
Given its impact on populations and the gravity of its
pathology, malaria remains one of the most significant
infectious diseases. Malaria is a leading cause of mor-
bidity and mortality in the developing world, especially
sub-Saharan Africa where the transmission rates are
highest and where it is considered to be a major imped-
iment to economic development (Sachs and Malaney,
2002). Malaria is a preventable and curable disease
whose causal agent, a Plasmodium spp. parasite, is
transmitted throughout the globe by a select number of
Anopheles vector mosquitoes. It is essentially an envi-
ronmental disease since the vectors require specific
habitats with surface water for reproduction, humidity
for adult mosquito survival and the development rates
of both the vector and parasite populations are influ-
enced by temperature. In Sub-Saharan Africa the pat-
tern of malaria transmission varies markedly from
region to region, depending on climate and biogeogra-
phy, and broad ecological categories have been widely
used to describe variations in the observed epidemio-
logical patterns (Mouchet et al., 1993). Towards either
end of this spectrum of variation malaria transmission
is classified as stable or unstable (Gilles, 1993). A
region prone to stable malaria is characterized by high
transmission levels with little inter-annual variation. In
these areas, collective immunity to the disease in the
population is high and epidemics are unlikely. A region

prone to unstable malaria is characterized by transmis-
sion levels that vary from year to year. In these areas,
collective immunity is low and disease, when it does
occur, affects all age groups and is often severe
(Wernsdorfer and McGregor, 1988). Unstable malaria
areas are essentially found in warm, semi-arid zones,
tropical mountainous areas, and regions where previ-
ous levels of control are beginning to fail. It has long
been known that in these areas any change in tempera-
ture, relative humidity or rainfall can have a major
impact on malaria transmission, possibly leading to epi-
demics (Najera, 1989).
Although tremendous progress has been made globally
in fighting the vector and the parasite (Najera, 1989),
the situation is far from being resolved, especially in
Africa.
Since 1993 there has been a pragmatic global malaria
control strategy based on a Primary Health Care
approach. Its aims are to: a) reduce mortality and the
negative social and economic consequences of the dis-
ease; b) prevent epidemics; c) protect malaria free
areas; d) eradicate malaria where possible (WHO,
1993). Such a control strategy requires recognition of
the underlying variability in the epidemiology of the dis-
ease, potential for modification, availability of resources
and need to adapt malaria control planning to local con-
ditions in areas where there is a reasonable chance of
success.
One of the new approaches to better understand the
variability in the epidemiology of the disease depends
on knowledge of biodiversity. Specifically, the distribu-
tion and ecology of the vectors and the parasites are
considered within a context of a climatic and anthro-
pogenic environment which is in perpetual evolution.
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This biodiversity is determined by many factors:
- Environmental: rainfall, temperature, vegetation;
- Biological: competence of the vectors (transmission),

biology of each species of Plasmodium; and
suscecptibility of the host to disease;

- Anthropogenic: deforestation, irrigation, urbanization,
movements of populations and economic changes.

Although successful eradication of malaria has been
achieved in many countries, in Europe and the USA,
where it was still endemic not so long ago (last centu-
ry), the situation is still problematic in many regions of
the globe (Najera, 1989). Several initiatives have been
launched to reduce malaria on the various continents
where the disease still prevails or is re-emerging. In
May 1998, the Director-General of the World Health
Organization (WHO) announced a United Nations-led
campaign to Roll Back Malaria (RBM), pledging to
halve malaria deaths by 2010. One of the Millennium
Development Goals (MDGs), initiated at the turn of
the century, is to combat malaria while Global Fund to
Fight AIDS, Tuberculosis and Malaria (GFATM) also
provides a mechanism for increasing the global
resources allocated for fighting the disease. The African
situation is by far the worst where the number of deaths
is actually increasing (Attaran, 2004). The reasons for
the persistence and re-emergence of malaria are many
and varied. Environmental changes, economic reasons,
declining control programs and mosquito/parasite
adaptation to pesticides/drugs, all contribute to the
development of the disease.
During the last twenty years, the development of
Geographical Information Systems (GIS) and satellites
for earth observation have made it possible to make
important progress in the monitoring of the environ-
mental and anthropogenic factors which influence the
reduction or the re-emergence of the disease. Analyses
resulting from the combination of GIS and Remote
Sensing (RS) have improved knowledge of the biodi-
versity influencing malaria. A better understanding of
the stratification of malaria and the burden of the dis-
ease on the population is in–progress (Craig et al.,
1999; Snow et al., 1999; Omumbo et al., 2004). This
knowledge can help decision-makers to better allocate
limited resources in the fight against the disease.
This review summarizes the recent advances in GIS and
RS in the prevention and fight against malaria.
Examples of applications in various areas of the globe
are provided to support current knowledge on the use
of the new monitoring and early warning systems.

Principles that govern emergence
of malaria

The severity of malaria is a function of the interaction
between the parasite, the Anopheles mosquito vector,
the human host and the environment. Vector abun-
dance, duration of the extrinsic incubation period and
survival rate of the vector, combined with the probabil-
ity of the vector feeding off a susceptible human host

determine the risk of malaria infection, the stability of
disease transmission, and seasonal patterns. Many fac-
tors are involved in determining the evolution of the
parasite, the vector, the human and the environment.
Hackett wrote ‘Everything about malaria is so molded
by local conditions that it becomes a thousand epi-
demiological puzzles’. Like chess, it is played with few
pieces, but is capable of an infinite variety of situa-
tions’. If we are to see order within the chaos we must
consider that most of the factors are interrelated and it
is necessary to take into account these inter-relation-
ships in a holistic approach to understand the compo-
nents which influence the development of malaria; we
must also understand the differing scales at which each
factor play out its influence on the overall game. In our
review we have tried to separate them into three differ-
ent components for analysis knowing that their interac-
tions are key elements. The following sections review
the importance of each component and discuss the pos-
sibility of mapping its spatial and temporal distribution.

Ecology of Malaria

Rainfall 

Different malaria vectors use a variety of sites in which
to lay their eggs (irrigation canals, tire ruts, mangrove
swamps, pools, etc.) as long as the water is clean, not
too shaded and, for most species, relatively still. In
many semi-arid areas these sites are only widely avail-
able with the onset of the seasonal rains unless dry sea-
son irrigation is undertaken. The association between
rainfall and malaria epidemics has been recognized for
many decades (Christophers, 1911) but while increas-
ing precipitation may increase vector populations in
many circumstances by increasing available anopheles
breeding sites, excessive rains may also have the oppo-
site effect by flushing out small breeding sites, such as
ditches or pools (Fox, 1957) or by decreasing the tem-
perature, which in regions of higher altitude can stop
malaria transmission.
In tropical Africa rain is largely produced from deep
convective storms and the clouds with the coldest top
surface temperature produce the heaviest rainfall. It is
possible to derive estimates of rainfall by measuring
cloud top temperatures using thermal infrared images
from Meteosat. At a certain threshold temperature (-40
to -70ºC depending on latitude and season) clouds will
precipitate into rainfall. By measuring the length of
time a cloud is at this critical threshold temperature,
knows as the Cold Cloud Duration (CCD), it is possi-
ble to estimate the amount of rainfall using a simple
regression technique (Milford and Dugdale, 1990).

Using such technique, Rain Fall Estimates are produced
on a decadal basis and provided to the user community
by the Africa Data Dissemination Service (ADDS) web-
site supported by USAID FEWS NET. The methodolo-
gy uses an interpolation method to combine Meteosat
and Global Telecommunication System (GTS) data,
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and includes warm cloud information for the decadal
estimates. Meteosat 7 geostationary satellite infrared
data are acquired in 30-minute intervals, and areas
depicting cloud top temperatures of less than 235K are
used to estimate convective rainfall. WMO GTS data
from ~1000 stations provide station rain gauge totals
and are taken to be the true rainfall within 15-km radii
of each station, model analyses of wind, relative humid-
ity and orography are also included. Two new satellite
rainfall estimation instruments have recently been incor-
porated into the rainfall estimation, namely, the Special
Sensor Microwave/Imager (SSM/I) on board Defense
Meteorological Satellite Program satellites, and the
Advanced Microwave Sounding Unit (AMSU) on board
NOAA satellites. SSM/I estimates are acquired at 6-
hour intervals while AMSU rainfall estimates are avail-
able every 12 hours (FEWS Web page: http://igskmncn-
wb015.cr.usgs.gov/adds/readme.php? symbol=rf).
Rainfall data are also available from the 2.5ºx2.5º
Climate Prediction Center Merged Analysis of
Precipitation (CMAP) version 0309 (Xie and Arkin,
1998) dataset constructed from gauge observations,
from five kinds of satellite estimates of precipitation,
and from National Centers for Environmental
Prediction Reanalysis precipitation.
The data area available from 1979 to date (http://www.
cpc.ncep.noaa.gov/products/global_precip/html/wpag
e.cmap.html) are expressed as daily averages (mm per
day) for each month. These data are of a much coarser
spatial resolution than satellite rainfall estimates distrib-
uted by the Africa Data Dissemination Service (ADDS),
but have the advantage of a consistent time series
longer than the one provided by ADDS. The CMAP
data were used to study the relationship of variability in
rainfall to malaria incidence in Botswana (Thomson et
al., 2005).
Additional information for Malaria Epidemic Risk
analyses is also provided via the ADDS FEWS web
page. The maps provide a simple indicator of changes
in malaria risk in marginal transmission areas based
solely on rainfall, showing differences above and below
expected levels. The maps use a mask to exclude areas
where malaria is considered to be endemic (as opposed
to epidemic), or absent. This mask is based solely on
climatic constraints to malaria transmission (including
climatic variability), and as yet does not account for
areas where historic control has eliminated epidemic
risk in the northern and southern margins of the conti-
nent. The maps have been tested against laboratory-
confirmed malaria incidence figures in districts in
Botswana where they showed a strong correlation. The
maps have also been tested and correspond well with
expert knowledge of epidemic risk in a number of epi-
demic prone countries. Their use and validation else-
where is encouraged.

Temperature

Temperature has an effect on both the vector and the
parasite. For the vector, it affects the juvenile develop-

ment rates, the length of the gonotrophic cycle and sur-
vivorship of both juvenile and adult stages with an opti-
mal temperature and upper and lower lethal bound-
aries. For the parasite it effects the extrinsic incubation
period (Lactin et al., 1995). Plasmodium falciparum
(the dominant malaria parasite in Africa) requires
warmer minimum temperatures than Plasmodium
vivax. This helps account for the geographic limits of
falciparum malaria transmission in Africa (Bruce-
Chwatt, 1991). At 26ºC the extrinsic incubation period
of this malaria species is about 9-10 days whereas at 20-
22ºC it may take as long as 15-20 days. In highland
areas, where cold temperatures preclude vector and/or
parasite development during part/or all of the year,
increased prevalence rates may be closely associated
with higher than average minimum temperatures
(Bouma et al., 1994).
It is possible to estimate surface temperatures from the
thermal channels of NOAA-AVHRR sensors, Meteosat
and TERRA-MODIS. The Land Surface Temperature
(LST), a proxy environmental variable, is commonly
calculated using a split-window method which takes
into account some atmospheric effects (Adding and
Kauth, 1970; Price, 1984; Coll et al., 1994; França and
Cracknell, 1994). The relationship between air tem-
perature and LST is not straightforward. The LST rep-
resents a spatial integration of information over the
entire area observed, and therefore differs from in situ
measurements. It also differs from the ambient tem-
perature since it measures the temperature of the
earth’s “skin”.
New research is underway to use temperature fields
produced by the MM5 mesoscale numerical weather
prediction model for this purpose, available from the
Air Force Weather Agency. Estimated air temperature
downscaled with a regional digital elevation model is
planned to be associated with rainfall to produce an
extended vectorial capacity model (Fig. 1).
Vectorial capacity V has been defined as the daily rate
at which future inoculations could arise from a cur-
rently infected case (Dye, 1992). It has also been
described as a convenient way of expressing malaria
transmission risk, or the receptivity of an area to
malaria (Gilles, 1993). While vectorial capacity does
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Fig.1. A diagrammatic representation of the “extended”
vectorial capacity model.
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not take into account parasite availability in the human
host population, it is considered to be analogous to the
environmental-biological driving force under-pinning
the transmission potential in an area. The vectorial
capacity model has more recently been extended to
enable temperature and rainfall to drive the model
(Connor, 2002).
The extended vectorial capacity model includes the
influence of rainfall and temperature variables on
malaria transmission patterns through the impact they
have on the bionomics of the anopheline vector (feed-
ing frequency, gonotrophic period, larval development
rate, survival) and the parasite’s extrinsic incubation
period (sporogeny) in its mosquito host.

Humidity

The survival rate of adult insects is often thought to
increase or decrease in relation to a factor called satu-
ration deficit. Saturation deficit is derived by subtract-
ing the actual water vapor pressure from the maximum
possible vapor pressure at a given temperature.
Evidence for other vectors (tsetse, ticks, culicoides)
suggests that saturation deficit is an important environ-
mental variable in larval and adult survivorship.
Despite little direct evidence of the effect of saturation
deficit on mosquito longevity, the relationship can be
inferred from historical studies in Africa, India and
Latin America (Macdonald, 1953).
There are no techniques currently available to extract
precise quantitative estimations of saturation deficit
from satellite data although Normalized Difference
Vegetation Index (NDVI) has been suggested as a pos-
sible proxy (Rogers, 1991). Nevertheless, related vari-
ables can be used to infer its status such as the water
deficit index obtained from AVHRR data (Moran et al.,
1994) or the Global Vegetation Moisture Index which
provides an estimation of the vegetation water content
(Ceccato et al., 2002). Further research to quantify the
relationship between those indices and saturation
deficit must be made to determine whether they could
be used as substitutes.

Surface Water

Surface water provides the habitat for the juvenile
stages (egg, larvae, pupae) of malaria vectors. Monitor-
ing the state of small water bodies and wetlands using
satellite data is therefore very useful to identify the
source of malaria vectors. The Short Wave Infrared
(SWIR) is a wavelength (1.55-1.75 µm) absorbed by
water and therefore can be used to retrieve information
on the presence of water bodies and vegetation water
content (Ceccato et al., 2001). The SWIR is available
on sensors such as LANDSAT-TM, SPOT-VEGETA-
TION and TERRA-MODIS. Recently, research has
been developed to use the SWIR to retrieve vegetation
water content (Ceccato et al., 2002) and water bodies
(Gond et al., 2004) using SPOT-VEGETATION. New
indices such as the Global Vegetation Moisture Index

(GVMI, Ceccato et al., 2002); Normalized Difference
Water Index (NDWI, Gao, 1996) have been developed
to retrieve vegetation water content and a contextual
algorithm developed by Gond et al. (2004) to retrieve
water bodies using the sensor SPOT-VEGETATION.
However, SPOT-VEGETATION spatial resolution of
1km does not allow the detection of small ponds impor-
tant for mosquito breeding. TERRA-MODIS (with a
spatial resolution of 250 m) and LANDSAT-TM (30 m)
provide improved quality of images and can be used as
shown later in section 3 for monitoring water bodies.
In addition to the potential of the SWIR, further
research was also carried out using RADARSAT
Synthetic Aperture Radar (SAR) images to monitor
wetland ecosystem and flooded areas (Kandus et al.,
2001). The use of radar systems provides the possibili-
ties to monitor earth features during night or when cov-
ered heavily by clouds. The signal amplitude wave-
length emitted and received by the sensors are not influ-
enced by atmospheric conditions and allow the detec-
tion of area flooded even during cloudy days. Radar RS
programs, like ENVISAT, RADARSAT 2, have been
developed and a panel of products made available,
increasing the possibility for using operationally radar
images to monitor water bodies. RADARSAT was suc-
cessfully used in different ecosystems and combined
with SPOT-VEGETATION data to enhance the accura-
cy of mapping the surface area of flooded wetland areas
(Toyra et al., 2002).

Vegetation

Vegetation type and growth stage may play an impor-
tant role in determining vector abundance irrespective
of their association with rainfall. It has been noted that
whilst rice irrigation schemes may provide excellent
breeding sites for An. gambiae s.l. early in the growth
cycle of the plants – this changes as the rice plants
mature and form a dense canopy over the water
(Lindsay et al., 1991). Methods of rice field classifica-
tions were successfully developed using Synthetic
Aperture Radar (SAR) sensors onboard ERS1
(Chakraborty et al., 1997) and RADARSAT (Panigrahy
et al., 1999, Shao et al., 2001).
The type of vegetation which surrounds the breeding
sites, and thereby provides potential resting, sugar feed-
ing supplies for adult mosquitoes, and protection from
climatic conditions, may also be important in determin-
ing the abundance of mosquitoes associated with the
breeding site (Beck et al., 1994). Furthermore, vegeta-
tion type may influence mosquito abundance by affect-
ing the presence or absence of animal or human hosts
and thereby affecting the availability of blood meals.
Large-scale changes in vegetation class and phenology
have been extensively researched using AVHRR
(Townshend and Justice, 1986; Tucker et al., 1985) and
SPOT-VEGETATION (Mayaux et al., 2004) data.
Satellite images at higher spatial resolution such as
Landsat, SPOT-HRVIR and TERRA-MODIS have been
used to map changes in vegetation in particular defor-
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estation, a process widely thought to be associated with
changing levels of malaria transmission (Walsh et al.,
1993). MODIS images at 250m spatial resolution are
accessible free of charge. Therefore, they are used on a
regular basis to detect vegetation in Africa (where the
spatial resolution of SPOT-VEGETATION cannot
detect it) by the Desert Locust community for opera-
tional field campaigns to fight against the Desert Locust
(Ceccato, in press). 

Seasonality in Climate

The combined influence of rainfall, temperature and
humidity, re-grouped underneath weather (short-term)
and climate (long-term) on malaria is very complex,
especially for extreme weather conditions. Direct
effects of climate on vector and parasite development
are easy to see but indirect effects may also be impor-
tant such as the effects of previous exposure (related to
direct effects), nutritional status, and co-infection may
help determine the disease outcome.
Just as climate is one of the determinants of malaria
endemicity, climate variability is one of the main factors
behind inter-annual fluctuations of malaria. Literature
abounds with examples of how unusual, anomalous or
extreme weather conditions have led directly and indi-
rectly (through destructive crop pests and diseases) to
human malnutrition and in turn to health problems or
to both at the same time (Gommes et al., 2004).
In recent years there have been significant scientific
advances in our ability to predict climate on the season-
al timescale (Goddard et al., 2001). The skill associated
with these predictions varies from region to region, but
is generally higher within the tropics. Information on cli-
mate forecast and weather anomalies can be accessed on
line through the IRI web site (IRI Climate Information
Digest: http://iri.columbia.edu/climate/cid/index.html).
The World Health Organizations Technical Support
Network for Malaria Epidemic Prevention and Control
has suggested that such forecasts may be relevant to
malaria early warning (WHO, 2001). Recently,  the
information provided by regional forecasters in
Southern Africa has been presented and used by deci-
sion-makers to forecast an increase in malaria risk in
epidemic prone areas during seasonal Outlook Forums
(DaSilva et al., 2004).
The importance of the factors influencing malaria is not
only limited to climatic factors. Anthropic changes in
the environment, in land use, deforestation, in
hydraulic network, also induce continuous changes in
the intensity of malaria transmission.

Ecology of Anthropogenic Components
of Malaria Transmission

Consequences of demographic and technological devel-
opments during the last century have considerably
modified the environment. Forest and swamp regions
were shifted to agriculture to feed an ever-increasing
population. Water requirements for many crops have

led to modifications of surface waters. Development of
urban areas has also modified the spatial distribution of
populations and lead to high concentrations of popula-
tion in restricted areas. Already more than 50% of the
total global population lives in cities. These demo-
graphic changes in cities can impact malaria, either by
increasing the potential for malaria transmission where
the development of irrigated cultures surrounding the
city increases the vector population or by decreasing it,
if adequate measures are taken to reduce the vector and
parasite population in the cities.
In some countries, and in particular in Africa, move-
ments of population for political or economical reasons
create another risk factor to the spread of malaria.
Migrants and refugees may bring new parasites (includ-
ing drug resistant parasites) to an area and increase
transmission in the settled population, or because they
come from a low, no transmission area migrants and
refugees may be highly vulnerable to severe disease
when the enter a malaria endemic area (Giada et al.,
2003). Development of urban cities (Small, 2003) can
be monitored with high spatial resolution images such
as Ikonos and QuickBird (respectively, 1m and 0.61m
for the panchromatic channel).

Control Components 

Malaria is a preventable and curable disease. The most
important factors that determine the survival of
patients with P. falciparum malaria are (i) the patients
personal vulnerability (in terms of immunity, malnutri-
tion, other diseases) and (ii) early diagnosis and prompt
treatment with effective anti-malaria drugs. Drug ther-
apy may not only save the patient but also decrease the
reservoir of gametocyte available for further transmis-
sion (Mouchet et al., 2004). Vector control is essential-
ly based on (i) in-house spraying with insecticides (ii)
personal protection through the use of mosquito
nets/repellants and (iii) larviciding of breeding sites. A
good control strategy is to use the best combination of
control methods available where and when they can be
most effective.
In endemic malaria areas where the intensity of trans-
mission varies little from year to year it is possible to
organize control programs according to the calendar of
the transmission season and RS may be used to help
stratify different levels of endemicity, and the local sea-
sonality of transmission (Thomson et al., 1999).
However, in areas where there is considerable inter-year
variation in transmission and the potential for epi-
demics, a control program can benefit from more cost
effective early warning systems supported by the use of
satellite data for environmental monitoring which can
be used to predict unusually high malaria 1-2 months in
advance as well as satellite data for the location of
breeding sites; and where necessary, satellite data for
monitoring dispersed populations or population on the
move. In recent years the use of GIS within the health
services in many malaria affected countries has
increased and although this process remains problem-
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atic in some areas (Snipe and Dale, 2003) the routine
mapping of health surveillance data, distribution of
clinics, breeding sites, etc. means that spatial informa-
tion, derived from satellite data, can now be directly
compared with health data.
Progress is being made, but much could be learnt from
the development of GIS and RS tools for routine sur-
veillance for desert locust control monitoring which is
currently operational in 15 countries affected by
desert locust from Mauritania to India (Ceccato, in
press).
The different sensors available for monitoring the com-
ponents influencing malaria are summarized in Table 1.

Use of Remote Sensing
in malaria control

Satellite sensors developed in US, Europe, Canada and
India, have contributed to a better understanding of
malaria vector ecology. The history of RS and its appli-
cation to malaria and other vector-borne diseases has
been recorded over time in a series of review papers
(Washino and Wood, 1994; Wood et al., 2000;
Thomson et al., 1997; Hay et al., 2000; Manguin and
Boussinesq, 1999; Beck et al., 2000; Thomson and
Connor, 2001). Yet, despite 30 years of research on the
potential applicability of remote sensing technologies to
malaria control, these tools are only now beginning to
have an impact on policy and practice in operational
control of malaria in affected countries.
Research initially focused on the spatial rather than
temporal dynamics of malaria transmission indices. In
particular, efforts were made to gain a detailed under-
standing of the population dynamics of the vectors,
rather than the distribution of disease in the human
population. The use of high-resolution imagery and
expensive software also limited these studies to well-
resourced research groups. Thus, demonstration stud-
ies have been difficult for national malaria control to
incorporate into their routine planning activities. It has
taken the intervening 30 years for many of the worst
affected countries to begin to collect and routinely map
frequently updated information on malaria incidence.
The following sections review applications developed
with high-resolution and low-resolution data and also
discuss future development of an operational system of
satellite images which could be used directly by the
decision-maker community in countries. Operational
use of these images is now feasible due to the free
access of the necessary images.

Use of High Spatial Resolution Images for
Mapping Landscape Ecology

Since the launch of Landsat-1 30 years ago, remotely
sensed data have been used to map and monitor fea-
tures on the earth’s surface and the atmosphere above.
Over the following three decades an increasing number
of studies used remotely sensed data for monitoring,
surveillance and risk mapping of vector borne disease

indicators, in particular malaria (Barnes and Cibula,
1979; Rogers and Randolph, 1991; Connor et al.,
1995; Hay et al., 1996; Thomson et al., 1996; Beck et
al., 1997; Beck et al., 2000). More recently there have
also been studies on the use of RS for non-vector borne
infectious disease transmission (Molesworth et al.,
2003).
In the early years, investigations were led by NASA sci-
entists in the Earth Observations Division (EOD) at the
Johnson Space Center in Houston, Texas. Some of the
studies, which demonstrated the potential utility of data
acquired from both cameras and sensors onboard air-
craft platforms, used them to identify mosquito-breed-
ing habitats associated with Aedes sollicitans; relate
disease with housing quality; and identify Calladium
sp., the plant associated with the intermediate snail
host for the schistosoma parasite. The EOD group also
integrated weather data from the National Oceanic and
Atmospheric Administration’s (NOAA) Tiros Opera-
tional Satellite into an insect model to describe habitats
in Mexico that supported the screwworm fly. After a
decade of demonstration projects, NASA ended the
program, assuming that the health community would
take up the use of airborne and satellite data for
research, surveillance, and control activities. This was a
reasonable assumption, given that the forestry, geologi-
cal, and agricultural communities had begun actively
incorporating these data into their own activities.
However, the health community did not adopt the use
of remotely sensed data, and NASA’s involvement
lapsed until 1985, when scientists from the original
EOD program initiated a new human health applica-
tions program Global Monitoring and Human Health
(GMHH) at Ames Research Center. This program ran
from 1985 until its transition in 1995 to the Center for
Health Applications of Aerospace Related Technologies
(CHAART) (http://geo.arc.nasa.gov/sge/health/chaart.html). 
The GMHH program’s purpose was to demonstrate the
application of RS and GIS technologies in the areas of
landscape epidemiology focusing on the interaction of
land use and vector bionomics. The first GMHH pro-
gram used Landsat Multispectral (MSS) data to map
areas with high abundances of Anopheles freeborni lar-
vae within rice fields in California (Wood et al., 1991)
which could then be targeted by the states vector con-
trol program. By using a time-series of Landsat MSS
data, GMHH scientists discovered that those fields that
produced higher numbers of larvae ‘greened-up’ sooner
than neighboring rice fields; this gave an early season
advantage to the anophelines, which needed vegetated
water to attach egg rafts. A spatial analysis also indi-
cated that high larval-producing fields were found in
areas where there was a mix of land uses, including
orchards, cattle pastures, and native vegetation; the
areas in which rice was the only land use had signifi-
cantly fewer mosquitoes. This was explained by an
understanding of the vector’s limited flight range (3
km) and habitat preferences. Within her flight range,
the female required a blood meal (preferably from cat-
tle or small mammals associated with native vegeta-
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tion), followed by a resting site (such as a cool orchard
environment), and finally a rice field in which to lay her
eggs. GMHH scientists used the Landsat MSS data to
map the vegetation canopy green-up in the rice fields;
the location of the orchards, cattle pastures, and rice
fields; and then used this map to describe the temporal
and spatial relationships between them. In this way,
high larval-producing rice fields could be identified up
to two months prior to peak larval production.
Beginning in 1987, the GMHH program began inten-
sive vector ecology studies of Anopheles albimanus, a
primary vector of malaria in the Americas. The study
took place in southern Chiapas, Mexico, an area of
unstable malaria. As was found in the California rice-
field study, not all villages (fields) had the same abun-
dance of mosquitoes, and the hypothesis was that the
landcover/land use (i.e. landscape) functioned as the
limiting factor to mosquito distribution. To test this,
Ames scientists used multi-temporal Landsat Thematic
Mapper (TM) data to map landscape elements in the
study area, while Ames’ colleagues sampled adult mos-
quito abundances surrounding 40 randomly selected
villages. GIS functions were used to determine the pro-
portion of different remotely sensed landscape elements
surrounding the village within the flight range of An.
albimanus. The results showed that the proportions of
two landscape elements (unmanaged pasture and tran-
sitional swamp) could predict villages with high abun-
dances of adult mosquitoes throughout the annual cal-
endar, with an overall accuracy of 90% (Beck et al.,
1994). These landscape elements provided opportuni-
ties for blood meals and breeding sites, and could be
easily mapped using Landsat TM data. The statistical
models generated in the study were then applied in
another location in Chiapas using a blind test.
Meanwhile, Ames’ Mexican colleagues sampled mos-
quito abundances throughout the year. At the end of the
season, the modeled predictions were compared with
the observed abundances, and the scientists found that
the regression model was able to predict seven of the
ten highest abundance villages (Beck et al., 1997). This
result indicated that RS/GIS could indeed be used to
help malaria control agencies target villages at high vec-
tor-human contact risk, thus avoiding a waste of valu-
able resources being used to treat villages with little to
no risk.
NASA scientists at Goddard Space Flight Center’s
Healthy Planet program are conducting a landscape-
based malaria study in the Mekong River area. The
team, which includes scientists from Thailand, is using
data from Landsat TM, Ikonos, and NASA’s Advanced
Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) and Moderate Resolution
Spectroradiometer (MODIS) to identify potential
breeding sites of the major vector species in order to
better focus larvicide and adulticide applications. The
project is also developing a malaria transmission model
that includes parasites, hosts, vectors, human factors,
and the environment, as well as a risk model to predict
transmission intensity that incorporates meteorological

data. These models use sophisticated techniques such
as discrete wavelet transformation to generate land-
scape patterns from the various satellite data types.
In Africa the landscape ecology approach has also been
successfully used in studies of malaria transmission
associated with rice irrigation, landuse change and
urban – rural interactions (Eisele et al., 2003). Irrigated
rice cultivation has been associated with an extended
breeding season and higher densities of the main vec-
tors of malaria compared with neighboring, non-irrigat-
ed areas in many parts of Africa (Ijumba and Lindsay,
2001). Landsat imagery has been frequently used in
these studies to provide a detailed map of the spatial
ecological characteristics of the irrigated areas and their
surroundings. Resurgence of malaria in Madagascar
after 20 years of effective control has resulted in the
disease becoming a major public health issue once
again – responsible for between 5-20% of all outpatient
visits and a major cause of morbidity and mortality
(Ariey et al., 2002). While the disease is endemic in the
coastal areas it is seasonal and unstable in the highlands
– where epidemics marked the comeback of the disease
in the late 1980s. It has been ascertained that rice fields
are the principle breeding sites of Anopheles funestus,
the malaria main vector in the highlands (Marrama et
al., 1995), and that altitude plays a major role both in
the anopheles ecology and the length of the sporogonic
cycle via temperature (Mouchet and Blanchy, 1995).
Knowledge of topography and rice field distribution is
therefore key to the malaria stratification of the high-
lands necessary for control purposes. An epidemiologi-
cal early warning and control system developed by the
Ministry of Health (MoH) in conjunction with the
Italian Cooperation (Albonico et al., 1999) was already
in place in Madagascar. However, the system, based on
clinical and parasite data, was producing numerous
false positive cases of alert and the forecast was not
made sufficiently early in the season to allow the imple-
mentation of actions to decrease malaria risk. It was
therefore necessary to improve the predictability of
malaria by forecasting it with a longer lead time before
the outbreak. By adding climatic and environmental
factors to the model, the predictive accuracy of the sys-
tem could have been improved. This was achieved by
developing a new epidemic early warning and control
system which integrated parasite, clinical, and environ-
mental data. The system, called SIGREP (Système
d’Information Géographique pour la prévention du
Risque d’Epidémie de Paludisme dans la région des
Hautes Terres centrales de Madagascar – Geographic
information system for malaria risk prevention in the
Malagasy Highlands), was developed by the Malaria
Research Group (GRP – Groupe de Recherche sur le
Paludisme) of the Institut Pasteur of Madagascar, the
Italian Cooperation and the Malaria Control Service of
the Malagasy Ministry of Health (Jeanne, 2000).
Implementation of SIGREP was planned in four phases:
- Phase 1: Setting a RS method to monitor rice-fields

using SPOT Xi+P images collected after the rainy sea-
son (Fig. 2).
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- Phase 2: Analyzing the links between rice-fields charac-
teristics (type, area, distance from houses) and malaria
transmission (vector studies).

- Phase 3: Creating a model to assess malaria risk.
- Phase 4: Integrating the new model within the malaria

control unit of the MoH planning system.
To date, Phases 1 and 2 have been implemented and the
information collected for SIGREP has been incorporated
into an Atlas of Malaria in Madagascar (http://www.pas-
teur.mg/AtlasPalu/index.htm) designed to inform the
Ministry of Health of the current status of the biogeog-
raphy, vector and parasite species and malaria incidence
across the country. The plan is to update this atlas on a
regular basis and implement Phases 3 and 4 in the near
future.
In French Guyana, l’Institut Pasteur and Geoscience
Francilian Institute of Marne la Vallée University used
radar JERS-1 RS data to detect potential vector larval
breeding sites for use in control malaria program.
Tropical amazonian forests cover 90% of French
Guyana. Malaria remains a public health priority along

the two rivers that demarcate its border. Vector abun-
dance and malaria risk varied considerably in both
space and time. Local climate and hydrological varia-
tions were examined to identify whether they could
explain this heterogeneity. The river margins (Fig. 3)
were studied in both wet and dry seasons to understand
whether rainfall and river flow were linked to the
potential vector larval breeding sites. This was achieved
using radar remote sensing using the L band of the
JERS-1 satellite system (Rudant et al., 1996). Thanks to
L-Band wavelength, flooded areas along river margins
in Amazonian forest were identified. These shady flood-
ed areas are potential larval habitats of malaria vectors,
such as Anopheles darlingi.

Use of Low Spatial Resolution Images for
Mapping Environmental Components

Low spatial resolution images such as NOAA-AVHRR
and Meteosat have been used to update and improve the
spatial resolution of malaria transmission intensity maps
in several countries, especially in Africa. NDVI comput-
ed from NOAA-AVHRR and cold cloud duration (CCD)
inferred from Meteosat have been used as secondary pre-
dictors of transmission intensity (Omumbo et al., 2002).

NDVI is an empirical formula designed to produce
quantitative measures related to vegetation properties
such as vegetation biomass and conditions. NDVI val-
ues vary between -1.00 and 1.00 and are computed as
shown in Eq. 1:

NDVI = –––––––––– (1)

Where: NIR is the reflectance measured in the near
infrared channel (expressed in %); Red is the
reflectance measured in the red channel (expressed in %).

The higher the NDVI value is the denser or healthier
the green vegetation is. Visible and near-infrared chan-
nels are available on most optical satellite sensors
including NOAA-AVHRR, TERRA-MODIS and SPOT-
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Fig. 3. River margin in French Guyana.

(NIR-Red)

(NIR+Red)

Fig. 2. SPOT Xi + P for prevention of malaria risk in the high-
lands of Madagascar.
Legend:
SIGREP, Spot 4 Xi- 168-369 27/04/2000
1. Color composite RGB 342 
2. Classification of 22 classes (maximum likelihood)
3. 7 class groups with all types of rice field in bright green
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VEGETATION. However, only the NOAA-AVHRR
sensors have an historical data series long enough (July
1981 to current) to be used for comparison with long-
time series data. Since NDVI values can vary depending
on the sensor and atmospheric conditions, it is impos-
sible to compare NDVI values computed from different
sensors used between July 1981 and the current date. It
is therefore required to:

1) Calibrate the NDVI values for inter-sensor differ-
ences (several sensors have been used between 1981
and current date) and intra-sensor degradation.

2) Correct the NDVI values for atmospheric perturba-
tions such as El Chichon and Mt. Pinatubo volcanic
events. 

These calibrations and corrections were implemented
by NASA and ten-day composite period products were
made available at 8km pixel resolution on an Albert
Equal Area projection (Pinzón et al., in press). The
resulting NDVI time-series products were used to ana-
lyze trends in malaria incidence in Eritrea from 1996 to
2003 showing high correlation between NDVI values
and malaria incidence (Thomson et al., 2004).
Meteosat satellite has also been operationally used for
monitoring areas where excess rainfall is the major epi-
demic indicator (e.g. the Sahel, semi-arid lowlands in
the Horn of Africa, and the desert-fringes of Southern
Africa). During the third meeting of the Roll Back
Malaria Technical Support Network on Epidemic pre-
vention and Control (WHO, 2002), it was noted that
MEWS have immediate operational value in areas
where excess rainfall is the major epidemic indicator
(e.g. the Sahel, semi-arid lowlands in the Horn of
Africa, and the desert-fringes of southern Africa).
Further, those simple products such as rainfall differ-
ence maps for these epidemic-prone regions should be
developed and made available through the existing
Famine Early Warning System’s Africa Data Dissemi-
nation Service (WHO, 2002). These products were
subsequently developed and have, since mid-2002,
been routinely available (WHO, 2002) (Fig. 4). A
review of their utility in desert fringe settings in
Southern Africa has shown a high correlation between
rainfall difference anomalies and both confirmed
(Botswana) and unconfirmed (Namibia, Swaziland and
Zimbabwe) malaria incidence anomalies, with a lead-
time of at least 2 months (Connor, 2002; Connor,
2003). Further review of their utility in East and West
Africa is currently planned (Connor, 2003; WHO,
2003).
While these routine products were primarily aimed at
lowland ‘desert-fringe’ epidemic settings, it has been
shown that they offered a potential 4 week lead time for
true epidemics, during 2002, in highland settings in
Kenya (Hay et al., 2003; WHO, 2003). These same
rainfall difference products were also used for opera-
tional monitoring of changes in epidemic risk, during
2002, in highland Uganda (Connor, 2003).

Future Operational Use of Satellite Data
in Affected Countries

Operational use of remotely sensed images has taken a
long time to be implemented in technologically devel-
oping regions because image and processing software
costs were prohibitive. This problem is now diminish-
ing since: (i) computer processing and data storage
facilities are now accessible at lower cost, (ii) satellite
images at high spatial resolution have become accessi-
ble free of charge (MODIS data) via the Internet and
(iii) processing tools such as Healthmapper (GIS tool),
Windisp (image display tool), and ADDAPIX (image
analysis tool) are being made available to the user com-
munity at no cost by organizations such as the World
Health Organization and the UN Food and Agriculture
Organization (FAO).
The recent availability of free images and processing
tools has enabled the rapid development of applications
using RS and GIS for operational purposes. In the case
of Desert Locust monitoring using RS, GIS and data
collection tools including GPS and palmtop computers
shows that technology can be made operational in
Africa under harsh conditions and at low cost. This suc-
cessful operational early warning system for Desert
Locust monitoring developed by FAO could also be
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Fig. 4. Rain Fall Anomaly (for Malaria) produced every
decade with a spatial resolution of 10 km. Data are availa-
ble on the website of the USGS, Africa Data Dissemination
Service: http://igskmncnwb015.cr.usgs.gov/adds/.



applied for Malaria Early Warning System. The major
challenge would be to harmonize data collection and
tools in the Malaria community in order to enable data
dissemination and analyses. This harmonization for the
African continent should be made by an organization
such as the UN which has the ability to develop stan-
dards and negotiate processes to reach consensus on
methodologies and best practices between countries.
Thanks to the availability of free image data at high spa-
tial resolution (MODIS images), a new generation of
applications can be now implemented to help decision-
makers in the field. The image (Fig. 5) shows the area

between Niger-Mali and Burkina Faso where a project
is currently underway (NOMADE project). The follow-
ing image (Fig. 6) shows the presence of vegetation and
water bodies with sufficient spatial resolution to allow

analyses of where and when (i) vector can develop and
(ii) where nomad herds can congregate for food and
water and therefore be at risk of malaria. The
NOMADE project will allow direct access of informa-
tion to the user community by using MODIS images
which are free of charge via the Internet.
The use of MODIS images is also operational in the
desert locust monitoring systems implemented in 20
countries where the Department of Plant Protection
(DPP) of the Ministry of Agriculture has access via a FTP
site at FAO to the MODIS images processed locally in
Rome. Each DPP downloads the images and integrates
them into a customized GIS developed specifically to
monitor desert locust. The desert locust Officer is then
able to analyze where and when to send survey teams in
the desert to scout for desert locust. Once found, infor-
mation can be provided to the control team on the area
to be treated (Ceccato, in press). This approach can also
be adapted for the malaria control community.
The launch of initiatives to reduce malaria such as the
Roll Back Malaria (RBM), the Millennium Development
Goals (MDGs) and the Global Fund to Fight AIDS,
Tuberculosis and Malaria (GFATM) can also provide a
platform to help the transfer of these new technologies
toward the most affected countries. Data and good
intentions alone, however, are not sufficient. Developing
countries will also need assistance in the process of tech-
nology transfer, and in structuring their national infor-
mation systems and decision-making processes, if they
are to derive full benefit from this exceedingly powerful
technology.

Integration GIS-RS-Models to produce
Malaria Early Warning System

The ready availability of frequently updated data on
environmental variables pertinent to malaria transmis-
sion over large and remote regions makes RS a useful
source of information for epidemic early warning sys-
tems. The concept of an early warning system for the
prediction of malaria epidemics predates satellite tech-
nology by many decades. In fact an early warning sys-
tem in response to the massive epidemics that occurred
periodically in pre-independence India was operated
routinely in the Pubjab from the early 1920s until the
early 1950s (Najera, 1999). Christophers (1911)
observed that between 1868-1908 severe and explosive
‘fever’ epidemics of two-three month duration (August-
October) were common in the region. In particular he
noted that the worst of the epidemics, which had a peri-
odicity of 7-8 years, coincided with high grain prices
and famine. Christophers saw this ‘human factor’ as an
‘essential requirement’ which undermined the popula-
tion and resulted in high death rates as a result of the
epidemics (Christophers, 1911). Christophers’ sugges-
tions for an early warning system were taken up by Gill
(1923) who developed a system based on a set of risk
indicators: epidemiological assessment of previous
infection, economic assessment of grain prices; the July-
August rainfall levels; and occurrence of an epidemic
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Fig. 5. Location of the MODIS image within the NOMADE
project.

Fig. 6. MODIS image September 2004 color composite
RGB where the SWIR channel is in red, the NIR channel in
green and the RED channel in blue. This composition allows
the vegetation to appear in green, the water in blue and the
bare soil in brown-pink color. 
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within the last 5 years (Gill, 1923). Gill tested the sys-
tem in 1921 and it went into routine operation in 1923.
Retrospective reviews of the system outlined the statis-
tical significance and its operational value in epidemic
early warning (Yacob and Swaroop, 1944; Swaroop,
1949) but also identified the potential significance of
May rainfall, offering a lead warning time of three
months (Connor et al., 1999).
Despite this example, much of the interest in early warn-
ing systems for malaria epidemics was lost during the
Global Malaria Control/Eradication Era (Najera, 1998).
It was not until the 1990s when a number of epidemics
were reported from the East African highlands and a
regional epidemic in Southern Africa stimulated renewed
interest. At its launch in 1998 the Roll Back Malaria part-
nership identified Early Detection and Control of
Epidemics as one of its four key elements (RBM, 1998).
RBM established a Technical Resource Network on
Epidemic Prevention and Control which held its first
meeting in Geneva in 1998. Among the recommenda-
tions of the meeting was the development of a research
framework to establish Malaria Early Warning Systems
(MEWS) in sub-Saharan Africa and the identification of
indicators and thresholds which could be used for early
detection of epidemics by epidemiological surveillance
systems. The MEWS framework was developed and pub-
lished in 2001 (WHO, 2001). It set out a series of activ-
ities which together form the basis of an integrated mon-
itoring process to identify changes in epidemic potential
and increased risk of transmission in areas prone to epi-
demics (Fig. 7). A pre-requisite to MEWS is the mapping
of areas prone to epidemics, either through historical
analysis, or in combination with climatic suitability and
environmental suitability for malaria transmission.
Epidemic risk mapping should be dynamic and updated
frequently to reflect changes in vulnerability factors.
Clearly an epidemic response plan and the capacity to
respond in the vulnerable areas are also essential.
The first of the MEWS monitoring processes involves
consideration of the dynamic factors which may make
populations more vulnerable to severe epidemic out-

come. As with the Punjab model, drought, inadequate
food security and nutritional/economic status may be
important. Increasing levels of drug or insecticide
resistance, reduction in health service provision or a
high burden of other diseases, such a HIV/AIDS, may
also compromise any immunity and increase vulnera-
bility to epidemics. While these factors are unlikely to
give an indication of when an epidemic might occur,
they do provide some warning of the severity that can
be expected if one does occur and is not prevented.
The second MEWS monitoring process considers the
forthcoming season’s climate. Will it be a drier, normal,
or wetter season? What does this mean for epidemic
risk considering the recent history? A number of years
of drought may disrupt populations, may lower immu-
nity and make populations more susceptible when high-
er, or even normal, rainfall levels occur. In recent years
there have been a number of regular regional meetings
(Regional Climate Outlook Fora) where available cli-
mate forecasts for the forthcoming seasons are dis-
cussed, and considered by the various sectors, such as
agriculture, water resources and, increasingly, health. In
September 2004, the first Southern African Regional
Epidemic Outlook Forum was held in Harare, Zimbabwe.
The forthcoming seasons’ climate was presented and dis-
cussed to develop action plans for epidemic preparedness
and response in the countries that are part of the
Southern Africa Development Community (SADC)
(http://www.malariajournal.com/content/3/1/37).
The third MEWS process is monitoring the weather as it
occurs. Are temperatures unusual for this time of year?
Is the rainfall higher than would normally be expected?
The latter is now freely monitored through meteorolog-
ical satellites and these are often more readily and fre-
quently available than rain station data through the local
meteorological services, who often have to charge for
their data. Considering where high rainfall, following
two or three years of drought occurs on a vulnerable
population in a desert-fringe area which has had epi-
demics in the past may be one of the most realistic early
warning systems available in many African countries.
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Fig. 7. MEWS integrated framework: gathering cumulative evidence for early and focused response (WHO, 2004).



However, the interplay of temperature with rainfall are
crucially important in highland-fringe epidemic settings,
where the impact of high rainfall may increase epidemic
risk or cool the environment to levels which lower trans-
mission potential. Current work is investigating the
development and implementation of near-real-time tem-
perature information along with rainfall as a routinely
available environmental monitoring product for use in
the highland-fringe epidemic settings (Fig. 8).

The fourth monitoring process is epidemiological sur-
veillance. Entomological surveillance may offer valuable
insights into the vector- parasite-host dynamics and pro-
vide warning of changes in epidemic risk. This is gener-
ally beyond the scope of most African health services.
However, the example of Desert Locust monitoring at
Ministry of Agriculture level in 15 countries in Africa,
Middle East and South-West Asia showed that surveil-
lance is possible using simple GIS tools (Ceccato, in
press). It may be possible to establish sentinel sites in
particular locations, known to be epidemic prone and

where rapid detection and reporting is possible, and a
number of studies are attempting this. While the detec-
tion of an epidemic through a rapid increase in the num-
ber of cases would be the most reliable, it is unfortunate
that routine case reporting systems in sub-Saharan
African countries are, at present, unable to detect epi-
demics in sufficient time to enable an effective response.
Due to the complexity of the variables to be considered
and the remoteness of the areas affected, RS is an ideal
source on which to base an early warning system for
malaria epidemics. The research framework established
by the RBM partnership provides a useful structure on
which to base the required system. Specifically, a com-
prehensive system must take into account 1) population
vulnerability, 2) the forthcoming season’s climate, 3)
current weather conditions and 4) vector/parasite/host
dynamics. Ideally a country will monitor all of these
processes in an integrated framework, which when
taken together act as a series of compounding indica-
tors which give control services sufficient confidence to
prepare and act early (in accordance with their pre-for-
mulated epidemic response plan) to prevent the rapid
rise in cases before they occur.

Conclusions

Malaria is a deadly but preventable and curable disease.
Although the environmental drivers that determine the
life cycles of both the vector, host and the Plasmodium
parasite are complex, they can be monitored and ana-
lyzed using newly available technologies such as RS and
GIS. Research has shown that the technological build-
ing blocks are available to create an operational early
warning system which could prevent epidemics and
limit the scale of outbreaks until such time as the dis-
ease can be eradicated, as it has in Europe and the USA.
A holistic early warning system must consider all of the
factors that influence the development of malaria as
well as their interactions. Rainfall, temperature, humid-
ity, vegetation and seasonality in weather and climate
can all have an effect on the vector, the parasite and
susceptibility of the human to the disease. Over the
years, many tools have been developed to monitor these
factors which are currently available. Rainfall Estimates
and Malaria Risk Analyses are available on the ADDS
FEWS web page. The vectorial capacity model was
developed to express malaria transmission risk and has
since been extended to enable temperature and rainfall
to drive the model. Information on climate forecast and
climate anomalies is becoming more reliable with
recent scientific advances and is made available
through the IRI Data Library.
Also to be considered in a comprehensive Early
Warning System are the anthropogenic factors which
influence disease transmission. Changes in agricultural
practices, development of urban areas and movement
of populations for political and economic reasons can
all help determine whether an outbreak will occur and
if so, how severe it will be. The robustness of control
processes in countries can also, evidently, be a deter-
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Fig. 8. Malaria incidence anomalies in Botswana related to
climate anomalies (reprinted with permission of the
American Society of Tropical Medicine and Hygiene, from
Thomson MC, Mason SJ, Phindela T, Connor SJ, 2005. Use
of rainfall and sea surface temperature monitoring for
Malaria early warning in Botswana. Am J Trop Med Hyg 72:
in press). Anomalies in Sea Surface Temperatures (SST)
(Nino 3.4), December - February (DJF) a quadratic rainfall
model (measured using satellite derived CMAP: Climate
Prediction Center Merged Analysis of Precipitation) for the
same months are overlaid on standardized malaria cases
per 1000/population (incidence) anomalies (1982-2003;
main transmission period January-May). The malaria data
has been standardized to remove non-climate related
trends in the data and the impact of a major policy inter-
vention in 1997. There are many factors which can cause
changes in malaria incidence data including changes in
reporting, drug resistance and control initiatives. However,
in the semi-arid areas of Africa rainfall is a major driving
force of inter-annual variability in malaria.



94

mining factor. Effective control systems should: 1) have
access to forecast information on diseases outbreaks
and 2) have the means and the organization required to
implement control measures. A good early warning sys-
tem should take into account the effect of any strengths
or weaknesses in these areas.
Research over the last three decades has shown RS to
be an efficient way to monitor many of these factors
both on a global and regional scale. Global Monitoring
and Human Health (GMHH) used a time-series of
Landsat MSS data to determine that high larval pro-
ducing rice fields greened up faster and were located in
areas where there was a mix of land uses. Temporal and
spatial analyses in light of these two phenomena meant
that high larval-producing rice fields could be identified
up to two months prior to peak larval production and
control measures, if the correct mechanisms were in
place, could be taken in time to avoid an outbreak.
GMHH also showed that the proportions of two land-
scape elements (unmanaged pasture and transitional
swamp) could predict village with high quantities of
adult mosquitoes, another factor which could be used
to target efficient control measures. Ongoing studies at
Goddard Space Flight Center’s Health Planet Program
and the Pasteur Institute of Madagascar are yielding
similar scientific advances. But while the successful evi-
dence and the building blocks were accumulating, two
factors remained which impeded the operational use of
the tools being developed: 1) the complexity of the
information that needed to be considered, and 2) cost
of using the tools that were becoming available.
Until recently, image and processing costs prevented
local decision-makers from implementing RS decision-
support systems on a large scale. More recently, com-
puter processing and data storage facilities have
become available at low cost and high spatial resolution
images have become accessible free of charge.
Processing tools are also being made available to the
user community at no cost by WHO and FAO. These
developments are paving the way toward making coun-
tries more receptive to the implementation of remote
sensing system. For example, a successful operational
early warning system for Desert Locust which was
implemented by FAO has proven the viability of imple-
menting a similar system for malaria.
The launch of the Roll Back Malaria partnership in
1998 has also provided new impetus to the global fight
against the disease. In 2001, an integrated framework
was developed which recognized the complexity of the
factors determining transmission and also serves as a
convenient framework on which to base a future Early
Warning System. This MEWS framework established
four processes which must be monitored: 1) population
vulnerability, 2) the forthcoming season’s climate, 3)
current weather conditions and 4) vector/parasite/host
dynamics. This integrated framework shows great
promises to structure decision-support systems and aid
in communications during implementation of response
to such a system.
After 30 years of research and development to create

the capabilities to control malaria using RS technolo-
gies, the pieces are finally falling into place to support
global implementation of such technologies. A compre-
hensive and integrated Early Warning System is
required to minimize the impact of the deadly disease
and the barriers to implementation, namely cost and
data management capabilities are disappearing. At this
fateful moment, the Roll Back Malaria program is also
providing the impetus which should enable us to har-
vest the fruits of many years of scientific research. Data
and good intentions alone, however, are not sufficient.
Developing countries will also need assistance in the
process of technology transfer, and in structuring their
national information systems and decision-making
processes, if they are to derive full benefit from this
exceedingly powerful technology.
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