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ABSTRACT

Counting the number of ensemble members in each tercile-based category is a simple

method of using a forecast ensemble to assign categorical probabilities. Other parametric

methods include estimating categorical probabilities from fitted distributions and from gener-

alized linear models. Here we investigate the effect of sampling error due to finite ensemble

size on the accuracy of counting and parametric methods. The methods are first compared

in an idealized setting where analytical results show the dependence of sampling error on

method, ensemble size, and level of predictability. The analytical results also provide a good

description of the behavior of seasonal precipitation probabilities simulated by a general cir-

culation model. Parametric methods are found to be generally more accurate than the counting

method. In addition to determining the relative accuracies of the different methods, the analy-

sis quantifies the relative importance of the ensemble mean and variance in determining tercile

probabilities with ensemble variance being a weak factor in determining seasonal precipitation

probabilities.
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1. Introduction

Seasonal climate forecasts are necessarily probabilistic, and forecast information is most com-

pletely characterized by a probability density function (pdf). For reliable forecasts, the difference

between the climatological and forecast pdfs represents predictability, and several measures of this

difference have been developed to quantify predictability (Kleeman 2002; DelSole 2004; Tippett

et al. 2004; DelSole and Tippett 2006). Quantile probabilities provide a coarse-grained description

of the forecast and climatological pdfs that is appropriate for ensemble methods (Kleeman and

Majda 2005). The International Research Institute for Climate and Society (IRI) issues seasonal

forecasts of precipitation and temperature in the form of tercile-based categorical probabilities

(hereafter called tercile probabilities)–that is, the probability of the below-normal, normal and

above-normal categories (Barnston et al. 2003). Accurate estimation of quantile probabilities is

important both for quantifying seasonal predictability and for making climate forecasts.

In single-tier seasonal climate forecasts, initial conditions of the ocean-land-atmosphere sys-

tem are the source of predictability, and ensembles of coupled model forecasts provide samples of

the model atmosphere-land-ocean system consistent with the initial condition, its uncertainty and

the internal variability of the coupled model. In simulations and two-tier seasonal forecasts, an

ensemble of atmospheric general circulation models (GCMs) provides a sample of equally likely

model atmospheric responses consistent with a particular configuration of sea surface temperature

(SST). Tercile probabilities must be estimated from finite ensembles in either system. A simple

nonparametric estimate of the tercile probabilities is the fraction of ensemble members in each

category. Alternatively, the entire forecast pdf including tercile probabilities can be estimated

parametrically by fitting the ensemble by a pdf with some adjustable parameters. The counting

method has the advantage of making no assumptions about the forecast pdf. Both approaches are

affected by sampling error due to finite ensemble size, though to different degrees. Model error
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also contributes to errors in tercile probabilities. Here, we focus on the sampling error issue by

assuming that the model is perfect, in the sense that its ensembles provide reliable probabilities

(Wilks 1995). This paper is about the relative merits of parametric and nonparametric approaches

for seasonal simulation and forecasting of precipitation tercile probabilities. We analyze precipita-

tion because of its societal importance and because, even on seasonal time-scales, its distribution

is farther from being Gaussian and hence more challenging to describe than other quantities like

temperature which have been previously examined.

Richardson (2001) examined the effect of ensemble size on the Brier skill score, reliability

and economic value determined from a simple cost-loss decision model when probabilities are

obtained by counting. The finite size of the ensemble had an adverse effect on the Brier skill

score with low-skill regions being more negatively affected by small ensemble size. The effect

of finite ensemble size on reliability was, on average, overconfidence in the forecast probabilities.

Furthermore, changes in ensemble size that cause only modest changes in Brier skill score were

found to lead to large changes in economic value, particularly for extreme events.

Several authors have compared estimation of quantile probabilities by counting and pdf fitting.

Wilks (2002) fit numerical weather prediction ensembles with a Gaussian or a mixture of Gaussian

distributions and showed that fitted distributions give more accurate estimations of quantile values,

especially for quantiles near the extremes of the distribution. Kharin and Zwiers (2003) showed

using Monte Carlo simulations that when the forecast variable is Gaussian, using a Gaussian es-

timator was more accurate than counting. They showed that the Brier skill score of hindcasts of

700 mb temperature and 500 mb height was improved when probabilities were estimated from a

Gaussian with constant variance as compared with counting; fitting a Gaussian with time-varying

variance gave inferior results. Hamill et al. (2004) used a generalized linear model (GLM; logistic

regression) to relate tercile probabilities with the ensemble mean in the context of 6-10 day and
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week 2 surface temperature and precipitation forecasts. The ensemble spread was not found to be

a useful predictor of tercile probabilities.

In this paper we present analytical descriptions of the effects of ensemble size and predictability

level on the accuracy of the counting and Gaussian tercile probabilities estimates. These analytical

results facilitate the comparison of properties the counting and Gaussian estimates and make ex-

plicit the dependence on ensemble size and predictability. The calculation of the analytical results

uses some simplifying assumptions whose importance we assess by comparing the analytical es-

timates with empirical estimates obtained by sub-sampling from a 79-member ensemble of GCM

simulations. Since model error may confound the effect of reducing sampling error, we first look at

sampling error in a perfect model setting by comparing the tercile probabilities of a large ensemble

to those estimated from smaller ensembles. In the perfect model setting, we investigate whether

the time-varying ensemble variance is a useful factor in estimating the tercile probabilities. We

use a generalized linear model (GLM) to infer tercile probabilities from ensemble statistics. We

show that the GLM used is equivalent to fitting a Gaussian model for Gaussian variables. The

GLM approach allows us to identify which estimated ensemble statistics, in particular mean and

variance, are robustly related to tercile probability and hence to predictability. We find that, even

in the perfect model setting, ensemble variance is not a useful indicator of tercile probabilities.

Ensemble estimated tercile probabilities form the inputs to IRI’s forecast system which in-

cludes calibration to account for model error (Barnston et al. 2003; Robertson et al. 2004), and

we expect that reducing sampling error, while not addressing model error, will improve forecast

skill. Reduction of sampling error should also benefit the estimation of the calibration parameters.

We look at the effect of reducing sampling error on the skill of the simulations with and without

calibration and find a positive impact.

The paper is organized as follows. The GCM and observation data are described in section 2.
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In section 3, we derive some theoretical results about the relative size of the error of the counting

and fitting estimates, and about the effect of sampling error on the ranked probability skill score.

The GLM is also introduced and related to Gaussian fitting. In section 4, we compare the analyt-

ical results with empirical GCM-based ones and include effects of model error. A summary and

conclusions are given in section 5.

2. Data

Model simulated precipitation data come from a 79-member ensemble of T42 ECHAM 4.5 GCM

(Roeckner et al. 1996) simulations forced with observed SST for the period December 1950 to

February 2003. We use seasonal averages of the three month period December through February

(DJF), a period when ENSO is a significant source of predictability. We consider all land points

between 55S and 70N, including regions whose dry season occurs in DJF and where forecasts are

not usually made. While the results here use unprocessed model simulated precipitation, many of

the calculations were repeated using Box-Cox transformed data. The Box-Cox transformation

xBC =











λ−1
(

xλ − 1
)

, λ 6= 0

log x , λ = 0

(1)

makes the data approximately Gaussian and depends on the parameter λ. Positive skewness is

the usual non-Gaussian aspect of precipitation. The value of λ is found by maximizing the log

likelihood function. Figure 1 shows the geographical distribution of the values of λ which is an

indication of the deviation of the data from Gaussianity; we only allow a few values of λ, namely

0, 1/4, 1/3, 1/2 and 1. The log function and small values of the exponent tend to be selected in dry

regions. This is consistent with Sardeshmukh et al. (2000) who found that monthly precipitation in

Reanalysis and in a GCM was significantly non-Gaussian mainly in regions of mean tropospheric

descent.
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The precipitation observations used to evaluate model skill and to calibrate model output come

from the extended New et al. (2000) gridded dataset of monthly precipitation for the period 1950

to 1998, interpolated to the T42 model grid.

3. Theoretical considerations

a. Variance of the counting estimate

The counting estimate pN of a tercile probability is the fraction n/N where N is the ensemble

size and n is the number of ensemble members in the tercile category. The binomial distribution

Pp(n|N), where p is the tercile probability, gives the probability of there being exactly n members

in the category. The expected number of members in the tercile category is

〈n〉 =
N
∑

n=0

nPp(n|N) = Np , (2)

where the notation 〈·〉 denotes expectation. Consequently, the expected value of the counting

estimate pN is the probability p, and the counting estimate is unbiased. However, having a limited

ensemble size generally causes any single realization of pN to differ from p. The variance of the

counting estimate pN is

〈(pN − p)2〉 =
N
∑

n=0

( n

N
− p
)2

Pp(n|N) =
1

N2

N
∑

n=0

(n − pN)2 Pp(n|N) =
1

N
(1 − p)p , (3)

where we have used the fact that the variance of the binomial distribution is N(1 − p)p. The

relation in (3) implies that the standard deviation of the counting estimate decreases as N−1/2, a

convergence rate commonly observed in Monte Carlo methods.

Since the counting estimate pN is not normally distributed or even symmetric for p 6= 0.5

(for instance, the distribution of sampling error necessarily has a positive skew when the true

probability p is close to zero), it is not immediately apparent whether its variance is a useful
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measure. However, the binomial distribution becomes approximately normal for large N . Figure

2 shows that the standard deviation gives a good estimate of the 16th and 84th percentiles of pN

for p = 1/3 and modest values of N . In this case, the counting estimate variance is 2/9N . The

percentiles are obtained by inverting the cumulative distribution function of the sample error. Since

the binomial cumulative distribution is discrete, we show the smallest value at which it exceeds

0.16 and 0.84. Figure 2 also shows that for modest sized ensembles (N > 20) the standard

deviation is fairly insensitive to incremental changes in ensemble size; increasing the ensemble

size by a factor of 4 is necessary to reduce the standard deviation by a factor of 2.

The average variance of the counting estimate for a number of forecasts is found by averaging

(3) over the values of the probability p. The extent to which the forecast probability differs from

the climatological value of 1/3 is an indication of predictability, with larger deviations indicating

more predictability. Intuitively, we expect regions and seasons with more predictability to suffer

less from sampling error on average, since enhanced predictability implies more reproducibility

among ensemble members. In fact, when the forecast distribution is Gaussian with mean µf and

variance σf , the variance of the counting estimate of the below-normal category probability is (see

the Appendix for details)

p − p2 =
1

4

{

1 −
[

erf

(

xb − µf√
2σf

)]2
}

, (4)

where xb is the left tercile boundary. The variance is small when the ensemble mean is large or the

ensemble variance is small. Assuming that the forecast variance is constant and averaging (4) over

forecasts gives that the average variance is approximately (see the Appendix for details)

〈

p − p2
〉

≈ −0.0421868

N
+

0.264409

N
√

1 + S2
≈ 2

9N
√

1 + S2
, (5)

where S2 is the usual signal-to-noise ratio (see (A.4); Kleeman and Moore 1999; Sardeshmukh

et al. 2000). The signal-to-noise ratio is related to correlation skill with S/
√

1 + S2 being the
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expected correlation of the ensemble mean with an ensemble member. The relation in (5) has the

practical value of providing a simple estimate of the ensemble size needed to to achieve a given

level of accuracy for the counting estimate of the tercile probability. This value, like the signal-to-

noise ratio, depends on the model, season and region.

b. Variance of the Gaussian fit estimate

Fitting a distribution with a few adjustable parameters to the ensemble precipitation is an alter-

native method of estimating a quantile probability. Here we use a Gaussian distribution with two

parameters, mean and variance, for simplicity and because it can be easily generalized to more

dimensions (Wilks 2002). The Gaussian fit estimate gN of the tercile probabilities is found by fit-

ting the N -member ensemble with a Gaussian distribution and integrating the distribution between

the climatological tercile boundaries (Kharin and Zwiers 2003). The Gaussian fit estimate has two

sources of error: (i) the non-Gaussianity of the forecast distribution from which the ensemble is

sampled and (ii) sampling error in the estimates of mean and variance due to limited ensemble

size. The first source of error is problem dependent, and we will quantify its impact empirically

for the case of GCM simulated seasonal precipitation. The variance of the Gaussian fit estimate

can be quantified analytically for Gaussian distributed variables. When the forecast distribution is

Gaussian with mean µf and known variance σf , the variance of the Gaussian fit estimate of the

below-normal category probability is approximately (see the Appendix for details)

1

2πN
exp

[

−
(

xb − µf

σf

)2
]

, (6)

where xb is the left tercile boundary. The average (over forecasts) variance of the Gaussian fit

tercile probability is approximately (see Appendix for details)

〈

(p − gN)2
〉

≈
exp

(

− 1+S2

1+2S2 x
2
0

)

2πN
√

1 + 2S2
; (7)
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Comparing this value with the counting estimate variance in (5) shows that the Gaussian fit estimate

has smaller variance for all values of S2, with its advantage over the counting estimate increasing

slightly as the signal-to-noise ratio increases to levels exceeding unity.

When there is no predictability (S = 0)

〈

(p − gN)2
〉

≈ e−x2

0

2πN
≈ 0.1322

N
. (8)

Comparing (3) and (8), we see that the variance of the Gaussian estimated tercile probability is

about 40% smaller than that of the counting estimate if the ensemble distribution is indeed Gaus-

sian with known variance and no signal (S = 0). The inverse dependence of the variances on

ensemble size means that modest decreases in variance are equivalent to substantial increases in

ensemble size. For instance, the variance of a Gaussian fit estimate with ensemble size 24, the

simulation ensemble size used for IRI forecast calibration (Robertson et al. 2004), is equivalent

to that of a counting estimate with ensemble size 40. The results in (3) and (8) also allow us to

compare the variances of counting and Gaussian fit estimates of other quantile probabilities for the

case S = 0 by appropriately modifying the definition of the category boundary x0. For instance,

to estimate the median, x0 = 0, and the variance of the Gaussian estimate is about 36% smaller

than that of the counting estimate; in the case of the 10th and 90th percentiles, x0 = −1.2816, and

the variance of the Gaussian estimated probability is about 66% smaller than that of the counting

estimate. The accuracy of the approximation in (8) for higher quantiles depends on the ensemble

size being sufficiently large.

c. Estimates from generalized linear models

Generalized linear models (GLMs) offer a parametric estimate of quantile probabilities without

the explicit assumption that the ensemble have a Gaussian distribution. GLMs arise in the sta-
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tistical analysis of the relationship between a response probability p, here the tercile probability,

and some set of explanatory variables yi, as for instance the ensemble mean and variance (McCul-

lagh and Nelder 1989). Suppose the probability p depends on the response R, which is the linear

combination

R =
∑

i

aiyi + b , (9)

of the explanatory variables for some coefficients ai and a constant term b. The response R gen-

erally takes on all numerical values while the probability p is bounded between zero and one. The

GLM approach introduces a function g(p) that maps the unit interval on the entire real line and

studies the model

g(p) = R =
∑

i

aiyi + b . (10)

The parameters ai and the constant b are found by maximum likelihood estimation. Here, the

GLMs are developed with the ensemble mean (standardized) and ensemble standard deviation as

explanatory variables and p given by the counting estimate applied to the same ensemble.

There are a number of commonly used choices for the function g(p) including the logit function

which leads to logistic regression (McCullagh and Nelder 1989; Hamill et al. 2004). Here we use

the probit function which is the inverse of the normal cumulative distribution function Φ, that is,

we define

g(p) ≡ Φ−1(p) . (11)

Results using the logit function (not shown) are similar since the logistic and probit function are

very similar over the interval 0.1 ≤ p ≤ 0.9 (McCullagh and Nelder 1989). The assumption of the

GLM method is that g(p) is linearly related to the explanatory variables: here, the ensemble mean

and standard deviation. When the forecast distribution is Gaussian with constant variance, g(p) is

indeed linearly related to the ensemble mean and this assumption is exactly satisfied. To see this,

suppose that the forecast ensemble has mean µf and variance σf . Then the probability p of the
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below-normal category is

p = Φ

(

xb − µf

σf

)

, (12)

where xb is the left tercile of the climatological distribution, and

g(p) =
xb − µf

σf

. (13)

Therefore, we expect the Gaussian fit and GLM estimates to have similar behavior for Gaussian

ensembles with constant variance, with the only differences due to different methods of estimating

of the mean.

We show an example with synthetic data to give some indication of the robustness of the GLM

estimate when the population that ensemble represents does not have a Gaussian distribution. We

take the forecast pdf to be a gamma distribution with shape and scale parameters (2,1). The pdf

is asymmetric and has a positive skew (see Fig. 3a). Samples are taken from this distribution and

the probability of the below-normal category is estimated by counting, Gaussian fit and GLM;

the Gaussian fit assumes constant known variance, and the GLM uses the ensemble mean as an

explanatory variable. Interestingly the rms error of both the GLM and Gaussian fit estimates are

smaller than that of counting for modest ensemble size (Fig. 3b). As the ensemble size increases

further, counting becomes a better estimate than the Gaussian fit. For all ensemble sizes, the

performance of the GLM estimate is better than the Gaussian fit.

Other experiments (not shown) compare the counting, Gaussian fit and GLM estimates when

the ensemble is Gaussian with non-constant variance. The GLM estimate with ensemble mean and

variance as explanatory variables and the 2-parameter Gaussian fit have smaller error than counting

as predicted.
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d. Ranked probability skill score

The ranked probability skill score (RPSS; Epstein 1969), a commonly used skill measure for prob-

abilistic forecasts, is also affected by sampling error. The ranked probability score (RPS) is the

average integrated squared difference between the forecast and observed cumulative distribution

functions and is defined for tercile probabilities to be

RPS ≡ 1

M

M
∑

i=1

3
∑

j=1

(Fi,j − Oi,j)
2 , (14)

where M is the number of forecasts, Fi,j (Oi,j) is the cumulative distribution function of the ith

forecast (observation) of the jth category. The observation “distribution” is defined to be one for

the observed category and zero otherwise. This definition means that Fi,1 = Pi,B , Fi,2 = Pi,B+Pi,N

where Pi,B (Pi,N ) is the probability of the below-normal (near-normal) category for the ith forecast.

The terms with the above-normal probabilities (j = 3) vanish.

Suppose we consider the expected (with respect to realizations of the observations) RPS for

a particular forecast and for simplicity drop the forecast number subscript. Let OB, ON , and OA

be the probabilities that the observation falls into the below-, near- and above-normal categories,

respectively. That is,

OB = 〈O1〉 , ON = 〈O2〉 , OA = 〈O3〉 , (15)

where the expectation is with respect to realizations of the observations. Note that OB, ON , and

OA collectively represent the uncertainty of the climate state, not due to instrument error but due to

the limited predictability of the climate system. These quantities are not directly measurable since

only a single realization of nature is available. The expected (with respect to the observations) RPS

of a particular forecast is the sum of the RPS for each possible category of observation multiplied
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by its likelihood

〈RPS〉 = OB

[

(PB − 1)2 + (PB + PN − 1)2
]

+ ON

[

P 2

B + (PB + PN − 1)2
]

+ OA

[

P 2

B + (PB + PN)2
]

,

= OB

[

(PB − 1)2 + P 2

A

]

+ ON

[

P 2

B + P 2

A

]

+ OA

[

P 2

B + (1 − PA)2
]

.

(16)

Under the perfect model assumption, observations and forecasts are drawn from the same distri-

bution, and the observation and forecast probabilities are equal. Using (16), the perfect model

expected RPS (denoted RPSperfect) is

RPSperfect ≡ OB

[

(OB − 1)2 + O2

A

]

+ ON

[

O2

B + O2

A

]

+ OA

[

O2

B + (1 −OA)2
]

= OB(1 −OB) + OA(1 −OA) .

(17)

Note that the expected RPS of a perfect model differs from zero unless the probability of a category

is one, or zero, i.e., unless the forecast is deterministic. The quantity RPSperfect is a perfect model

measure of potential probabilistic skill analogous to the signal-to-noise ratio which determines the

correlation skill of a model to predict itself. In fact, when the forecast distribution is Gaussian,

RPSperfect is simply related to the forecast mean µf and variance σ2
f by

RPSperfect = 2Φ

(

xb − µf

σf

)(

1 − Φ

(

xb − µf

σf

))

. (18)

The above formula elucidates the empirical relation between probability skill and mean forecast

found by Kumar et al. (2001).

Figure 4a shows the time-averaged value of RPSperfect for the 79-member ECHAM 4.5 GCM

simulated precipitation data. This is a perfect model measure of potential probabilistic skill with

small values of RPSperfect showing the GCM has skill in the sense of reproducibility with respect to

itself. Skills are highest at low latitudes, consistent with our knowledge that tropical precipitation

is most influenced by SST. Perfect model RPS values are close to the no-skill limit of 4/9 in much

of the extratropics. The ranked probability skill score (RPSS) is defined using the RPS and a
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reference forecast defined to have zero skill, here climatology:

RPSS = 1 − RPS

RPSclim
, (19)

where RPSclim is the RPS of the climatological forecast. The expected RPS of a climatological

forecast is found by substituting PB = PN = PA = 1/3 into (16) which gives

RPSclim =
2

9
+

1

3
(OB + OA) . (20)

Figure 4b shows the time-averaged value of RPSSperfect ≡ 1 − RPSperfect/RPSclim for the GCM

simulated precipitation data. Even with the perfect model assumption, the RPSS exceeds 0.1 in

few regions.

Even in the perfect model setting, the ensemble-estimated and observation probabilities are

different due to finite ensemble size. Suppose that PB = OB + εB and PA = OA + εA where εB

and εA represent error due to finite ensemble size. If the forecast probabilities are unbiased and

〈εB〉 = 〈εA〉 = 0, then substituting into (16) and averaging over realizations of the ensemble gives

〈RPS〉 = RPSperfect + OB

〈

ε2

B + ε2

A

〉

+ ON

〈

ε2

B + ε2

A

〉

+ OA

〈

ε2

B + ε2

A

〉

= RPSperfect +
〈

ε2

B + ε2

A

〉

.

(21)

This means that in the perfect model setting the expected RPS is increased by an amount that

depends on the variance of the probability estimate. In particular, if the sampling error is associated

with the counting estimate whose variance is given by (3), then

〈

ε2

B + ε2

A

〉

=
1

N
(OB(1 −OB) + OA(1 −OA)) , (22)

and

〈RPS〉 =

(

1 +
1

N

)

RPSperfect . (23)

It follows that

〈RPSS〉 = 1 −
(

1 +
1

N

)

RPSperfect

RPSclim
,

=
(N + 1)RPSSperfect − 1

N
.

(24)
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The relation between RPSS and ensemble size is the same as that for the Brier skill score (Richard-

son 2001). The relation in (24) quantifies the degradation of RPSS due to sampling error, and

combined with (18), provides an analytical expression for the empirical relation between ensemble

size, RPSS and mean forecast found in Kumar et al. (2001).

If the tercile probability estimate has variance that differs from that of the counting estimate by

some factor α, as does, for example, the Gaussian fit estimate, then

RPSS =
(N + α)RPSSperfect − α

N
, (25)

where degradation of the RPSS is reduced for α < 1.

4. Estimates of GCM simulated seasonal precipitation tercile probability

a. Variance of the counting estimate

The average variance of the counting estimate in (5) was derived assuming Gaussian distribu-

tions. To see how well this approximation describes the behavior of GCM simulated seasonal

precipitation totals, we compare the average counting estimate variance in (5) to that computed

by sub-sampling from a large ensemble of GCM simulations. We use the fact that the average

squared difference of two independent counting estimates is twice the variance. More specifically,

we select two independent samples of size N (without replacement) from the ensemble of GCM

simulations and compute two counting estimate probabilities denoted pN and p′N ; the ensemble

size of 79 and independence requirement limits the maximum value of N to 39. The expected

value of the square of the difference between the two counting estimates pN and p′N is twice the

variance of the counting estimate since

〈

(pN − p′N)
2
〉

=
〈

((pN − p) + (p − p′N))
2
〉

= 2
〈

(pN − p)2
〉

, (26)
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where we use the fact that the sampling errors (pN−p) and (p−p′N) are uncorrelated. The averages

in (26) are with respect to time and realizations (1000) of the two independent samples.

We expect especially close agreement between the sub-sampling calculations and the analytical

results of (5) in regions where there is little predictability and the signal-to-noise ratio S 2 is small,

since, for S2 = 0, the analytical result is exact. In regions where the signal-to-noise ratio is not

zero, though generally fairly small, we expect that the average counting variance still decreases as

1/N but there is no guarantee that the Gaussian approximation will provide a useful description of

the actual behavior of the GCM data. However, Fig. 5 shows that in the land gridpoint average, the

variance of the counting estimate is very well described by the analytical result in (5).

Figure 6a shows the spatial variation of the convergence factor 0.0421868+0.264409/
√

1 + S2

appearing in (5). This factor can be interpreted as the variance of the counting estimate based on

a single member ensemble; the counting estimate standard deviation for ensemble of size N is

obtained by dividing by
√

N . This convergence factor can also be obtained empirically from sub-

samples of varying size. The difference between the theoretical factor and the empirical estimate

is mostly on the order of a few percent (see Figs. 6b and 6c).

We now use sub-sampling of the GCM simulated precipitation data to compare the three es-

timation methods–counting, Gaussian fit and GLM–discussed in the previous section. Since the

Gaussian fit and GLM estimators may be biased, it is not sufficient to compute their variance. The

error variance of the estimators must be computed. The error is not known exactly because the

true probability is not known exactly. Therefore each method is compared to a common baseline

as follows. Each method is applied to an ensemble of size N (N = 5, 10, 20, 30, 39) to produce

an estimate qN . This estimate is then compared to the counting estimate p40 computed from an

independent set of 40 ensemble members. This counting estimate p40 serves as a common unbi-

ased baseline. The variance of the difference of these two estimates has contributions from the
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N -member estimate qN and the 40-member counting estimate. The variance of the difference can

be decomposed into error variance contributions from qN and p40:

〈(qN − p40)
2〉 = 〈(qN − p + p − p40)

2〉

= 〈(qN − p)2〉 + 〈(p − p40)
2〉

≈ 〈(qN − p)2〉 − 0.0421868

40
+

0.264409

40
√

1 + S2
,

(27)

where the theoretical estimate of the variance of p40 is used. Therefore, the error variance of the

estimate qN is:

〈(qN − p)2〉 ≈ 〈(qN − p40)
2〉 +

0.0421868

40
− 0.264409

40
√

1 + S2
. (28)

All results for the estimate error variance are presented in terms of 〈(qN − p)2〉 rather than 〈(qN −

p40)
2〉 so as to give a sense of the magnitude of the sampling error rather than the difference with

the baseline estimate. Results are averaged over time and realizations (100) of the N -member

estimate and the 40-member counting estimate.

We begin by examining the land gridpoint average of the sampling error of the three methods.

Figure 7a shows the gridpoint averaged rms error of the tercile probability estimates as a function

of ensemble size. The variance of the counting estimate is well-described by theory (Fig. 7a)

and is larger than that of the parametric estimates. The one-parameter GLM and constant variance

Gaussian fit have similar rms error for larger ensemble sizes; the GLM estimate is slightly better for

very small ensemble sizes. While the magnitude of the error reduction due to using the parametric

estimates is modest, the savings in computational cost compared to the equivalent ensemble size is

significant. The single parameter estimates, that is, the constant variance Gaussian fit and the GLM

based on the ensemble mean, have smaller rms error than the estimates based on ensemble mean

and variance (Fig. 7b). The advantage of the single parameter estimates is greatest for smaller

ensemble sizes. This result is important because it shows that attempting to account for changes in
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variance, even in the perfect model setting, does not improve estimates of the tercile probabilities

for the range of ensemble sizes considered here (Kharin and Zwiers 2003). The sensitivity of the

tercile probabilities to changes in variance is, of course, problem specific.

Figure 8 shows the spatial features of the rms error of the below-normal tercile probability

estimates for ensemble size 20. Using a Gaussian with constant variance or a GLM based on the

ensemble mean has error that is, on average, less than counting; the average performances of the

Gaussian fit and the GLM are similar. In a few dry regions, especially in Africa, the error from

the parametric estimates is larger. This problem with the parametric estimates in the dry regions is

reduced when a Box-Cox transformation is applied to the data (not shown), and overall error levels

are slightly reduced as well. The spatial features of rms error when the variance of the Gaussian is

estimated and when the mean and standard deviation are used in the GLM are similar to those in

Fig. 8, but the overall error levels are slightly higher,

b. RPSS

Having evaluated the three probability estimation methods in the perfect model setting where we

asked how closely they match the probabilities from a large ensemble, we now use the RPSS to

compare the GCM estimated probabilities with observations. We expect the reduction in sampling

error to result in improved RPSS but we cannot know beforehand the extent to which model error

confounds or offsets the reduction in sampling error. Figure 9 shows maps of RPSS for ensemble

size 20 for the counting, Gaussian fit and GLM estimates. The results are averaged over 100

random selections of the 20-member ensemble from the full 79-member ensemble. The overall

skill of the Gaussian fit and GLM estimate is similar and both are generally larger than that of the

counting estimate.

Figure 10 shows the fraction of points with positive RPSS as a function of ensemble size.
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Again results are averaged over 100 random draws of each ensemble size except for N = 79 when

the entire ensemble is used. The parametrically estimated probabilities lead to more grid points

with positive RPSS . The Gaussian fit and GLM have similar skill levels with the GLM estimate

having larger RPSS for the smallest ensemble sizes, and the Gaussian fit being slightly better for

larger ensemble sizes. It is useful to interpret the increases in RPSS statistics in terms of effective

ensemble size. For instance, applying the Gaussian fit estimator to a 24-member ensemble give

RPSS statistics that are on average comparable to those of the counting estimator applied to a

ensemble of size about 39. Although all methods show improvement as ensemble size increases,

it is interesting to ask to what extent the improvement in RPSS due to increasing ensemble size

predicted by (24) is impacted by the presence of model error. For a realistic approximation of the

RPSS in the limit of infinite ensemble size, we compute the RPSS for N = 1 and solve (24) for

RPSSperfect; we expect that in this case sampling error dominates model error and the relation in

(24) holds approximately. Then we use (24) to compute the gridpoint averaged RPSS for other

values of N ; the theory curve in Fig. 10 shows these values. In the absence of model error, the

count and theory curves of RPSS in Fig. 10 would be the same. However, we see that the effect

of model error is such that the curves are close for N = 5 and N = 10, and diverge for larger

ensemble sizes with the actual increase in RPSS being lower than that predicted by (24).

The presence of model error means that some calibration of the model output with observations

is needed. The GCM ensemble tends to be over-confident, and calibration tempers this. To see if

reducing sampling error still has an noticeable impact after calibration, we use a simple version of

Bayesian weighting (Rajagopalan et al. 2002; Robertson et al. 2004). In the method, the calibrated

probability is a weighted average of the GCM probability and the climatology probability (1/3).

The weights are chosen to maximize the likelihood of the observations. There is cross-validation

in the sense that the weights are computed with one sample of size N and the RPSS is computed
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by applying those weight to different sample of size N and then comparing the result with obser-

vations. The calibrated counting-estimated probabilities still have slightly negative RPSS in some

areas (Fig. 11a) but the overall amount of positive RPSS is increased compared to the uncalibrated

simulations (compare with Fig. 9a); the ensemble size is 20 and results are averaged over 100

realizations. The calibrated Gaussian and GLM probabilities have modestly higher overall RPSS

than the calibrated counting estimates with noticeable improvement in skillful areas like South-

ern Africa (Figs. 11b,c). We note that a simpler calibration method based on a Gaussian fit with

the variance determined by the correlation between ensemble mean and observations, as in Tippett

et al. (2005), rather than ensemble spread performs nearly as well as the Gaussian fit with Bayesian

calibration.

It is interesting to look at examples of the probabilities given by the counting and Gaussian fit

estimate to see if fitting leads to overly conservative probabilities. Figure 12 shows uncalibrated

tercile probabilities from DJF 1996 (ENSO-neutral) and 1998 (strong El Niño). Counting and

Gaussian probabilities appear similar, with Gaussian probabilities appearing spatially smoother.

5. Summary and conclusions

Here we have explored how the accuracy of tercile probability estimates are related to ensemble

size and chosen probability estimation technique. We have focused on the perfect model setting

where only ensemble size limits the accurate estimate of the forecast distribution. The counting

estimate, which uses the fraction of ensemble members that fall in the tercile category, is attrac-

tive since it places no restrictions on the ensemble distribution and is simple. The variance of the

counting estimate is a function of the the ensemble size and probability. For Gaussian variables,

the average variance of the counting estimate depends on the ensemble size and the signal-to-

noise ratio. The Gaussian fit estimate computes tercile probabilities from a Gaussian distribution
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with parameters estimated from the forecast ensemble. When the variables are indeed Gaussian,

the variance of the Gaussian fit estimate is approximately 40% smaller than that of the count-

ing estimate. The advantage of the Gaussian fit over the counting estimate is equivalent to fairly

substantial increases in ensemble size. However, this advantage depends on the forecast distribu-

tion being well described by a Gaussian distribution. Generalized linear models (GLMs) provide

a parametric method of estimating the tercile probabilities using a nonlinear regression with the

ensemble mean and possibly the ensemble variance as predictors. The GLM estimator does not

explicitly assume a distribution but, as implemented here, is equivalent to the Gaussian fit in some

circumstances. Reducing the tercile probability estimate variance increases the ranked probability

skill score (RPSS).

Most of the analytical results are obtained assuming that the ensemble variables have a Gaus-

sian distribution. We test the robustness of these findings using simulated seasonal precipitation

from an ensemble of GCM integrations forced by observed SST, sub-sampling from the full en-

semble to estimate sampling error. We find that the theoretical results give a good description of the

average variance of the counting estimate, particularly in a spatially averaged sense. This means

that the theoretical scalings can be used in practice to understand how sampling error depends on

ensemble size and level of predictability. Although the GCM simulated precipitation is not Gaus-

sian, the Gaussian fit estimate had smaller error than the counting estimate. The behavior of the

GLM estimate is similar to that of the Gaussian fit estimate. The parametric estimators based on

ensemble mean had the best performance; adding ensemble variance as a parameter did not reduce

error. This means that with the moderate ensemble sizes typically used, differences between the

forecast probabilites and the equal-odds probabilities are due mainly to shifts of the forecast mean

away from its climatological value rather than changes in variance. This result is consistant with

Tippett et al. (2004) who found that differences between forecast and climatological GCM sea-
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sonal precipiation distributions as measured by relative entropy were primarily due to changes in

the mean rather than changes in the variance.

The reduced sampling error of the Gaussian fit and GLM translates into better simulation skill

when the tercile probabilities are compared to actual observations. We compared the dependence

of the RPSS on ensemble size under the perfect model assumption and with actual observations.

Although RPSS increases with ensemble size, model error limits the rate of improvement compared

to the perfect model case. Calibration improves RPSS, regardless of the probability estimator

used. However, estimators with larger sampling error retained their disadvantage in RPSS even

after calibration. The application of the Gaussian fit estimator to specific years shows that the

parametric fit achieves its advantages without damping the strength of the tercile probabilities.

The Gaussian fit probabilities are spatially relatively smoother than those estimated by counting.

In summary, our main conclusion is that carefully applied parametric estimators provide more

accurate tercile probabilities than do counting estimates. This conclusion is completely rigorous for

variable with Gaussian statistics. We find that for variables that deviate modestly from Gaussianity,

such as seasonal precipitation totals, Gaussian fit methods offer tercile probability accuracy at least

equivalent to that of counting estimates but at substantially reduced cost in terms of ensemble size.

More substantial deviation from Gaussianity may be treated by transforming the data or using the

related GLM approach.
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APPENDIX

Error in estimating tercile probabilities

a. Derivation of the counting variance

As shown in (3), the variance of the counting estimate pN is (p − p2)/N . Suppose the forecast

precipitation anomaly has a Gaussian distribution with mean µf and variance σ2
f . The probability

p of the below-normal category is

p = Φ

(

xb − µf

σf

)

=
1

2

(

1 + erf

(

xb − µf√
2σf

))

, (A.1)

where Φ is the normal cumulative distribution function, erf denotes the error function and xb is the

left tercile boundary of the climatological distribution. In this case, the counting estimate variance

depends on the forecast mean and variance through

p − p2 =
1

4

{

1 −
[

erf

(

xb − µf√
2σf

)]2
}

. (A.2)

Similar relations hold for the above-normal category.

Suppose that the preciptation anomaly x is joint-normally distributed with mean zero and

variance σ2
x. In this case, the left tercile boundary xb of the climatological pdf is σxx0 where

x0 = Φ−1(1/3) ≈ −0.4307. Averaging x2 over all forecasts gives that

〈

x2
〉

= σ2

x =
〈

µ2

f

〉

+ σ2

f , (A.3)

which decomposes the climatological variance σ2
x into signal and noise contributions. We denote

the signal variance
〈

µ2
f

〉

by σ2
s and define the signal-to-noise ratio by

S2 ≡ σ2
s

σ2
f

. (A.4)

Taking the average of (A.2) with respect to forecasts gives

〈p − p2〉 =
1√

2πσs

∫

∞

−∞

1

4

{

1 −
[

erf

(

xb − µf√
2σf

)]2
}

exp

(

−
−µ2

f

2σ2
s

)

dµf . (A.5)
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We now make the change of variable µ = σfµf , and use the fact that xb/σf = x0

√
1 + S2, to

obtain

〈p − p2〉 =
1√
2πS

∫

∞

−∞

1

4







1 −
[

erf

(

x0

√
1 + S2 − µ√

2

)]2






exp

(

−−µ2

2S2

)

dµ . (A.6)

From the form of (A.6) we see that the average variance 〈p−p2〉 is a function of the signal-to-noise

ratio S2. We express this dependence using a new parameter g ≡ (1 + S2)−1/2,

〈p − p2〉 =
g

4
√

2π
√

g2 − 1

∫

∞

−∞

{

1 −
[

erf

(

x0/g − µ√
2

)]2
}

exp

(

− −g2µ2

2(g2 − 1)

)

dµ . (A.7)

To approximate the dependence of the average variance on the signal-to-noise ratio, we perform a

series expansion about g = 1 corresponding to the signal-to-noise ratio S2 being zero. The first

term is found from

〈p − p2〉g=1 =
2

9
, (A.8)

and then numerical computation gives that

d

dg
〈p − p2〉g=1 = 0.264409 . (A.9)

An approximation of 〈p − p2〉 is

〈p − p2〉 =
2

9
+ 0.264409(g − 1) + O(g − 1)2 (A.10)

or in terms of the signal-to-noise ratio

〈p − p2〉
N

≈ −0.0421868

N
+

0.264409

N
√

1 + S2
. (A.11)

This approximation is valid for small values of S2. However, we expect that the variance vanishes

as S2 becomes large, and (A.11) does not show this behavior. A remedy is to add a higher order

term, in which case

〈p − p2〉 ≈ 2

9
+ 0.264409(g − 1) + 0.0421868(g − 1)2 =

0.180035√
1 + S2

+
0.0421868

1 + S2
. (A.12)

Since S2 is fairly small for seasonal forecasts, we will use the approximation in (A.11).
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b. Error in estimating tercile probabilities by Gaussian fitting

Suppose the distributions are indeed Gaussian. We fit the N -member forecast ensemble with a

Gaussian distribution, using its sample mean mf and sample variance s2
f defined by

mf ≡ 1

N

N
∑

i=1

xi ,

s2

f ≡ 1

N − 1

N
∑

i=1

(xi − mf )
2 ,

(A.13)

where xi denotes the members of the ensemble. Based on this information and using (A.1), the

Gaussian fit estimate gN of the probability of the below-normal category is

gN = Φ

(

xb − mf√
2sf

)

=
1

2

(

1 − erf

(

xb − mf√
2sf

))

. (A.14)

The squared error of the Gaussian fit probability estimate is

(gN − p)2 =

{

1

2

(

1 − erf

(

xb − mf√
2sf

))

− 1

2

(

1 − erf

(

xb − µf√
2σf

))}2

. (A.15)

The error of the Gaussian fit probability estimate is due to error in the sample estimates of the

forecast mean and variance.

If there is no predictability and the forecast mean µf is zero, the true tercile probability is 1/3.

In this case, the squared error of the Gaussian fit estimate is
(

1

3
− 1

2

(

1 − erf

(

xb − mf√
2sf

)))2

=
m2

fe
−x2

0

2s2
fπ

+ O(m3

f) , (A.16)

where we have made a Maclaurin expansion in mf . The term O(m3
f ) can be neglected in what

follows for sufficiently large ensemble size N ; neglecting the higher order terms leads to an under-

estimate in the final result of about 3.6% for N = 10. The quantity
√

Nmf/sf has a t-distribution

with N − 1 degrees of freedom, and so its variance is (N − 1)/(N − 3). Therefore the average

(over realizations of the ensemble) variance of the Gaussian fit tercile probability is
〈

m2
fe

−x2

0

2s2
fπ

〉

=
e−x2

0

2πN

N − 1

N − 3
≈ 0.1322

N

N − 1

N − 3
. (A.17)
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If the forecast mean is zero for all forecasts, then the forecast variance σ2
f is equal to the climato-

logical variance σ2
x and does not have to be estimated from the ensemble. In that case, the average

(over forecasts) variance of the Gaussian fit tercile probability is
〈

m2
fe

−x2

0

2σ2
xπ

〉

=
e−x2

0

2πN
≈ 0.1322

N
, (A.18)

since 〈m2
f〉 = σ2

x/N .

On the other hand, suppose that the forecast mean is not identically zero, but the forecast

variance σf is constant and known. The squared error of the Gaussian fit probability estimate is

(gN − p)2 =

{

1

2

(

1 − erf

(

xb − mf√
2σf

))

− 1

2

(

1 − erf

(

xb − µf√
2σf

))}2

. (A.19)

The error is due entirely to the error in estimating the mean. Expanding this expression in a Taylor

series in in powers of (mf − µf ) about mf = µf gives that the squared error is

(gN − p)2 =
(mf − µf )

2

2πσ2
f

exp

[

−
(

xb − µf

σf

)2
]

+ O(µf − mf )
3 . (A.20)

We now take the expectation of the leading order term in (A.20) with respect to realizations of the

ensemble. Since the variance of the estimate of the mean is 〈(µf − mf )
2〉 = σ2

f/N , the squared

error as function of forecast mean is

1

2πN
exp

[

−
(

xb − µf

σf

)2
]

. (A.21)

Averaging over forecasts gives that the average variance of the Gaussian fit tercile probability is

〈

(gN − p)2
〉

=
1

(2π)3/2σfSN

∫

∞

−∞

exp

[

−
(

xb − µf

σf

)2
]

exp

(

−
µ2

f

σ2
s

)

dµf

=
exp

(

− 1+S2

1+2S2 x
2
0

)

2πN
√

1 + 2S2
,

(A.22)

where we use the fact that x2
b/σ

2
f = x2

0(1 + S2).
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Figure 1. Spatial distribution of λ appearing the Box-Cox transformation of Eq. 1.
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Figure 5. Gridpoint-average of the theoretical and empirically estimated standard deviation of the
tercile probability estimate.
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Figure 6. (a) Spatial variation of the convergence factor 0.0421868 + 0.264409/
√

1 + S2.
Difference of the theoretical convergence factor with the sub-sampled estimates from the (b)

below-normal and (c) above-normal categories.
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Figure 7. RMS error of the below-normal probability as a function of ensemble size N for the (a)
1-parameter and (b) 2-parameter estimates. The gray curves in panel (a) are the theoretical error

levels for the counting and Gaussian fit methods. Fit-2 (GLM-2) denotes the two-parameter
Gaussian (GLM) method.
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Figure 8. (a) RMS error of the counting estimate of the below-normal tercile probability with
ensemble size 20. The RMS error of the counting error minus that of the (b) Gaussian fit and (c)

the GLM based on the ensemble mean. The gridpoint averages are shown in the titles.
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Figure 9. RPSS of (a) the counting-based probabilities and its difference with that of the (b)
Gaussian and (c) GLM estimated probabilities. Positive values in (b) and (c) correspond to

increased RPSS compared to counting. The gridpoint averages are shown in the titles.
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Figure 10. Gridpoint sum of the fraction of land points with RPSS> 0.
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Figure 11. As in Fig. 9 but for the Bayesian calibrated probabilities.
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Figure 12. Probability of above-normal precipitation for DJF 1996 estimated by (a) counting and
(b) Gaussian fit, and DJF 1998 using (c) counting and (d) Gaussian fit.
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