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SUMMARY

The limits for the predictability of the ENSO have been long discussed. Even when ENSO prediction skill is expected to be limited, questions remain as to which are the limiting factors. The role of atmospheric noise for ENSO initiation, the growth of
initial errors and inadequate models have been identified as key factors. Past studies have used retrospective forecasts from seasonal prediction systems to evaluate the predictability of ENSO for up to 24 months. The present study makes use of the
recently released CMIP5 decadal hindcasts to explore ENSO predictability beyond that threshold. A set of retrospective forecasts from 9 different modeling systems that were initialized every year starting in 1961 and run for 120 months were
considered to explore long-lead ENSO predictability and suggest that some skill exists for leads longer than 24 months. In addition, the performance of the multi-model ensemble mean is explored and compared to the multi-model mean based solely on
the most skillful systems; the latter is found to yield better results for the deterministic metrics. Finally, an analysis of the near-surface temperature and precipitation teleconnections reveals that the ability of the systems to detect ENSO events far in
advance could translate into predictive skill over land for several lead years, though with reduced amplitudes compared to observations.
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The deterministic skill of the systems to represent the EN3.4 SST variability, as well as their ability to capture the observed El Nino (EN), La Nina (LN) and Neutral Skill is evident in single models up to 2 years out, and for the multi-model mean for up to 3-4 years ahead. The probabilistic skill for event
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