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* Climate change and extreme events

* Temperature-mortality case studies

* Emerging topics
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* They are (at least somewhat) rare

e Extreme events operate across a spectrum of time and space scales
* They are often multivariate

* They can have many ‘causes’

Source: NOAA/PSD Draft Strategic Plan



Source: Weather Underground
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* Small shifts in average conditions (e.g. 2 C
warming) can mean large shifts in extreme
event statistics

—Temperature extremes
—Intense precipitation and drought
—Sea level rise and coastal flooding



Changes in Surface Temperatures

Observed change in average surface temperature 1901-2012
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Probability of occurrence

Shifting Climate Extremes
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e Natural variability will continue to occur

e Small shifts in mean values can lead to large changes
in the frequency of extremes



Increasing trend: U.S. breaking many more
heat records than cold records

1.09:1 0.77:1 0.78:1 1.14:1 1.36:1 2.04:1 ratios

1800 weather stations
from 1950-2009 From Meehl et al. (2009)
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2020s 2050s

Coastal
Floods
at the

Battery

Annual chance of 1.0% 1.1%| 1.2to 1.7 % 14% | 1.7to 5.0%
today’s 100-year- 1.5 % 3.2%

flood

Flood heights 15.0 feet | 15.2 feet 15.3to | 15.8feet | 15.6feet 15.9to | 17.6feet
associated with 100- 15.7 17 feet

year flood (stillwater + feet

wave heights)

Stillwater flood 10.8 feet | 11.0 feet 11.1to | 11.7 feet | 11.4 feet 11.7to | 13.4 feet
heights associated 11.5 12.8

with 100-year flood feet feet

Estimates in the top row refer to the values for projected sea level rise. Low-estimate indicates 10t percentile, middle range indicates 25t
to 75t percentile, and high-estimate indicates 90t percentile. Flood heights for the 2020s and 2050s are derived by adding the sea level rise
projections for the corresponding percentiles to the baseline values. Baseline flood heights associated with the 100-year flood are based on
the stillwater elevation levels (SWELs). For 100-year flood, height is also given for stillwater plus wave heights. Flood heights are referenced
to the NAVD88 datum.

Coastal flooding is very likely to increase in frequency, extent, and height as a result of increased sea levels
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* Climate projections are based on a range of
(downscaled) global climate models and
scenarios of future greenhouse gas
concentrations

* Historical relationships between daily
weather and total mortality/morbidity are
extended into the future



Climate Projections

e Use calibrated climate models to make “projections” of the future

-With greenhouse gas emissions

e Emissions scenarios of the
future depend upon

— Energy technologies
— Economic growth
— Population

e |f we stop all greenhouse
gas emissions now we still
get warming
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Projections of Temperature-Related
Deaths for Manhattan, New York
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Figure 3 | Percentage change (average over 16 models) in monthly
temperature-related deaths in the 2080s versus the 1980s for the A2
scenario. The largest percentage changes are seen for the months of May
and September.

Source: Environmental Health Perspectives

Tiantian Li, Radley Horton and Patrick Kinney CCRUN n m



e Better characterization of tails of each
climate variable’s distribution

* Additional dimensions of health impacts
* Joint hazards

—Multivariate: Large-scale temperature
interactions with humidity, air quality,
availability of electrical power, the urban heat
island, etc.

—Spatial and temporal interactions



I EEEEEE—E—ELI.
Wet bulb temperature and thresholds

* Lowest temperature that can result from
evaporative cooling

e Max in recent heatwaves: 31°C

* Theoretical max for human tolerance: 35°C
(Sherwood, Huber, 2010)

Coffel, E., R.M. Horton, and A. De Sherbinin, Population exposure to heat stress in the 21t

century (in preparation) 15



Current once-per-year temperatures become
normal by 2060s

CMIP5 annual maximum Number of days exceeding base
temperature (1985-2005) annual maximum (2060s)
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Less wet bulb variability results in much higher
recurrence frequencies, especially in the tropics

CMIP5 annual max wet bulb Number of days exceeding base
temperature (1985-2005) annual maximum (2060s)
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Mean annual maximum wet bulb of 30-32°C in
India, and 29-30°C in the US southeast

CMIP5 projected annual maximum wet bulb CMIPS5 projected annual maximum wet bulb
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31°C, US Northeast, ~30M

Exposure to 31C wet bulb, US Northeast
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31°C, West Africa, ~160M

Exposure to 31C wet bulb, West Africa
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Global Population Exposure

32°C 33°C

Exposure to 32C wet bulb, global Exposure to 33C wet bulb, global
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With about 50M exposed to 34°C annually
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* By 2060s, significant annual exposure to wet bulb
temps near the human tolerance limit

e Recent extreme heat waves become annual events
globally

* Direct heat stress may frequently make outdoor
activity difficult and occasionally impossible in
densely populated regions



Small shifts in averages can lead to large impact on extremes
— The distribution can change as well

We simply can’t quantify how these extremes may change. Why
— Some are so rare, it is hard to know their baseline risk

— Multifaceted nature adds complexity. How will each driver change, and how will drivers interact
— High potential for surprises—emergent non linear behavior

We need more process based studies

We can offer qualitative, scenario based approaches.

Integration of different types of information in risk assessment (Oppenheimer et al. 2016)

Stakeholder-scientist collaborations are critical to advancing both the science and the
decision-making

Evaluating (potential) adaptation strategies in the context of rare extremes; can systems be
‘stress-tested’?



