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Model Selection Based on Minimum
Description Length

P. Gru� nwald

CWI

We introduce the minimum description length (MDL) principle, a general
principle for inductive inference based on the idea that regularities (laws)
underlying data can always be used to compress data. We introduce the
fundamental concept of MDL, called the stochastic complexity, and we show
how it can be used for model selection. We briefly compare MDL-based
model selection to other approaches and we informally explain why we may
expect MDL to give good results in practical applications. � 2000 Academic Press

It is vain to do with more what can be done with fewer.
William of Occam

The task of inductive inference is to find laws or regularities underlying some
given set of data. These laws are then used to gain insight into the data or to
classify or predict future data. The fundamental idea behind the minimum descrip-
tion length (MDL) principle is that any regularity in the data can be used to
compress the data, i.e., to describe it using less symbols than the number of symbols
needed to describe the data literally. The more regularities there are, the more we
are able to compress the data and the more we have learned about the data.
Formalizing this idea��which is just a version of Occam's famous razor��leads to
a theory that is applicable to all kinds of reasoning under uncertainty, including
inductive inference. In contrast to most other approaches in this field, it has its
roots in theoretical computer science rather than statistics. The MDL principle has
mainly been developed by Risannen (1978, 1987, 1989, 1996), having important
precursors in the works of Solomonoff (1964) and Wallace and Boulton (1968)1. In
this introductory and informal paper, we concentrate on the application of MDL
to model selection, the task of deciding which of several��possibly completely
unrelated��classes of models best describes the data at hand. In Sections 2 and 3
we provide the necessary intuitions and mathematics which we then��in Section
4��use to introduce MDL and its central concept, stochastic complexity (SC). We
show how it can be used for model selection and compare it to the Bayesian and
cross-validation approaches to this problem. Some of the material in this paper is,
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of necessity, quite technical. To get a first but much gentler glimpse, we advise the
reader to just read the following introductory section and the last section, which
discusses in what sense we may expect Occam's razor to actually work.

THE FUNDAMENTAL IDEA

Example 1. Suppose, for the moment, that our data are a finite sequence of bits
(zeroes and ones), and consider the following three sequences. We assume that each
sequence is 10,000 bits long, and we just list the beginning and the end of each
sequence.

000100010001000100010001........0001000100010001000100010001 (1)

011101001101000010101010........1010111010111011000101100010 (2)

111001111110100110111111........0111101111101111100111101111 (3)

The first of these three sequences is a 2500-fold repetition of 0001. Intuitively, the
sequence looks regular; there seems to be a simple law underlying it and it might
make sense to conjecture that future data will also be subject to this law. The
second sequence has been generated by tosses of a fair coin; this means that there
is definitely no law or regularity underlying it. The third sequence contains exactly
four times as many 1s as it contains 0s. In contrast to sequence (2), there is some
discernible regularity in this data, but of a statistical rather than of a deterministic
kind. Again, it seems sensible to note that such a regularity is there and to predict
that future data will behave according to it.

The fundamental insight which leads to the MDL principle is that any regularity
in the data can be used to compress the data, i.e., to describe it in a short manner.
Such a description should always completely determine the data it describes. Hence,
given a description or encoding D$ of a particular sequence of data D, we should
always be able to fully reconstruct D on the basis of D$. Descriptions are always
relative to some description method which maps descriptions D$ in a unique manner
to data sets D. A particularly versatile description method is a general-purpose
computer language like C or Pascal. A description of D is then any computer
program that prints D and then halts. Let us see whether our insight works for the
three sequences above. Using a language similar to Pascal, we can write a program

for i=1 to 2500; print `0001`; next; halt

which prints sequence (1) but is clearly a lot shorter than it. The shortest program
printing sequence (1) is at least as short as the program above, which means that
sequence (1) is indeed highly compressible. On the other hand, we will show in the
next section that, if one generates a sequence like (2) by tosses of a fair coin, then
with extremely high probability, the shortest program that prints (2) and then halts
will look something like this:
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print

`011101001101000010101010........1010111010111011000101100010`;

halt

This program has size about equal to the length of the sequence. Clearly, it is does
nothing more than repeat the sequence. It is easy to show that there exists quite a
short program generating sequence (3) too, as we will make plausible in the next
section.

Kolmogorov complexity. We now define the Kolmogorov complexity
(Solomonoff, 1964; Kolmogorov, 1965; Chaitin, 1969) of a sequence as the length
of the shortest program that prints the sequence and then halts. The lower the
Kolmogorov complexity of a sequence, the more regular or, equivalently, the less
random or, yet again equivalently, the simpler it is. Measuring regularity in this way
confronts us with a problem, since it depends on the particular programming
language used. However, in 1964, in a pioneering paper that marked the start of all
MDL-related research, Solomonoff (1964) proved the invariance theorem, which
roughly states that it does not matter so much exactly what programming language
one uses, as long as it is general purpose2: more precisely, for any two general-
purpose programming languages A and B, there exists a constant C such that, for
every data sequence D, the length of the shortest program for D written in language
A and the length of the shortest program for D written in language B differ by no
more than C. Here C may depend on the languages A on B, but it is constant in
that it does not depend on the size of D: if the data set D is large enough, then the
difference in length of the shortest programs according to A and B is very small as
compared to the length of the data set. This result, proved independently by
Solomonoff, Kolmogorov, and Chaitin, has generated a large body of research on
Kolmogorov complexity [for details we refer to (Li 6 Vita� nyi, 1997)], which has
found its way into psychology before in a context very different from model selec-
tion (Chater, 1996).

Unfortunately, the Kolmogorov complexity as such cannot be computed��there
can be no computer program that, for every set of data D, when given D as input,
returns the length of the shortest program that prints D: assuming such a program
exists leads to a contradiction (Li 6 Vita� nyi, 1997). Another problem is that in
many realistic settings, we are confronted with very small data sets for which the
invariance theorem does not say much.

The idea behind the MDL principle is to scale down Solomonoff 's approach so
that it does become applicable: instead of using a code based on a universal
computer language, we should use description methods C which still allow us to
compress many of the intuitively regular sequences but which are nevertheless such
that for any data sequence D, we can always compute the length of the shortest
description of D that is attainable using method C. The price we pay is that, using
the practical MDL principle, there will always be some regular sequences which we
will not be able to compress. But we already know that there can be no method for
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inductive inference at all which will always give us all the regularity there is��
simply because there can be no automated method which for any sequence D finds
the shortest computer program that prints D and then halts. Moreover, it will often
be possible to guide a suitable choice of C by a priori knowledge we have about
our problem domain. For example, it is possible to pick a description method C
that is based on the class of all polynomials M, such that with the help of C we
can compress all data sets which can meaningfully be seen as points on some
polynomial; this will be shown below.

Stochastic complexity and model selection. The Kolmogorov complexity, of data
D, defined relative to some universal computer language L, is the length of the
shortest encoding D possible when the encoding is done with the help of L.
Rissanen (1987) introduced the stochastic complexity as a scaled-down analogue,
where the encoding is done with the help of an arbitrary class of models M rather
than a language L (why it is called stochastic will become clear later):

The stochastic complexity of the data set D with respect to the model class
M is the shortest code length of D obtainable when the encoding is done
with the help of class M (Rissanen, 1987, 1996).

More precisely, the class M uniquely determines a specific code CM . The stochastic
complexity of D with respect to M is then the codelength of D when it is encoded
using code CM . The code CM should be defined such that it embodies the idea of
coding with the help of M: intuitively, this means that if there exists a model in M

which captures the regularities in D well, or equivalently gives a good fit to D, then
the code length of D should be short. It turns out to be quite hard to give a formal
definition of stochastic complexity (that is, of the code CM). Indeed, a completely
satisfactory formal definition has only been found very recently (Rissanen, 1996);
we will present it in the section after the next. The most important uses of SC are
prediction of future data and model (class3) selection. Here, we concentrate on the
latter application, for which SC can be used in the following intuitive way: suppose
we are given a set of data D, and we want to choose between model class Ma and
model class Mb . Then we pick the class for which the stochastic complexity of data
D is lower: if D can be compressed more with the help of Ma than with the help
of Mb , Ma apparently captures better the regularities in D and thus should be
preferred. We give a little example of the kind of problem we would like to solve
using stochastic complexity in Fig. 1.

Example 2 [under- and overfitting]. Suppose we are given a sequence of data
consisting of pairs (x, y) where x and y are real numbers. We are interested in find-
ing a function H such that H(x) predicts y reasonably well. The classical statistical
solution to this problem is to do a standard regression: we select the linear function
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FIG. 1. A simple (a), complex (b) and a trade-off (3rd degree) (c) polynomial.

that is optimal in the least-squares sense, i.e. the linear function H for which the
sum of the squared errors �( yi&H(xi))2 is as small as possible (Fig.1.a). We end
up with a line that seems to capture some of the regularity in the data, but definitely
not too much��it seems to underfit the data. A more interesting task is to look for
the best curve within a broader class of possible candidates, like, for example, the
set of polynomials. A naive extension of the classical statistical solution will now
typically pick a polynomial of degree n&1 that completely covers the data, i.e., that
goes exactly through all the points (xi , yi) (Fig. 1.b). Intuitively, this may not be
the polynomial we are looking for��we run a large risk of overfitting. Instead, we
might prefer a third-degree polynomial (Fig. 1.c): one that has small (but not 0)
error and is still relatively simple (i.e., has few parameters). In other words, we are
looking for an optimal trade-off between model complexity and goodness-of-fit. We
will see later that this is indeed what the MDL principle will give us: the stochastic
complexity will, in the present example, be lowest for the class of polynomials of the
third degree. However, it may always be the case that a completely different class
of models��such as, for example, the class of all backpropagation neural
networks��is even ``better'' for the data at hand than the class of all polynomials.
One can define stochastic complexity even for such broad classes and select the one
which allows for more compression of the data at hand (Rissanen, 1989).

CODES, PROBABILITY DISTRIBUTIONS, AND HYPOTHESES

In the next section we give a formal definition of stochastic complexity. We
prepare this by first making precise the notion of description method or, equi-
valently, code and then showing that both probabilistic and nonprobabilistic
models can be expressed as codes. For details we refer to (Cover 6 Thomas, 1991)
and�or (Li 6 Vita� ni, 1997).

Throughout this paper, we assume that our data D always consist of a sequence
of symbols from some finite data or source alphabet. Each such sequence will be
encoded as another sequence of symbols coming from some finite coding alphabet.
An alphabet is simply a finite set of distinct symbols. An example of an alphabet
is the binary alphabet B=[0, 1]; the three data sequences of Example 1 are
sequences from the binary alphabet. Sometimes our data will consist of real
numbers rather than 0s and 1s. If we assume that all these numbers are truncated
to a given finite precision (as is always the case in practical applications), then we
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can again model them as symbols coming from a finite data alphabet. For alphabet
A, we let A* denote the set of all finite sequences of symbols in A. In our setting
we will always be given a sequence D=(x1 , ..., xn) # A* where each xi # A. We will
sometimes use the notation xi for (x1 , ..., xi). Similarly, whenever the length n is not
clear from the context, we write xn instead of D. It is easy to see (Rissanen, 1989)
that without loss of generality we may always describe our data sequences as binary
sequences:

Definition 1. Let A be some data alphabet. A code or description method C is
a one-to-one map from A* into B*, the set of binary strings.

Here is a simple example (taken from Rissanen, 1989) of a code C1 for a data
alphabet A1=[a, b, c]. C1 is defined as follows: C1(a)=0, C1(b)=10, C1(c)=11;
for all x, y # A*, C1(xy)=C1(x) C1( y). We call C1(a) the codeword of a. For
example, data sequence aabac is encoded as C1(aabac)=0010011. It is easy to show
that there is a simple algorithm which for any encoded sequence C1(x) uniquely
retrieves the original sequence x. Moreover, in the encodings C1(x), no commas are
needed to separate the constituent codewords. Codes with this property are called
uniquely decodable. For various reasons, all codes considered in any application of
MDL are uniquely decodable; henceforth whenever we speak of a code, we actually
mean a uniquely decodable one [actually, the situation is slightly more complicated
than this; for details see (Gru� nwald, 1998, Chap. 1)].

Compression and small subsets. We can now argue why it is impossible to
substantially compress randomly generated sequences like sequence (2) of Example
1. Let us take some arbitrary but fixed code C over the binary data alphabet B.
Suppose we are given a data sequence of length n (in our example, n=10,000).
Clearly, there are 2n possible binary data sequences of length n. We see that C can
map only two of these to a description of length 1 (the reason being that (a) there
are only two binary sequences of length 1: ``0'' and ``1'' and (b) if data sequence
D1 {D2 , then, by the definition of a code, C(D1){C(D2).). Similarly, only a subset
of at most 2m sequences can have a description of length m. This implies that the
fraction of data sequences of length n that C compresses by more than k bits must
decrease exponentially in k. It follows (we will not show this in a rigorous manner)
that the probability that we can compress a randomly generated sequence by k bits
is smaller than 2&k, which even for small k will already be an extremely small
number. Seen in this light, finding a short code length for the data is equivalent to
identifying the data as belonging to a tiny, very special subset out of all a priori
possible data sequences. This is also the reason why we can compress sequence (3):
the number of all sequences of length n with four times as many 1s as 0s is
extremely (exponentially) small compared to 2n, the total number of sequences of
length n (Cover 6 Thomas, 1991).

Codes ``are'' probability distributions. Many model classes encountered in
practice are probabilistic. A very simple example is the class of Bernoulli distribu-
tions MB . MB is indexed by a single parameter %. For any 0�%�1, % represents
the hypothesis that the data is generated by independent flips of a biased coin with
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probability % of coming up heads (we identify ``heads'' with 1). The probability of
data D under model % is denoted by P(D | %). In this paragraph, we show that we
can map any probabilistic model % into a code such that, for all D, the code length
of D reflects the probability of D. For this, we first introduce some further notation.
For any code C, we denote by LC(:) the length (number of bits) of the description
of : when the description is done using code C. Throughout this paper, log stands
for logarithm to base two, and for any real number x, WxX stands for the ceiling of
x, the smallest integer greater than or equal to x.

Codes (actually, only uniquely decodable ones) have a very important property
which connects them to probability distributions:

Proposition 1. For every code C defined on a finite alphabet A there exists a
probability distribution PC such that for all x # A we have PC(x)=2&LC (x). For every
probability distribution P defined over a finite set A there exists a code CP such that
for all x # A we have LCP

(x)=W&log P(x)X.

This proposition follows directly from the famous Kraft�McMillan inequality.
For this inequality and its proof, see Cover and Thomas (1991). The key to the
proof is the fact we saw above: a code can only give a short code length to very
few data sequences. A deeper analysis of this fact reveals that �x 2&LC (x) must be
less than or equal to one for every uniquely decodable code C; it is simply not
possible that a large enough number of elements x has a short enough codelength
to make �x 2&LC (x) larger than one.

Henceforth we will drop the integer requirement for codelengths (this will lead to
an inaccuracy of at most one bit). Once we have done this, Proposition 1 implies
that we can interpret any probability distribution over sequences of a given length
as a code and vice versa! This correspondence allows us to identify codes and
probability distributions: for every probability distribution P there exists a code C
with code lengths LC(D)=&log P(D) for all D of given length, and for every code
C there exists a probability distribution P with for all D, P(D)=2&LC (D), or,
equivalently, LC(D)=&log P(D). We see that a short code length corresponds to
a high probability and vice versa: whenever P(D)>P(D$), we have &log P(D)<
&log P(D$). We note that in this correspondence, probability distributions are
treated as mathematical objects and nothing else. If we use a code C to encode our
data, this definitely does not necessarily mean that we assume our data are drawn
according to the probability distribution corresponding to C. The results of the
present section only tell us that the function P(x)=2&LC (x) satisfies all the
necessary conditions to be a probability distribution. By discretizing to a finite
precision we can do the same for continuous data: for any probability density func-
tion f (x), &log f (x) can be interpreted as a code length (Rissanen, 1987).

Maximum likelihood=minimal code length. Suppose we are given a probabi-
listic (say Bernoulli) model class M containing models %. If the class of models is
regular enough (as we assume here), then there exists a maximum likelihood (ML)
estimator %� for every data set D of every length n. This is the model in M that maxi-
mizes the probability of D. We denote this % by %� . For example, the ML Bernoulli
model %� for sequence (1) of Example 1 at the beginning of this paper is %� =1�4. The

139MODEL SELECTION BASED ON MDL



probability it assigns to sequence (1) is P(seq.(1) | %� )=( 1
4)2500 ( 3

4)7500. Sometimes we
write %� (D) rather than the usual %� since we want to stress that %� is actually a
function of D. If we pick our models from model class M, we can write

P(D | %� (D))=max
% # M

P(D | %)=min
% # M

&log P(D | %)=min
% # M

L(D | %) (4)

where the third equality follows from the fact that log and��are monotonic trans-
formations and the fourth equality indicates the fact that each % defines a code such
that the code length of D is given by &log P(D | %). Since this term can be inter-
preted as a code length, we abbreviate it to L(D | %). For any %1 , %2 , P(D | %1)>
P(D | %2) if and only if &log P(D | %1)<&log P(D | %2), so the code length of D
using any % precisely measures the probability of D under %, i.e. it measures how
well % fits D. From (4) we then see that %� is also the element in M that minimizes
the code length of D.

Codes ``are'' (non)probabilistic hypotheses. Model classes M like the class of all
polynomials are not probabilistic; instead, they always go together with an error
function that measures the goodness-of-fit for each combination of data D and
hypothesis H # M. In the polynomial example, this was the squared error: polyno-
mial H gives a better fit on the set of points (xi , yi) than on the set of points (xi , zi)
iff ersq(xn, yn | H)<ersq(xn, zn | H), where ersq is the total squared error: ersq

(xn, yn | H)=�n
i=1( yi&H(xi))2.

Rissanen (1987, 1989) shows that we can turn just about any combination of
hypothesis and error function into a code such that the code length of data D
precisely reflects the error the hypothesis makes on the data: the shorter the code
length, the better the fit. We illustrate this for the polynomials and the squared
error. It is possible (Rissanen, 1989, p. 18) to construct a code C2 such that for all
D=((x1 , y1), ..., (xn , yn)) and all polynomials H:

LC2
(xn, yn | H)=ersq (xn, yn | H)+K. (5)

The notation LC2
( } |H) is used to indicate that the code-length may depend on H:

for different polynomials, C2 encodes D in a different way; strictly speaking it is not
a code but a function that maps each H to a different code C2(H). The notation
LC2

( } | H) is then short for LC2(H)( } ). In the equation above K is a constant that
may depend on n but not on H or any of the xi or yi . Using the code with property
(5), we have for every two data sets y1 , ..., yn and z1 , ..., zn that

2LC2
=LC2

(xn, zn | H)&LC2
(xn, yn | H)=2ersq=ersq (xn, zn | H)&ersq (xn, yn | H)

(6)

which means that the difference in goodness-of-fit between any two data sets is
precisely reflected in the difference in code length. We can perform the same trick
for just about any other class of models and any other error measure. It follows
that we can turn any such class of models into a class of codes that is equivalent
in that the codelength of data D when encoded using code C2(H) is equal to the
error H makes on D up to a constant that only depends on the size of D: any
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model, probabilistic or not, may be identified with a code. Because codes can
always be mapped to probability distributions and back, we may equivalently
regard all model classes as being probabilistic. This explains the name stochastic
complexity: we will define it for probabilistic model classes only and map any
nonprobabilistic model class first into an equivalent probabilistic version. For any
data D, the model in M with minimal error for D will be called the best-fitting
model for D, denoted by H� . By Eq. (5) it is also the model with the shortest code
length for D. Remarkably, if we turn M into an equivalent probabilistic
version M$, then by (4) we see that H� is mapped to the maximum likelihood model
%� (D)! From now on we regard any model class as being probabilistic��including
the polynomials. We stress once more that this does not mean that these models
should be interpreted as probability distributions in the usual sense; rather, codes
or, equivalently, probability distributions are used merely as a universal represen-
tation language for hypotheses.

STOCHASTIC COMPLEXITY AND MODEL SELECTION

We will now introduce the notion of stochastic complexity. The MDL principle
tells us to look for the shortest encoding of D. In the context of stochastic
complexity, we assume a model class M and we ask for the shortest encoding of D
obtainable with the help of M (see p. 136). By (4) the element in M that allows
for the shortest encoding of D is given by (the code corresponding to) %� (D). It
seems we should code our data D using the ML model %� (D), in which case the
MDL principle would reduce to the maximum likelihood method of classical
statistics!

However��and this is the crucial observation which makes MDL very different
from ML��MDL says that we must code our data using some fixed code, which
compresses all data sets that contain a model in M that fits them well (this was
pointed out on page 136. But the code corresponding to %� (D), i.e., the code that
encodes any D$ using L(D$ | %� (D))=&log P(D$ | %� (D)) bits, only gives optimal
compression for some of these data sets (among which D). For most other data
sets D${D, %� (D) will definitely not be optimal: if we had been given such a dif-
ferent data set D$ (also of length n) instead of D, then the code corresponding to
%� (D$) rather than %� (D) would give us the optimal compression. In general, coding
D$ using %� (D) [i.e., using L(D$ | %� (D)) bits] may be very inefficient. Since MDL tells
us to code our data using some fixed code, we are not allowed to use the code
based on %� (D) if our data happen to be D and the code based on %� (D$) if our
data happens to be D$; we would then encode D using a different code than
when encoding D$. It would therefore be very desirable if we could come up
with a code that compressed each possible D as well as the best-fitting or,
equivalently, most compressing element in M for that specific D! In other words,
we would like to have a single code C1 such that LC1

(D)=L(D | %� (D)) for all
possible D. However, such a code does not exist as soon as our model class
contains more than one element��intuitively, the reason being a fact we discussed
earlier: whatever code we use, only very few data sets can receive short code
lengths. Formally, suppose our model class contains at least the two models %1 and
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%2 where P( } |%1){P( } |%2) and suppose, by means of contradiction, that a code C0

exists such that LC0
(D)=L(D | %� (D)) for all D of fixed length. By Proposition 1

there exists a probability distribution P0 with P0(D)=2&LC0
(D)=2&L(D | %� (D))=

P(D | %� (D)) for all D of fixed length (the last equality follows by definition of
L(D | %� (D))). Since for all D, P(D | %� (D))�P(D | %1), and for at least one D,
P(D | %� (D))>P(D | %1), we have �D P0(D)>1 which contradicts the fact that P0 is
a probability distribution.

We see that the code C1 we referred to above does not exist in general.
Nevertheless4, it is possible to construct a code C2 such that

LC2
(D)=&log P(D | %� (D))+K=L(D | %� (D))+K (7)

for all D of length n. Here K is a constant that may depend on n but is equal for
all D of length n. In this way, the code length obtained using C2 precisely reflects
for each D how good the best-fitting model in the class for D is��compare this to
Eqs. (5) and (6); we give a clarifying example below. Picking C2 such that the con-
stant K is as small as possible yields the most efficient code that satisfies (7). We
call the resulting code the stochastic complexity code and denote it by C*. The
corresponding minimal K is denoted by K* and is called the model cost of M. We
define the code length of D when encoded using this code to be the stochastic
complexity of D with respect to model class M which we write as I(D | M):

I(D | M)=LC*(D)=L(D | %� (D))+K* where %� (D) # M. (8)

The trade-off. I(D | M) is a sum of a goodness-of-fit term L(D | %� (D)) and a
complexity term K* and as such embodies the trade-off between fit and complexity
referred to in Fig. 1. To see this for the polynomial example, let us compare the
polynomials in Fig. 1.a: let Mi be the class of all polynomials of the i th degree
(e.g., M12 is the class of 12th degree polynomials); similarly, let %� i (D) be the
maximum likelihood estimator for data D within class Mi . We note that, by
Eqs. (5) and (6), the difference in the first terms of I(D | M1) and I(D | M12) is equal
to the difference in the squared errors on D of the best-fitting models in these
classes! We have

I(D | M1)&I(D | M12)=L(D | %� 1(D))&L(D | %� 12(D))

+K1*&K*12=2ersq+2complexity.

Here K1* is the complexity term for M1, which will be much smaller than K*12 : M12

contains good-fitting models for many more data sets than M1 ; therefore,
L(D | %� 12(D)) will be very short for many more D. Since the code C i* corresponding
to class Mi can only give a short code length I(D | Mi)=L(D | %� i (D))+K i* to very
few data sets, K*12 must be much larger than K1* (this can be shown more formally
using Proposition 1 by an argument similar to the one we used in proving that the
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code C1 referred to above does not exist). A concrete interpretation and an explicit
value for K i* will be given later on. For the set of points in Fig. 1, it turns out that
the sum is minimized for M3 , the class of third-degree polynomials, which brings
us to the following

MDL principle for model selection. Given data D and any two model classes Ma

and Mb , we should prefer model class Ma if and only if the stochastic complexity
of D with respect to Ma is smaller than the stochastic complexity of D with respect
to Mb , i.e., if I(D | Ma)<I(D | Mb). The larger the difference, the more confidence we
have in our choice.

Computing I(D|M). For most reasonably regular model classes, the first term in
the stochastic complexity is easy to compute (for polynomials it involves finding a
least-squares fit, for example). Computing K*, however, is very difficult. For suf-
ficiently regular model classes (which include, for example, the class of polynomials
combined with the squared error), we can, however, approximate Kk* (i.e., the K*
for a model class with k parameters) very well (Rissanen, 1996) as follows:

Kk* r
k
2

log n+Ck (9)

The first term grows linearly in the number of parameters k and logarithmically in
n, the size of the data set. The second term is constant in that it does not grow as
n increases, but it does depend on k. Neglecting this term and selecting Mk by
choosing the k which minimizes &L(D | %� (D))+ k

2 log n has, confusingly, been
called the MDL model selection criterion (Rissanen, 1989). One can use it as a first
approximation, but it will only work well if one really has a lot of data, since Ck

can be very large. For sufficiently regular model classes, Ck can be further evaluated
as follows (Rissanen, 1996):

Ck=&
k
2

log 2?+log | % # Mk
- | I(%)| d%+o(1). (10)

Here o(1) is a term that becomes negligible for large enough n (limn � � o(1)=0)
and |I(%)| is the determinant of the Fisher information matrix I(%) (for a definition,
see Berger, 1985 or Rissanen, 1996). It measures effects on the description length
that are due to geometrical properties of the model class Mk . To get a rough idea
of where these effects come from, consider the function L(D$ |%� (D)) as a function of
D$. The slope of this function for D$ in a neighborhood of D is different for different
D. A precise (and difficult) analysis of this phenomenon leads to (10). Equations (9)
and (10) not only describe how the complexity of a model class depends on its size
(number of parameters k), but also how it depends on its internal structure: if most
models in the class are extremely similar to each other (in the sense that they
represent almost the same probability distributions) then the model class is not so
complex (rich) after all. In this case, the term in (10) involving |I(%)| will be small.
The more truly different the models in M are, the larger this term. To summarize
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the essence of Eqs. (8)�(10), we note that for every given model class M with a
fixed number of parameters, the error term L(D | %� (D)) grows linearly in the sample
size n for (nearly) all D. The complexity term that is due to the number of
parameters k grows logarithmically in n, and the complexity due to the internal
structure of the model class does not grow with n.

REINTERPRETATIONS AND PRACTICAL VERSIONS OF SC

Many model classes are such that either (9) does not hold at all or the constant
term (10) cannot be easily calculated. Fortunately, there exist at least three good
approximations to the SC, which at the same time give alternative, perhaps clearer
interpretations to it. We give two now and a third one in the next section.

SC as an average. By (8), I(D | M)=LC*(D). Of course we can map C* to a
probability distribution P* such that for all D, &log P*(D)=I(D | M). Just as C*
can be seen as the code giving the shortest codes possible for data sets with good
models in M, P* can be seen as the probability distribution giving as much prob-
ability as possible to those data sets for which there is a good model in M. To
make the dependence on M explicit we will henceforth write P*( } | M) rather than
P*. We call P*( } | M) the stochastic complexity distribution with respect to M.
Now suppose, just for the moment, that our (probabilistic) class M has a finite
number of elements. In this case we may define a new probability distribution

Pav(D | M)= :
% # M

P(D | %)_w(%). (11)

Here w(%) is a normalizing factor that can be viewed as a probability distribution
over M. It is usually called a prior distribution. If we let w be uniform (all terms in
the average have the same weight), then Pav(D | M) is a very good approximation
for P*(D | M). Intuitively, the reason for this is that the models in the class that
give the highest probability to data D automatically contribute the most to the
probability Pav(D | M). For model classes indexed by parameters ranging over a
continuous domain��as, for example, the class of all Bernoulli models��the sum
gets replaced by an integral. In this case, again for many model classes there exists
a prior w(%) with which &log Pav(D | M) approximates I(D | M) extremely well but
it is not the uniform prior (Rissanen, 1996); rather it is the so-called Jeffreys' prior
(for a precise definition, see Wasserman, 2000). For most other priors which give
probability >0 to all models in M, the approximation to I(D | M) will still be
reasonable but only for large data sets. We see that P*( } | M)rPav( } | M) is a
probability distribution that may (roughly) be interpreted as an average over all
models in M. Since P*( } | M) is a probability distribution, it may itself be seen as
a single model. Hence, the name model selection, the usual term for comparing
classes of models, makes sense in our terminology after all: according to MDL,
selecting between model classes Ma and Mb for data D amounts to deciding which
of the summarizing models P*( } | Ma) or P*( } | Mb) gives a better fit (shorter
codelength) to the data.
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SC as a two stage description of the data. Another approximation to the SC
arises if we code our data in two parts as follows: for any model class M, data set
D is encoded by first encoding a hypothesis % # M and then encoding D using the
code corresponding to %, i.e., using L(D | %) bits where L(D | %)=&log P(D | %).
Each parameter in % must be encoded up to a certain precision d. If M contains
k-parameter models, we need approximately L(%)rk } d bits for this, a number that
grows linearly in k again. By taking the model %* # M and the precision d for which
the sum L(D | %)+L(%) is as small as possible, we arrive at a reasonable approxi-
mation of stochastic complexity (where we write %*(D) to indicate that the optimal
%* is actually a function of D): I(D | Mk)rL(D | %*(D))+L(%*(D)) (Rissanen,
1989).

This can be shown formally if Mk is regular enough: then the optimal precision
for each parameter can be shown to be 1

2 log n where n is the size of D; moreover,
for such model classes, it holds (under mild additional conditions) that asympto-
tically for large n, L(D | %� (D))�L(D | %*(D))�L(D | %� (D))+C for some constant
C (and hence %� and %* converge to each other). This gives by (8) and (9)

L(D | %*)+L(%*)=L(D | %*)+
k
2

log nrL(D | %� (D))+K*.

This equation shows that the complexity term K*=k�2 log n+O(1) can be
(roughly) interpreted as follows: it can be seen as the number of bits (up to a
constant) needed to encode the parameter %*(D)r%� (D) that minimizes the total
two-part description length of the data.

The two-part code version of SC may be of particular interest to psychologists
since one can compute it for just about any model class one can think of. In
psychological applications (Myung 6 Pitt, 1997), one more often than not uses
complicated models for which the other approximations to SC mentioned in this
paper are very hard to compute. Examples of strange model classes for which two-
part codes have already been constructed are context-free grammars (Gru� nwald,
1996), various neural networks (Barron, 1990), and several models arising in the
analysis of DNA and protein structure (Dowe et al., 1996).

COMPARISON TO OTHER APPROACHES

Below we briefly compare MDL to some alternative approaches. We will focus
on Bayesian statistics (Wasserman, 2000) and cross-validation (Browne, 2000) since
they are both closely related to MDL. A model selection criterion that is quite
different from MDL (yet partially served as its inspiration) is Akaike's AIC
(Bozdogan, 2000). For a comparison of AIC and MDL in the context of regression,
we refer to Speed and Yu (1993). Below we will only consider the use of MDL for
model class selection. Outside this context, MDL is still closely related to several
other inductive methods. For example, the successful yet controversial principle of
maximum entropy can be seen as a special case or, at any rate, version of MDL
(Rissanen, 1989; Li 6 Vita� nyi, 1997; Gru� nwald, 1998).
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Bayesian evidence and stochastic complexity. In Bayesian statistics (Berger,
1985; Wasserman, 2000) we always use a prior distribution w for all elements in the
chosen model class M. We can then simply calculate the conditional probability of
the data D given model class M as P(D | M)=�% # MP(D | %) w(%) which coincides
with our Pav as given by (11). If we want to do model selection between classes Ma

and Mb , Bayesian statistics tells us to prefer the class for which P(D | M), also
called the evidence, is highest. We immediately see that if we use the Pav approxima-
tion to stochastic complexity, then selecting the class with lowest stochastic
complexity becomes equivalent to selecting the class with the highest evidence.

What, then, is the difference between the two approaches? From a philosophical
point of view, the difference can be summarized as follows: According to MDL the
aim is always to compress our data as much as possible; there is no such goal in
Bayesian statistics!

MDL's focus on compression reveals itself in several ways. We mention just one:
the real definition of stochastic complexity as given in (8) does not depend on any
particular prior distribution. This is how it should be, since it is defined with respect
to D and M and should thus depend on D and M and nothing else. If we
approximate I( } | M) using Pav , we should always pick a prior with which we
obtain code lengths that are as short as possible, i.e., such that we are as close as
possible to the real I( } | M) (Rissanen (1996) gives a precise definition of ``being as
close as possible'').

Nevertheless, in practical settings MDL and Bayesian techniques will often give
similar results. An advantage of MDL is that we always know what we are aiming
for and thus, first, are never left with the dilemma what kind of prior distribution
we should use, and, second, we may use variations of MDL which do not involve
priors at all (like predictive MDL; see below) if that is easier for the problem at
hand. A disadvantage of MDL may be that we force ourselves to use particular
priors while in some cases some alternative priors may, for some reason or other,
give better results.

MDL and MML. The relationship between MDL and Bayesianism presented
here is based on the particular viewpoint implicit in Rissanen's work (Rissanen, 1989,
1996); other researchers hold somewhat different views and the precise relationship
between the two approaches is still subject to much debate (Wallace 6 Freeman, 1987;
Dawid, 1992; Rissanen, 1996; Vita� nyi 6 Li, 1997). In particular, there exists a statistical
inference method called the minimum message length (MML) principle which is based
on combining a Bayesian view on probability distributions with data compression
(Wallace 6 Boulton, 1968; Wallace 6 Freeman, 987; Wallace, 1996). Though in
practice MML and MDL will usually behave similarly, there are also some subtle
differences; in Gru� nwald (1998) the relationship is discussed in more detail. Another
statistical paradigm which has its roots in Bayesian statistics while being actually
closely related to MDL is Dawid's prequential analysis. Dawid (1992) studied the
relation between prequential analysis and MDL.

MDL 6 cross-validation��SC as accumulated prediction error. For most model
classes, yet another good approximation to the stochastic complexity is given by
the sum of prediction errors made when predicting future data using past data only.
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For example, using the class of k-degree polynomials Mk , we may sequentially
predict all yi by using the best-fitting (maximum likelihood) model H� i&1 for
Di&1=((x1 , y1), ..., (xi&1 , y i&1)). We may then measure the error that H� i&1 makes
on the yi that actually arrives as ( yi&H� i&1(xi))2 which is just the squared error.
Rissanen (1989) shows that for large n, �n

i=1( yi&H� i&1(x i))2
rI(Dn | M). This way

of approximating I(Dn | M) is called predictive MDL (actually, the way we present
it here we avoid some tricky but important details; see Rissanen, 1989).

Suppose now that we compare I(D | Ma) to I(D | Mb) for the purpose of selecting
either Ma or Mb . By the preceding discussion we may interpret I(D | Ma) as indi-
cating how well we were able to sequentially predict each item in D when doing the
prediction of the i th item using each time the model in Ma that best fitted
previous data Di&1 . I(D | Mb) may be interpreted analogously. This is very similar
to another model selection method called cross-validation (Browne, 2000). We
briefly describe cross-validation to show the similarities and differences to
predictive MDL.

In cross-validation, the data D are partitioned into a training set Da and a test
set Db. Then H� (Da), the best-fitting model for Da is determined, and it is tested on
Db; that is, the error it makes on Db, is determined. In our example of a class
of functions with squared error, this amounts to computing er(Db | H� (Da))=
�(x, y) # Db ersq(x, y | H� (Da)). This is usually repeated for several partitionings of D,
say (Da1, Db1), ..., (Dam, Dbm) (where Daj _ Dbj=D for all j ) and the average predic-
tion error 1

m �m
j=1 er(Db | H� (Da)) is taken as a measure of how well suited M is for

D (analogously to MDL's stochastic complexity I(D | M)). The size of the sets Daj

and Dbj is usually taken equally large for all j. This is in contrast to predictive
MDL, where H� (D1) for D1=(x1 , y1) is used to predict (x2 , y2), then H� (D2) [with
D2=((x1 , y1), (x2 , y2))] is used to predict (x3 , y3) etc. and the sum of the n result-
ing errors is used to approximate I(D | M).

WHY IT WORKS: OVERFITTING, UNDERFITTING, AND BIAS

Is there some way or other in which we can prove that MDL works? There have
been several studies which indicate that MDL performs well both in theory and in
practice (Barron 6 Cover, 1991; Rissanen, 1989; Kontkanen, Myllyma� ki, 6

Trirri, 1996). We will not go into these studies any further but rather appeal to a
common-sense argument, which, in a nutshell, says that there is a crucial difference
between overfitting and underfitting.

Overfitting and underfitting. Let us illustrate this using our polynomial example
once again. Clearly, the first-degree polynomial used in Fig. 1.a is too simple. If we
look at the average error per data item (xi , yi), we see that it is quite high. It may
seem reasonable to assume that if we use the line found as a basis for predicting
future data, then we will make approximately the same error on average as we have
made on the data D we have seen so far. However, if we look at the complicated
polynomial depicted in Fig. 1.b, we see that it makes average error 0 on the data
D. It would be very unreasonable to assume that this polynomial will keep making
error 0 on any future data: if we assume that the data are subject to a small amount
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FIG. 2. Another way of looking at Occam's Razor.

of random noise, then the overly complex polynomial will just reflect this noise
rather than any law underlying the data.

In other words, if we use the model that is too simple, we may get a reliable
estimate of how well we will predict future data; if our model is too complex, we
will not. Since this observation is so important, it has been repeated in Fig. 2.

It turns out that one can even make this observation (partially) mathematically
precise (Gru� nwald, 1998, chapt. 5). The fact that, in MDL, all inductive inference
is done with respect to a coding system leads to a kind of generic avoidance of
overfitting. Equations (8) and (9) imply that, when given few data, we will prefer
a first-degree polynomial even though a third-degree polynomial will turn out to be
better in the end. But the first-degree polynomial will be useful nevertheless, until
our data set is large enough so that we have enough information to decide with any
reliability on a higher degree polynomial.

MDL and Bias. We will now make this idea a bit more precise. In the following,
we assume that the data D=(x1 , ..., xn , xn+1 , ..., xm) can be partitioned into a
training set Dtr=(x1 , ..., xn) and a test set Dtest=(xn+1 , ..., xm). By a learning
method we mean some automated procedure that, when given as input the training
set, outputs a model H� as a hypothesis for data D. This model is then used to
predict the data in the test set against some error measure er. We will call the
model H� a good model for D if predicting the elements in D on the basis of H� leads
to a small average error 1

m �m
i=1er(xi | H� ). We say that the inference of H� from

training data Dtr is reliable for test data Dtest if

1
n

:
n

i=1

er(xi | H� )r
1

m&n
:
m

j=n+1

er(xj | H� )

That is, the error H� makes on the training set is a reasonable indicator of the error
it makes on the test set. Let us make the assumption that the xi are all independent
and are each drawn according to some unknown distribution P. Then, roughly
speaking and under some mild additional conditions, we can say that the larger
(more complex) the class of candidate models M (n) considered for a training set
of size n is, the larger the probability that the inferred model H� # M (n) will be
unreliable. This holds no matter what learning method is used to infer H� from the
training set. In order to make reliable inferences at all possible, we must do
something to effectively restrict the size of M (n). In other words, we must introduce
bias5: out of the (often infinitely many) models that we might consider, we choose
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one from the small set M (n). However, this preferred subset of models may be
allowed to increase as the size of the sample (data set) increases. With increasing
sample size, more information about the data generating process becomes available.
This information can be used to reliably infer the best model for the data within a
larger set of candidate models. Hence, as the data set increases, the bias may be
gradually weakened6.

In MDL, the bias is determined by the code that is used to encode data. In the
context of model class selection and stochastic complexity, this is expressed by the
fact that the complexity term K* in the formula for SC (Eq. (8)) will be larger for
more complex model classes. Suppose we are given a complex model class Ma , a
simple model class Mb , and training data Dtr of size n. Then

I(Dtr | Ma)=L(Dtr | H� a(Dtr))+K a* (12)

and similarly for I(Dtr | Mb). Since Ma is more complex, Ka*>Kb*. Suppose that the
best fitting model for training set Dtr in Ma makes average error 1

n er(Dtr | H� a(Dtr))
and the best fitting model in Mb makes average error 1

n er(Dtr | H� b(Dtr)) such that
1
ner(Dtr | H� a(Dtr))< 1

n er(Dtr | H� b(Dtr)). Then, since we always construct the codes
with lengths L( } | H ) such that these lengths correspond to the errors er( } | H ) (see
Eq. (5) for the example of the squared error), we must have

1
n

L(Dtr | H� a (Dtr))=
1
n

L(Dtr | H� b(Dtr))&= (13)

for some =>0. From (12) and (13) we see that Ma will only be preferred over Mb

if n is larger than some minimal value n0 : for smaller values of n, the simpler model
class will be chosen��even though Ma contains a model that fits the data better, it
is too large a model class to consider for the small training set.

MDL, bias and no free lunch��conclusion. We just saw that bias is a necessary
ingredient of every reasonable learning method. But in fact, every learning method
must necessarily be biased7. The fact that all methods of inductive inference are
necessarily biased is the essence of the so-called no free lunch theorems (Wolpert,
1996). These theorems have sometimes8 been interpreted as stating that one can
never say that method of inductive inference A is in general better than method of
inductive inference B. In our view, this conclusion is much too strong, for a learning
method is always defined relative to a model class M, and it is possible to set up
the bias of the method such that it reflects the bias that is already implicit in the
choice of M. Of course, if the model class M does not contain any good model for
the data generating machinery to begin with, we cannot expect our learning method
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to work well. But if M contains good models for the data D (that achieve small
average prediction error on both training set and test set), then such models should
be output by the learning method, at least if the training set is large enough. In our
view, one form or other of this soundness property should be satisfied by every
method of inductive inference. In the context of model (class) selection, the sound-
ness property (roughly) becomes as follows: first, define a good model class as a
model class that contains models that achieve small average prediction error on
both training set and test set. Now if the set S=[M1 , M2 , ...] of considered model
classes contains good model classes for data D, then one of those good model
classes should be output by the model (class) selection method, at least if the
training set is large enough.

We think that soundness properties similar to this one are minimum
requirements for all methods of model selection. On the other hand, one can
imagine several other, less crucial but still desirable, properties for model selection
criteria which are mutually exclusive in the sense that no method of inductive
inference satisfies all of them (Rissanen, 1989, p. 95). Summarizing (in our view),
there do exist good and bad model selection criteria. The theoretical results
obtained for MDL (Barron 6 Cover, 1991; Rissanen, 1987, 1996) strongly suggest
that it is among the good ones. On the other hand, one cannot say that it is always
to be preferred over other methods; several other approaches can also be shown to
have good theoretical properties. We do think, however, that whether one uses
MDL or not, it is always good to keep MDL's philosophy in mind: the goal of
model selection is not the hunt for any true model, but rather for a simple model
that gives a reasonable fit to the data; both goodness-of-fit and model complexity
contribute to the number of bits needed to describe the data; and finally, a model
that is much too complex is typically worthless, while a model that is much too
simple can still be useful.
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