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Abstract. The Schatten p-norm condition of the discrete-time Lyapunov operator LA defined
on matrices P ∈ R

n×n by LAP ≡ P − APAT is studied for stable matrices A ∈ R
n×n. Bounds

are obtained for the norm of LA and its inverse that depend on the spectrum, singular values,
and radius of stability of A. Since the solution P of the discrete-time algebraic Lyapunov equation
(DALE) LAP = Q can be ill-conditioned only when either LA or Q is ill-conditioned, these bounds
are useful in determining whether P admits a low-rank approximation, which is important in the
numerical solution of the DALE for large n.
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1. Introduction. Properties of the solution P of the discrete algebraic Lya-
punov equation (DALE), P = APAT + Q, are closely related to the stability prop-
erties of A. For instance, the DALE has a unique solution P = PT > 0 for any
Q = QT > 0 if A is stable [11], a fact also true in infinite-dimensional Hilbert spaces
[18]. In the setting treated here with A, Q, P ∈ R

n×n, A is stable if its eigenval-
ues λi(A), i = 1, . . . , n, lie inside the unit circle; the eigenvalues are ordered so that
|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)|. Here A is always assumed to be stable.

In applications where the dimension n is very large, direct solution of the DALE
or even storage of P is impractical or impossible. For instance, in numerical weather
prediction applications A is the matrix that evolves atmospheric state perturbations.
The DALE and its continuous-time analogues can be solved directly for simplified
atmospheric models [6, 23], but in realistic models n is about 106 − 107 and even the
storage of P is impossible. Krylov subspace [5] and Monte Carlo [9] methods have
been used to find low-rank approximations of the right-hand side of the DALE and
of the solution of the DALE [10].

The solution P of the DALE can be well approximated by a rank-deficient matrix
if P has some small singular values. Therefore, it is useful to identify properties of A
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or Q that lead to P being ill-conditioned. If A is normal, then

λ1(P )

λn(P )
≤ λ1(Q)

λn(Q)

1 − |λn(A)|2
1 − |λ1(A)|2 ;(1.1)

the conditioning of P is controlled by that of Q and by the spectrum of A. In the
general case, the conditioning of Q and of the discrete-time Lyapunov operator LA

defined by LAP ≡ P −APAT determine when P may be ill-conditioned.
Theorem 1.1. Let A be a stable matrix and suppose that LAP = Q for Q =

QT > 0. Then

‖P‖p ‖P−1‖p ≤ ‖LA‖p ‖L−1
A ‖p ‖Q‖p ‖Q−1‖p , p = ∞ ,(1.2)

where ‖ · ‖p is the Schatten p-norm (see (2.2)).
Theorem 1.1 (see proof in the appendix) follows from L−1

A and its adjoint being
positive operators. Therefore, the same connection between rank-deficient approx-
imate solutions and operator conditioning exists for matrix equations such as the
continuous algebraic Lyapunov equation. We note that Theorem 1.1 also holds for
1 ≤ p < ∞ if either A is singular or σ2

1(A) ≥ 2; σ1(A) is the largest singular value of
A.

Here we characterize the Schatten p-norm condition of LA. The main results are
the following. Theorem 3.1 bounds ‖LA‖p in terms of the singular values of A. A
lower bound for ‖L−1

A ‖p depending on λ1(A) is presented in Theorem 4.1, generalizing
results of [7]. Theorem 4.2 gives lower bounds for ‖L−1

A ‖1 and ‖L−1
A ‖∞ in terms of

the singular values of A. Theorem 4.6 gives an upper bound for ‖L−1
A ‖p depending on

the radius of stability of A and generalizes results in [20]. Three examples illustrating
the results are included. The issue of whether LA and L−1

A achieve their norms on
symmetric, positive definite matrices is addressed in the concluding remarks.

2. Preliminaries. We investigate the condition number κ(LA) = ‖LA‖ ‖L−1
A ‖,

where ‖ · ‖ is a norm on R
n2×n2

induced by a matrix norm on R
n×n. Specifically, for

M ∈ R
n2×n2

we consider norms defined by

‖M‖p = max
S �=0∈Rn×n

‖MS‖p
‖S‖p , 1 ≤ p ≤ ∞ ,(2.1)

where the Schatten matrix p-norm for S ∈ R
n×n is defined by

‖S‖p =

(
n∑

i=1

(σi(S))
p

)1/p

;(2.2)

σi(S) are the singular values of S with ordering σ1(S) ≥ σ2(S) ≥ · · · ≥ σn(S) ≥ 0.
On R

n×n, ‖ · ‖2 is the Frobenius norm and ‖ · ‖∞ = σ1(·). If S = ST ≥ 0, then
‖S‖1 = trS. The following lemma about the Schatten p-norms follows from their
being unitarily invariant [1, p. 94].
Lemma 2.1. For any three matrices X, Y , and Z ∈ R

n×n,

‖XY Z‖p ≤ ‖X‖∞‖Y ‖p‖Z‖∞ , 1 ≤ p ≤ ∞ .(2.3)

The p = 2 Schatten norm on R
n×n is equivalently defined as ‖S‖2

2 = (S, S),
where (·, ·) is the inner product on R

n×n defined by (S1, S2) = trST
1 S2 . This norm
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corresponds to the usual Euclidean norm on R
n2

since ‖S‖2
2 is equal to the sum of

the squares of the entries of S. As a consequence κ2(LA) = σ1(LA)/σn2(LA), where
σ1(LA) and σn2(LA) are, respectively, the largest and smallest singular values of LA.
The adjoint of LA is given by L∗

AS = LAT S = S −ATSA.

We now state some lemmas about mappings M ∈ R
n2×n2

and about the spectra
of LA and A.
Lemma 2.2 (see [2, equation (15)]). ‖M‖p ≤ ‖M‖1/p

1 ‖M‖1−1/p
∞ , 1 ≤ p ≤ ∞.

Lemma 2.3. ‖M‖1 = ‖M∗‖∞.
Lemma 2.4 (see [2, proof of Theorem 1]). If MS > 0 for all S ∈ R

n×n such that
S > 0, then ‖M‖∞ = ‖MI‖∞.
Lemma 2.5 (see [13, 14]). The n2 eigenvalues of LA are 1 − λi(A)λj(A), 1 ≤

i, j ≤ n.

3. The norm of the Lyapunov operator. If A is normal, then LA is normal,
and its conditioning in the p = 2 Schatten norm depends only on its eigenvalues.
Therefore, when A is normal,

‖L−1
A ‖2 =

1

σn2(LA)
=

1

|λn2(LA)| =
1

1 − |λ1(A)|2(3.1)

and

‖LA‖2 = σ1(LA) = |λ1(LA)| = max
i,j

|1 − λi(A)λj(A)| .(3.2)

For general A, the following theorem bounds ‖LA‖p in terms of the singular values of
A.
Theorem 3.1.

|1 − σ2
1(A)| ≤ max

j
|1 − σ2

j (A)| ≤ ‖LA‖p ≤ 1 + σ2
1(A) , 1 ≤ p ≤ ∞ .(3.3)

Proof. Note that LAvjv
T
j = vjv

T
j − σ2

juju
T
j , where uj and vj are, respectively,

the jth left and right singular vectors of A such that Avj = σjuj . The lower bound
follows from ‖ujuTj ‖p = ‖vjvTj ‖p = 1 and

‖LA‖p ≥ ‖vjvTj − σ2
juju

T
j ‖p ≥ ∣∣‖vjvTj ‖p − ‖σ2

juju
T
j ‖p

∣∣ =
∣∣1 − σ2

j

∣∣ .(3.4)

The upper bound follows from

‖LAP‖p ≤ ‖P‖p + ‖APAT ‖p ≤ ‖P‖p + ‖A‖2
∞‖P‖p .(3.5)

If A is normal, σj(A) can be replaced by |λj(A)| in Theorem 3.1, and ‖LA‖p ≤
1 + |λ1(A)|2. If A is normal and (−λ1(A)) is an eigenvalue of A, then 1 + |λ1(A)|2 is
an eigenvalue of LA and ‖LA‖p = 1 + |λ1(A)|2.

Theorem 3.1 shows that ‖LA‖p is large and contributes to ill-conditioning if and
only if σ1(A) is large, a situation that occurs in various applications [3, 22]. If σ1(A) �
1 and |λ1(A)| < 1, A is highly nonnormal [8, p. 314 ] and, as Corollary 4.8 will show,
close to an unstable matrix.

4. The norm of the inverse Lyapunov operator. We first show that a
sufficient condition for ‖L−1

A ‖p to be large is that λ1(A) be near the unit circle. The
condition is necessary when A is normal.
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Theorem 4.1. Let A be a stable matrix. Then

‖L−1
A ‖p ≥ 1

1 − |λ1(A)|2 , 1 ≤ p ≤ ∞ ,(4.1)

with equality holding if A is normal.
Proof. To obtain the lower bound, let z1 be the leading eigenvector of A, Az1 =

λ1(A)z1, and note that LAz1z
H
1 = (1 − |λ1(A)|2)z1z

H
1 , where (·)H denotes conjugate

transpose. Either Re z1z
H
1 
= 0 or Im z1z

H
1 
= 0 is an eigenvector of LA, and it follows

that ‖L−1
A ‖p ≥ (1 − |λ1(A)|2)−1. Finally, if A is normal, then

L−1
AT I = L−1

A I =

n∑
i=1

1

1 − |λi(A)|2 ziz
H
i ,(4.2)

and ‖L−1
A ‖∞ = ‖L−1

A ‖1 = (1 − |λ1(A)|2)−1. Using Lemma 2.2 gives ‖L−1
A ‖p ≤ (1 −

|λ1(A)|2)−1 when A is normal, and therefore ‖L−1
A ‖p = (1 − |λ1(A)|2)−1.

When A is nonnormal, ‖L−1
A ‖p can be large without λ1(A) being near the unit

circle. For instance, if σ1(A) is large or, more generally, if ‖Ak‖∞ converges to zero
slowly as a function of k, then ‖L−1

A ‖p is large. We show this fact first for p = 1,∞.
Theorem 4.2. Let A be a stable matrix. For all m ≥ 1,

‖L−1
A ‖1 =

∥∥∥∥∥
∞∑
k=0

(
Ak
)T

Ak

∥∥∥∥∥
∞

≥
∥∥∥∥∥

m∑
k=0

(
Ak
)T

Ak

∥∥∥∥∥
∞

+
σ

2(m+1)
n (A)

1 − σ2
n(A)

,(4.3)

‖L−1
A ‖∞ =

∥∥∥∥∥
∞∑
k=0

Ak
(
Ak
)T∥∥∥∥∥

∞
≥
∥∥∥∥∥

m∑
k=0

Ak
(
Ak
)T∥∥∥∥∥

∞
+
σ

2(m+1)
n (A)

1 − σ2
n(A)

.(4.4)

In particular,

‖L−1
A ‖p ≥ 1 + σ2

1(A) +
σ4
n(A)

1 − σ2
n(A)

, p = 1,∞ .(4.5)

Proof. The operator L−1
A applied to S ∈ R

n×n can be expressed as [18]

L−1
A S =

∞∑
k=0

AkS
(
Ak
)T

.(4.6)

Applying Lemma 2.4 gives ‖L−1
A ‖∞ = ‖L−1

A I‖∞, with the inequality in (4.4) being a
consequence of∥∥∥∥∥

∞∑
k=0

Ak
(
Ak
)T∥∥∥∥∥

∞
≥
∥∥∥∥∥

m∑
k=0

Ak
(
Ak
)T∥∥∥∥∥

∞
+ λn

( ∞∑
k=m+1

Ak
(
AT
)k)

,(4.7)

and

λn

( ∞∑
k=m+1

Ak
(
AT
)k) ≥

∞∑
k=m+1

λn

(
Ak
(
AT
)k) ≥

∞∑
k=m+1

σ2k
n (A) =

σ
2(m+1)
n (A)

1 − σ2
n(A)

,

(4.8)

where we have used the facts that for matrices W,X, Y ∈ R
n×n with X,Y being

symmetric positive semidefinite, λi(X + Y ) ≥ λi(X) + λn(Y ), and λi(WXWT ) ≥
σ2
n(W )λi(X) [17]. Likewise the p = 1 results follow from ‖L−1

A ‖1 = ‖L−1
AT I‖∞.
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Lower bounds for 1 < p < ∞ follow trivially, e.g.,

‖L−1
A ‖p ≥ ‖L−1

A I‖p
‖I‖p =

‖L−1
A I‖p
n1/p

≥ n−1/p‖L−1
A ‖∞ ,(4.9)

but give little information when n is large. A lower bound for 1 ≤ p ≤ ∞ depending
on σ1(A) and independent of n is given in Corollary 4.9.

We now relate ‖L−1
A ‖p to the distance from A to the set of unstable matrices as

measured by its radius of stability [15].
Definition 4.3. For any stable matrix A ∈ R

n×n define the radius of stability
r(A) by

r(A) ≡ min
0≤θ≤2π

‖(eiθI −A)−1‖−1
∞ = min

0≤θ≤2π
‖R(eiθ, A)‖−1

∞ ,(4.10)

where the resolvent of A is R(λ,A) = (λI −A)−1.
If A is normal and stable, then r(A) = 1−|λ1(A)|. However, if A is nonnormal and

if its eigenvalues are sensitive to perturbations, then r(A) � 1 − |λ1(A)|. The sensi-
tivity of the eigenvalues of A is most completely described by its pseudospectrum [21].
The radius of stability r(A) is the largest value of ε such that the ε-pseudospectrum
of A lies inside the unit circle; r(A) being small indicates that the ε-pseudospectrum
of A is close to the unit circle for small ε. The following theorem shows that when
r(A) is small, ‖L−1

A ‖p must be large.
Theorem 4.4 (proven for p = ∞ in [7]). Let A be a stable matrix. Then

‖L−1
A ‖p ≥ 1

2r(A) + r2(A)
, 1 ≤ p ≤ ∞ .(4.11)

Proof. There exists a matrix E ∈ R
n×n with |λ1(A+E)| = 1 and ‖E‖∞ = r(A).

Therefore, there exists a vector x with xHx = 1 such that (A + E)x = eiθx for some
0 ≤ θ ≤ 2π. Using ‖xxH‖p = 1 and Lemma 2.1 gives

‖LAxx
H‖p = ‖ − ExxHET + eiθxxHET + e−iθExxH‖

≤ ‖ExxHET ‖p + ‖xxHET ‖p + ‖ExxH‖p
≤ ‖E‖2

∞ + 2‖E‖∞ = r2(A) + 2r(A) ,

(4.12)

and we have

‖L−1
A ‖p ≥ ‖L−1

A LAxx
H‖p

‖LAxxH‖p =
1

‖LAxxH‖p ≥ 1

2r(A) + r2(A)
.(4.13)

A consequence of Theorem 4.4 is the following lower bound for r(A) in terms of
‖L−1

A ‖p.
Corollary 4.5. Let A be a stable matrix. Then

r(A) ≥ ‖L−1
A ‖−1

p

1 +
√

1 + ‖L−1
A ‖−1

p

, 1 ≤ p ≤ ∞ .(4.14)

Bounds for r(A) are useful in robust stability [12] and in the study of perturbations
of the discrete algebraic Riccati equation (DARE) [19]. In [19, Lemma 2.2] the bound

r(A) ≥ ‖L−1
A ‖−1

∞

σ1(A) +
√
σ2

1(A) + ‖L−1
A ‖−1∞

(4.15)
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was used to formulate conditions under which a perturbed DARE has a unique, sym-
metric, positive definite solution. Since the lower bound in (4.14) with p = ∞ is
sharper than that in (4.15) when σ1(A) > 1, it can be used to show existence of a
unique, symmetric, positive definite solution of the perturbed DARE for a larger class
of perturbations [19, Theorem 4.1].

We generalize to Schatten p-norms the conjecture of [7] proven in [20] for the
Frobenius norm.
Theorem 4.6. Let A be a stable matrix. Then

‖L−1
A ‖p ≤ 1

r2(A)
, 1 ≤ p ≤ ∞ .(4.16)

Proof. L−1
A I can be expressed as [20, 13]

L−1
A I =

1

2π

∫ 2π

0

R(eiθ, A)R(eiθ, A)H dθ.(4.17)

Therefore, from Lemma 2.4,

‖L−1
A ‖∞ = ‖L−1

A I‖∞ ≤ 1

2π

∫ 2π

0

‖R(eiθ, A)‖2
∞ dθ ≤ 1

r2(A)
.(4.18)

The inequality (4.16) for p = 1 follows from ‖L−1
A ‖1 = ‖L−1

AT I‖∞ and r(A) = r(AT ).
The theorem follows from Lemma 2.2.

As a consequence, any solution of the DALE can be used to obtain an upper
bound for r(A).
Corollary 4.7. Let A be a stable matrix and let LAP = Q. Then

r2(A) ≤ ‖Q‖p
‖P‖p , 1 ≤ p ≤ ∞ .(4.19)

Theorem 4.6 can be combined with any lower bound for ‖L−1
A ‖p to obtain an

upper bound for r(A). For instance, from Theorem 4.2 we get the following upper
bound.
Corollary 4.8. Let A be a stable matrix. Then

r2(A) ≤ 1

1 + σ2
1(A)

.(4.20)

Combining Corollary 4.8 and Theorem 4.4 gives a lower bound for ‖L−1
A ‖p.

Corollary 4.9. Let A be a stable matrix. Then

‖L−1
A ‖p ≥ 1 + σ2

1(A)

1 + 2
√

1 + σ2
1(A)

, 1 ≤ p ≤ ∞ .(4.21)

5. Examples. We present three examples that illustrate how ill-conditioning of
LA leads to low-rank approximate solutions of the DALE.

Example 1. Almost unit eigenvalues. Take A = λzzT , where λ and z are real,
0 < λ < 1, and zT z = 1. The matrix A is symmetric and LA is self-adjoint. The eigen-
values of A are (λ, 0, . . . , 0). The operator LA has singular values (and eigenvalues)
(1, . . . , 1, 1 − λ2). Therefore, ‖LA‖2 = 1 and 1 ≤ ‖LA‖p ≤ 1 + λ2 from Theorem 3.1.
The norm of the inverse Lyapunov operator is

‖L−1
A ‖p =

1

1 − λ2
, 1 ≤ p ≤ ∞ ,(5.1)
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according to Theorem 4.1. As the eigenvalue λ approaches the unit circle, LA is
increasingly poorly conditioned. The solution of the DALE for this choice of A is

P =
λ2

1 − λ2

(
zTQz

)
zzT + Q .(5.2)

A “natural” rank-1 approximation P̃ of P is P̃ = λ2(1 − λ2)−1(zTQz)zzT . As the
eigenvalue λ approaches the unit circle, if (zTQz) is nonzero, P is increasingly well
approximated by P̃ in the sense that ‖P − P̃‖p/‖P‖p approaches zero.

Example 2. Large singular values. Take A = σyzT , where σ > 0 and y and z
are real unit n-vectors. The matrix A has at most one nonzero eigenvalue, namely,
λ = σ(yT z), taken to be less than one in absolute value. The sensitivity s of the
eigenvalue λ is the cosine of the angle between y and z, i.e., s = λ/σ for λ 
= 0,
indicating that λ is sensitive to perturbations to A when σ is large [8].

Theorem 3.1 gives that 1 + σ2 ≥ ‖LA‖p ≥ |1 − σ2|, showing that ‖LA‖p is large
when σ is large. From Lemmas 2.3 and 2.4,

‖L−1
A ‖1 = ‖L−1

A ‖∞ = 1 +
σ2

1 − λ2
,(5.3)

and it follows from Lemma 2.2 that ‖L−1
A ‖p ≤ 1 +σ2/(1−λ2). A lower bound for the

(p = 2)-norm is

‖L−1
A ‖2 ≥ ‖L−1

A zzT ‖2 =

√
1 + 2

λ2

1 − λ2
+

σ4

(1 − λ2)2
.(5.4)

The matrix A is near an unstable matrix either when |λ| is near unity or when σ
is large since

∥∥∥(eiθI − σyzT
)−1
∥∥∥
∞

=

∥∥∥∥e−iθI +
σe−2iθ

1 − λe−iθ
yzT

∥∥∥∥
∞

≥ 1 +
2|λ|

1 − |λ| +
σ2

(1 − |λ|)2 .
(5.5)

Therefore, r(A) ≤ (1 − |λ|)/σ and a lower bound on ‖L−1
A ‖p follows from Theorem 4.4.

When either |λ| is close to unity or σ is large, r(A) is small and κp(LA) is large.
The solution of the DALE is

P =
σ2

1 − λ2

(
zTQz

)
yyT + Q .(5.6)

When LA is ill-conditioned and
(
zTQz

) 
= 0, the rank-1 matrix P̃ = σ2(1 − λ2)−1×
(zTQz)yyT is a good approximation of P in the sense that ‖P − P̃‖p/‖P‖p is small.

Example 3. Sensitive eigenvalues. Consider the dynamics arising from the one-
dimensional advection equation, wt +wx = 0 for 0 ≤ x ≤ n, with boundary condition
w(0, t) = 0. The matrix A that advances the n-vector w(x = 1, 2, . . . , n, t = t0)
to w(x = 1, 2, . . . , n, t = t0 + 1) is the n × n matrix with ones on the subdiagonal
and zero elsewhere, i.e., the transpose of an n× n Jordan block with zero eigenvalue.
Adding stochastic forcing with covariance Q at unit time intervals leads to the DALE,
LAP = Q, where P is the steady-state covariance of w.

Since σ1(A) = 1, Theorem 3.1 yields 1 ≤ ‖LA‖p ≤ 2. Further, since ‖LA‖1 ≥
‖LAe1e

T
1 ‖1 = ‖e1eT1 − e2e

T
2 ‖1 = 2, where ej is the jth column of the identity matrix,
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‖LA‖1 = 2. A similar argument with LAT gives ‖LA‖∞ = 2. Calculating L−1
A I and

L−1
AT I gives ‖L−1

A ‖∞ = ‖L−1
A ‖1 = n. Therefore, using Lemma 2.2, ‖L−1

A ‖p ≤ n. Also,

‖L−1
A ‖2 ≥ ‖L−1

A e1e
T
1 ‖2

‖e1eT1 ‖2
=

√
n .(5.7)

A direct calculation shows that

‖(eiθI −A)−1‖2
2 =

∥∥∥∥∥
n−1∑
k=0

Ake−i(k+1)θ

∥∥∥∥∥
2

2

=
n(n + 1)

2
(5.8)

for any real θ. Since
√
n‖(eiθI−A)−1‖∞ ≥ ‖(eiθI−A)−1‖2, we have r2(A) ≤ 2/(n+1).

Theorem 4.4 then gives a lower bound for ‖L−1
A ‖p, 1 ≤ p ≤ ∞. Thus as n becomes

large; that is, as the domain becomes large with respect to the advection length scale,
LA is increasingly ill-conditioned.

The elements Pij of the solution P of the DALE are

Pij = eTi Pej =

n−1∑
k=0

eTi A
kQ(AT )kej =

min (i−1,j−1)∑
k=0

Qi−k,j−k .(5.9)

Therefore, if Q = QT > 0, a “natural” rank-m approximation of P is the matrix P̃
defined by

P̃i,j =

{
Pi,j , n−m < i, j ≤ n,

0 otherwise.
(5.10)

When Q is diagonal, P is also diagonal and

Pii =

i∑
k=1

Qkk .(5.11)

In this case, each Qkk > 0 and P̃ is the best rank-m approximation of P in the sense
of minimizing ‖P − P̃‖p. We note that P̃ is associated with the left-most part of the
domain 0 ≤ x ≤ n.

6. Concluding remarks. Results about ‖L−1
A ‖p translate into bounds for so-

lutions of the DALE. For instance, the solution P of the DALE for Q = QT ≥ 0
satisfies

trP ≤ ‖L−1
A ‖1 trQ ,(6.1)

and the upper bound is achieved for Q = w1w
T
1 , where w1 is the leading eigenvector

of L−1
AT I. In the (p = ∞)-norm, L−1

A achieves its norm on the identity. In the

(p = 2)-norm, L−1
A does not in general achieve its norm on the identity, and the

question arises whether it achieves its norm on any symmetric, positive semidefinite
matrix. The forward operator LA does not in general assume its norm on a symmetric,
positive semidefinite matrix. The following theorem states that L−1

A does achieve its
(p = 2)-norm on a symmetric, positive semidefinite matrix.
Theorem 6.1. There exists a matrix S = ST ≥ 0 such that ‖L−1

A S‖2/‖S‖2 =
‖L−1

A ‖2.
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Proof. Theorem 8 of [4] states that the inverse of the stable, continuous-time
Lyapunov operator achieves its (p = 2)-norm on a symmetric matrix. The proof is
easily adapted to give that L−1

A achieves its (p = 2)-norm on a symmetric matrix. We
now show that if L−1

A achieves its (p = 2)-norm on a symmetric matrix, it does so
on a symmetric, positive semidefinite matrix. Suppose that ‖L−1

A S‖2/‖S‖2 = ‖L−1
A ‖2

and S is symmetric with Schur decomposition S = UDUT . Define the symmetric,
positive semidefinite matrix S+ = U |D|UT . Then ‖S‖2 = ‖S+‖2 and −S+ ≤ S ≤
S+. The positiveness of the stable, discrete-time inverse Lyapunov operator mapping
implies that −L−1

A S+ ≤ L−1
A S ≤ L−1

A S+, which implies that ‖L−1
A S‖2 ≤ ‖L−1

A S+‖2.
Therefore,

‖L−1
A S‖2

‖S‖2
=

‖L−1
A S‖2

‖S+‖2
≤ ‖L−1

A S+‖2

‖S+‖2
.(6.2)

Additional information about the leading singular vectors of L−1
A could be useful

for determining low-rank approximations of P . The power method can be applied
to L−1

ATL−1
A to calculate the leading right singular vector and singular value of L−1

A

[7]. However, this approach requires solving two DALEs at each iteration, which may
be impractical for large n. If it is practical to store P and to apply LA and LAT , a
Lanczos method could be used to compute the trailing eigenvectors of LALAT while
avoiding the cost of solving any DALEs.

Appendix. Proof of Theorem 1.1. By definition, ‖P‖p ≤ ‖L−1
A ‖p ‖Q‖p, and it

remains to show that ‖P−1‖∞ ≤ ‖LA‖∞ ‖Q−1‖∞. Since P = PT > 0, there is a
nonzero x ∈ R

n such that

‖P−1‖∞ =
1

λn(P )
=

xTx

xT
(L−1

A Q
)
x

=
trxxT

tr
(L−1

A Q
)
xxT

=
trxxT

tr
(

(LAT )
−1

xxT
)
Q
.

(A.1)

Let B = L−1
AT (xxT ) and note B = BT ≥ 0. Then using Lemma 2.3 and trBQ ≥

λn(Q) trB gives

‖P−1‖∞ =
trLATB

trBQ
≤ trLATB

trB

1

λn(Q)
≤ ‖LAT ‖1‖Q−1‖∞ = ‖LA‖∞‖Q−1‖∞ .

(A.2)

Theorem 1.1 holds for 1 ≤ p ≤ ∞ given some restrictions on A. From [16],
λi(P ) ≥ λi(Q) + σ2

n(A)λn(P ), and it follows that ‖P−1‖p ≤ ‖Q−1‖p for 1 ≤ p ≤ ∞.
From Theorem 3.1, ‖LA‖p ≥ 1 if either A is singular or σ2

1(A) ≥ 2. Therefore, if
either A is singular or σ2

1(A) ≥ 2,

‖P−1‖p ≤ ‖LA‖p‖Q−1‖p , 1 ≤ p ≤ ∞ .(A.3)
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