters and 
initial model state amplify through time 

•  Left to its own devices the model forecast will deviate 
from reality 

True Outcome 
Model Simulated 



Prior to Forecast: Training the Model 

•  The real-time observations and data assimilation 
methods are used to recursively adjust and optimize the 
model 

•  By entraining observations up to the present the model 
forecast commences from a ‘truer’ starting point 

•  Because the unobserved variables and parameters 
have also been optimized, the model will evolve along 
more representative trajectories when integrated into 
the future 

•  The ensemble forecast itself is run following 
assimilation of the latest observation 



Example	  Real-‐Time	  Forecast	  During	  2012-‐2013	  

Forecasts	  (grey	  lines)	  
made	  with	  an	  SIRS	  
model	  
	  
Model	  recursively	  
trained	  using	  real-‐(me	  
observa(ons	  (black	  ‘x’)	  
and	  data	  assimila(on	  
methods	  up	  to	  the	  point	  
of	  forecast	  (Week	  50)	  
	  
	  	  

Observed	  es(mates	  of	  influenza	  
incidence	  that	  were	  in	  the	  future	  at	  
the	  (me	  of	  forecast	  are	  shown	  as	  
red	  ‘x’.	  



A	  Calibrated	  Forecast	  
Do	  not	  simply	  want	  to	  
predict	  an	  outcome	  (e.g.	  
the	  peak	  will	  occur	  in	  5	  
week)	  
	  
Want	  to	  know	  the	  
certainty	  of	  the	  forecast	  
as	  it	  is	  made	  
	  
Is	  there	  a	  90%	  chance	  
the	  peak	  will	  occur	  in	  5	  
weeks?	  
	  
Is	  there	  a	  20%	  chance?	  

Accurate	  ascrip(on	  of	  forecast	  
certainty	  provides	  the	  public	  health	  
user	  a	  much	  richer,	  more	  
ac(onable	  predic(on	  



A	  Calibrated	  Forecast	  
It	  turns	  out,	  we	  can	  use	  
the	  spread	  of	  each	  
ensemble	  of	  predic(ons	  
to	  es(mate	  the	  
certainty	  of	  a	  forecast	  
	  
The	  rela(onship	  
between	  that	  spread	  
(variance)	  and	  accuracy	  
for	  past	  forecasts	  can	  
be	  used	  to	  calibrate	  
forecasts	  made	  in	  real	  
(me	  

Above	  plot	  now	  shows	  the	  
individual	  trajectories	  within	  a	  
single	  ensemble	  forecast	  
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Predicting Peak Timing 
•  A number of issues to be verified: 

– The accuracy of the forecasts -- by Week 52 of 
the 2012-2013 season 63% of forecasts for 108 
cities were accurately forecast (84% of cities 
peaked Week 2 or later) 
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Predicting Peak Timing 
•  A number of issues to be verified: 

– The expected accuracy of the forecasts 
Would hope that the forecasts gauged to be correct 80% of the 
time are correct 80% of the time (and the forecasts gauged to be 
correct 20% of the time are correct 20% of the time) 

  
– The forecast lead: Up to 9 weeks 



Much Work Remains 

•  Can we build a more 
reliable forecast model? 
Testing Alternate Model Forms (age-
stratified, stochastic v. deterministic, 
multiple strains, spatially explicit) 
 
•  Can we improve model 
optimization?                   
Testing and creating different data 
assimilation methods (ensemble filters, 
particle filters) 
 
•  Can we provide forecasts 
for local public health use? 
Testing different observations of 
influenza (Google, CDC, Twitter, 
Wikipedia, WHO) 
 
 

Yang	  and	  Shaman,	  2014	  
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Possible Uses: 
General Public 

• 	  Nightly	  Flu	  Forecast	  
• 	  Lead	  Times	  for	  Peak	  Sufficient	  for	  
Vaccina(on	  and	  Adap(ve	  Immune	  
Response/An(body	  Produc(on	  
• 	  Awareness	  of	  Germs	  Circula(ng	  
Locally	  may	  Affect	  Behavior	  -‐-‐	  stay	  
home	  from	  work	  or	  keep	  kids	  
home	  from	  school	  when	  sick,	  
cancel	  play	  dates,	  etc.	  



Possible Uses: 
Public Health Officials 

• 	  Distribu(on	  of	  vaccines,	  
medicines	  and	  supplies	  to	  regions	  
with	  more	  urgent	  need	  
• 	  Inform	  school	  closure	  decisions	  
in	  the	  event	  of	  a	  virulent	  outbreak	  
• 	  Hospital	  resource	  and	  staffing	  
management	  planning	  
• 	  Timely	  Public	  Service	  
Announcements	  
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