The Evolution and Outstanding Challenges for El Niño Modeling and Prediction

Lisa Goddard

International Research Institute for Climate and Society

Thanks to A. Wittenberg (NOAA-GFDL); T. Stockdale (ECMWF); B. Kirtman (RSMAS); D. DeWitt (NOAA-CPC); C. Deser, A. Karspec, and J. Richter (NCAR)
The FIRST ever El Niño forecast made 1 year before the peak

Based on Cane, Zebiak and Dolan - Nature 1986.
Contours at 0.5°C

Note added in proof: No indication of El Niño is apparent as of the end of May 1986. There is no known precedent for an event to begin later than June.
Winter 1990-91
Weak warming, but no El Niño
Winter 1991-92
Moderate El Niño
Spring 1993
Missed warming
Forecasts of the 1997-98 El Niño
From the Experimental Long-Lead Forecast Bulletin (COLA)
Structure of the Talk

Evolution and outstanding challenges for…

- Predicting El Niño events
- Forecasting the related climate impacts
- Doing something about it
Skill of SST Forecast for JFM from North America Multi-Model Ensemble (NMME)
Building Blocks of Prediction Systems

Data Assimilation Systems

- OBSERVATIONS
- ANALYSIS
- MODEL
 - short forecast

Models

Observational Networks
Modeling Challenges for El Niño

1) Model Biases:
 - Double ITCZ (tropical rainfall biases)
 - Equatorial cold bias
 - ENSO variability too far west
 - Poor structure of upper ocean thermal stratification

2) Biases and imbalances in ocean-atmosphere state estimation:
 - Spurious currents
 - Disagreement in regions of sparse observations

3) Representation of processes:
 - Poor characterization of wind variability (e.g., MJO)
Modeling Challenges for El Niño

1) Model Biases:
 - Double ITCZ (tropical rainfall biases)
 - Equatorial cold bias
 - ENSO variability too far west
 - Poor structure of upper ocean thermal stratification

2) Biases and imbalances in ocean-atmosphere state estimation:
 - Spurious currents
 - Disagreement in regions of sparse observations

3) Representation of processes:
 - Poor characterization of wind variability (e.g. MJO)
A decade of progress on ENSO prediction

- Steady progress: ~1 month/decade skill gain
- How much is due to the initialization, how much to model development?

Half of the gain on forecast skill is due to improved ocean initialization

(Balmaseda et al 2010, OceanObs)
Modeling Challenges for El Niño

1) Model Biases:
 Double ITCZ (tropical rainfall biases)
 Equatorial cold bias
 ENSO variability too far west
 Poor structure of upper ocean thermal stratification

2) Biases and imbalances in ocean-atmosphere state estimation:
 Spurious currents
 Disagreement in regions of sparse observations

3) Representation of processes:
 Poor characterization of wind variability (e.g. MJO)
Double ITCZ in Coupled Ocean-Atmosphere Models

(Zhang et al. 2015, GRL)
SSTA Forecast DJF 2015-16

Double ITCZ bias is one model error that leads to El Niño variability extending too far west.
Observations are Critical

Forecast error drops to near-zero in European model with completion of TAO buoy array in the Tropical Pacific.

(Stockdale et al. 2010)
“Expected” Climate Impacts During El Niño

El Niño and Rainfall

El Niño conditions in the tropical Pacific are known to shift rainfall patterns in many different parts of the world. Although they vary somewhat from one El Niño to the next, the strongest shifts remain fairly consistent in the regions and seasons shown on the map below.

For more information on El Niño and La Niña, go to: http://iri.columbia.edu/enso/
Sources:

http://iridl.ldeo.columbia.edu/maproom/IFRC/ → “Past Conditions”

#elniñoconf
During the 1997-98 El Niño, SSTs were predicted only in the tropical Pacific.

We have since learned the importance of getting SST variability right in the other oceans.

(Goddard & Graham 1999, JGR-Atmos.)
Increasing Atmospheric Model Resolution

Higher-resolution atmosphere models can provide better teleconnections, including local-scale details.

(Jia et al. 2015, J. Climate)
Meaningful climate information is only a start. We need to translate that into impacts (risk or likelihood) and translate that into meaningful action.

NOT something the climate community can (or should) do on their own.
West and Central Africa: Flood preparedness

This preliminary Emergency Appeal seeks CHF 750,000 (USD 731,134 or EUR 462,475) in cash, kind, or services to support the National Societies of West and Central Africa to assist 47,500 beneficiaries.

CHF 483,047 has been allocated from the Federation’s Disaster Relief Emergency Fund (DREF) to start the planned activities. Discussions are currently taking place to reallocate approximately CHF 550,000 remaining from the 2007 West Africa floods appeal to support this appeal. While these discussions are underway, partners are encouraged to provide timely support to this appeal.
Early Action works:

- Faster response: 1-2 days rather than 40 in 2007
- Fewer victims (30 instead of hundreds)
- Lower cost per beneficiary (30%)

Example: Red Cross volunteers in Ghana saving lives by alerting Volta fishermen that the Bagre dam would be spilled.
Soil Water Balance

Worst areas: low water, low vegetation, high stocking rate, “dry” forecast.

Rainfall Forecast for AMJ 2015

Stocking Rate Real time in Uruguay Data Library

NDVI Actual and Relative to Normal

Worst areas: low water, low vegetation, high stocking rate, “dry” forecast.
Climate Information for Agriculture - 2015

IRI Forecast DJF 2015/2016

Tailored Uruguay Forecast DJF 2015/16 from Nov 2015
(using IRI Climate Predictability Tool)

Next steps:
* Soil Water Balance Forecasts
* Stocking Rate Forecasts
* Weather-within-climate
 - Forecasts of dry spell frequency
 - Forecasts of frequency of storms

#elninoconf
Conclusions

- Predicting El Niño events
 El Niño events are predictable, but we could do better (timing, spatial pattern, diversity, uncertainty)

- Forecasting the related climate impacts
 Good quality models are necessary for regional impacts. Also needed are the analysis and tailoring to translate model uncertainty into forecast risk or likelihood.

- Doing something about it
 Even with good climate information, need to translate that into socio-economic impacts, and translate that into meaningful action. This is not something the climate community can (or should) do alone.
Thank You

web: iri.columbia.edu
@climatesociety
.../climatesociety

#elninoconf
Fundamental Processes: Westerly Wind Bursts
Improving ENSO Prediction and Predictability

ACC of N3.4 SSTA (JanIC) with OISST

(Lopez and Kirtman 2014, JGR-Atmos)
Fundamental Processes: Westerly Wind Bursts
Improving ENSO Prediction and Predictability

(Lopez and Kirtman 2014, JGR-Atmos)
Information to initialize the ocean

- Ocean model
- Plus:
 - SST
 - Atmospheric fluxes from atmospheric reanalysis
 - Subsurface ocean information

Time evolution of the Ocean Observing System

- 1982: XBT’s 60’s
- 1993: Satellite SST
- 2001: Moorings/Altimeter ARGO

#elnninoconf
El Niño strength only partly related to strength of climate impacts
April 2015: IRI – SNIA Provided this Information

Soil Water Balance

|---------------|-----------|-----------|-----------|-----------|
| Precipitation Forecast for AMJ 2015

NDVI Actual and Relative to Normal

Indice de Vegetación Normalizado (NDVI)

Desvío Mensual (Media = 100%)

Stocking Rate Real time in Uruguay Data Library

Worse areas: low water, low vegetation, high stocking rate, “dry” forecast