Contents

- Climate information to aid decision-making (climate services)
- Climate observing systems
- Sources of data, availability, relevance at different spatial and temporal scales
- Data sharing policies
Climate information is potentially of use in decision-making and risk management.

Climate services are being actively developed world-wide.

- Must respond to user needs
- Need to be based on scientifically credible information and expertise
- Require appropriate engagement between the users and providers with an effective access mechanism
Global Framework for Climate Services (GFCS)

Vision: enable society to manage better the risks and opportunities arising from climate variability and change. Using science-based climate information

Priority areas:
- Agriculture and food security
- Water management
- Health
- Disaster risk reduction
- Energy
- Urban environments
Timescales in scope?

1. Past climate
 observations and monitoring, climatologies

2. Near-term future climate
 month-season-decade predictions

3. Long-term future climate
 multi-decadal projections

Often an overlap with weather services
The climate observing system
A mixture of new technology and continuity
Example sources of information

- Climate variables of interest to health sector: temperature, humidity, precipitation, wind, insolation
- NMHSs provide information from weather stations (may charge)
 - international collections are also available, but subject to data sharing policies
- International data centres also provide gridded information (e.g. GPCC for precipitation)
 - some national institutions provide global information (e.g. Met Office Hadley Centre)
- Space agencies (e.g. NASA, ESA, JAXA)
- Reanalysis centres (e.g. ECMWF, NCEP)
- Earth System Grid Federation
Types of observational product

1. Measurements from individual weather stations
2. Estimates from satellite measurements
3. Variables presented on regular lat-longitude grid
Measurements from weather stations

- Some records extend back more than 100 years (Europe, N America), but most are <50 years
 - can get monthly (good coverage), daily, sub-daily data
- No standardization of time of measurement, so station data from different countries can be difficult to compare
 - e.g. when was the maximum temperature for a day recorded?
- When using long records, need to bear continuity in mind
 - stations can move, change instrumentation, etc.
- Rainfall is more variable than temperature
 - need many more rainfall stations to provide representative information for a wider area
Perth – a very visible minimum temperature inhomogeneity

Site moved in 1992-93 from inner city to park north of city centre (earlier moves 1963, 1967)
Post-1993 site about 2C cooler than 1967-92 site for means, 3C cooler for extremes
1910-1992 record low (1.2C) surpassed 38 times in 21 years since 1994

Courtesy Blair Trewin, BoM
Estimates from satellite data

• Surface temperature can be “retrieved” from infrared satellite instruments
 • Useful proxy for surface temperature especially in data sparse regions, but complicated relationship to air temperature
 • Minimum land surface temperature provides a reasonable approximation to the min. air temperature on a day. Daily maxima can be very different

• Rainfall can also be estimated from satellite data
 • Different instruments do better at representing different intensities of rainfall
 • There is often a mismatch between rainfall estimated at weather stations and by satellite instruments
SATELLITE RETRIEVALS OF SURFACE TEMPERATURE (1 DAY)
Gridded products - Precipitation
Gridded data sets based on weather station measurements only and on combined station and satellite data.
Gridded products - Reanalyses

Blending observations with state-of-the-art weather forecasting model

- Gridded fields, high temporal resolution
- Useful for temperature, wind/pressure
- Precipitation not assimilated into model

http://www.ecmwf.int/en/research/projects/era-clim/d-day-analyses
High confidence in the bigger picture, low confidence in the details

Global mean temperature anomaly 1850-2015

HadCRUT4

NCDC

GISS

Difference (°C) from 1961-1990

International Surface Temperature Initiative

Courtesy Kate Willett, Met Office
Data exchange policy (WMO Resolutions 40 and 60)

• Primary goal of GFCS: ensure greater availability of, access to and use of enhanced climate services for all countries

• Climate information is primarily an international public good.

• Promote the free and open exchange of climate-relevant data while respecting national and international policies

• WMO urges governments to strengthen capabilities to collect, rescue and exchange data and products. But recognises:
 • governments choose how they make their data and products available
 • users respect the conditions of use set by the owners of the data and products
 • some NMHSs require cost recovery to support the infrastructure necessary for generating the data and products
Summary

• Climate observations and monitoring are essential components of climate services for a range of sectors.

• For the health sector, there are potentially useful global records from a range of sources (long weather records, satellite measurements, gridded products, reanalyses).

• There is a growing move towards making more data more freely available (e.g. GFCS).
Thank you for listening

Any questions?