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Bounds for Solutions of the Discrete
Algebraic Lyapunov Equation

Michael K. Tippett and Dan Marchesin

Abstract—A family of sharp, arbitrarily tight upper and lower matrix
bounds for solutions of the discrete algebraic Lyapunov are presented.
The lower bounds are tighter than previously known ones. Unlike the
majority of previously known upper bounds, those derived here have no
restrictions on their applicability. Upper and lower bounds for individual
eigenvalues and for the trace of the solution are found using the new
matrix bounds. Sharp trace bounds not derivable from the matrix bounds
are also presented.

Index Terms—Covariance matrices, Lyapunov matrix equations, ma-
trix bounds.

I. INTRODUCTION

The discrete algebraic Lyapunov equation (DALE) is

P = A
T
PA +Q; A;Q 2 R

n�n
; Q = Q

T
> 0 (1)

where all the eigenvalues ofA lie inside the unit circle,(T ) and
(>0) denote transpose and positive definiteness, respectively, and
P = P T > 0 is the solution. Bounds for solutions of the DALE are
often in the form ofeigenvalue bounds, that is bounds for single
eigenvalues ofP , bounds for the trace ofP , or bounds for the
determinant ofP . A more general type of bound is amatrix bound,
such as

P � B; B = B
T
2 R

n�n (2)

where the notationP � B means that the matrixB � P is
positive semidefinite. If one has matrix bounds, one may easily derive
eigenvalue bounds.

Our particular motivation for seeking bounds for the solution of the
DALE comes from the application of the Kalman filter to the problem
of assimilating atmospheric data (e.g., [1]). With some simplifying
assumptions, the error covariance of the estimate of the state of the
atmosphere satisfies the equation in (1) with the appropriate choice
of A andQ. For this application, the DALE has two distinguishing
properties. First, the system comes from the discretization of a three-
dimensional continuum problem; the dimensionn of the matrices
is large, typically of the order 106. Since direct treatment of (1)
is impractical, estimates for the solution of the DALE are valuable
and can be used, for example, to investigate the dependence of
P on A and Q and to develop approximate methods. Second, in
atmospheric dynamics, as in fluid dynamics, an important feature
of the dynamics is nonmodal growth due to nonnormality [2], [3].
When such nonmodal growth is present,A is nonnormal and has
singular values greater than one. The majority of previously known
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upper bounds for the solution of the DALE are inapplicable when
the singular values ofA are greater than one (e.g., [4]). This lack of
upper bounds may indicate a lack of theoretical understanding of the
behavior of solutions of the DALE. The upper bounds derived here,
applicable with no restrictions on the singular values ofA, are an
expansion of the theoretical understanding of the DALE.

First, in Theorem 1 we recall that the solution of the DALE has
a series representation. Then, we use that series representation to
derive Theorem 2, a family of sharp, arbitrarily tight matrix bounds.
Naturally, the amount of work required to calculate a very tight
bound approaches that of computing the solution. We show that the
new lower bounds are tighter than bounds recently presented in [5].
The new upper bounds do not become unbounded when the singular
values ofA approach one and are applicable when the singular values
of A are greater than one. The bounds also show that solutions of the
DALE depend on both the eigenvalues ofA and on the sensitivity
of these eigenvalues to perturbations. The eigenvalues of nonnormal
matrices may be extremely sensitive to perturbations.

With the new matrix bounds we derive Corollaries 1 and 2, upper
and lower bounds for the individual eigenvalues ofP and for the
trace ofP . Finally in Theorem 3, we derive sharp upper and lower
bounds for the constant of proportionality that relates the trace ofP

with the trace ofQ.
ForX 2 Rn�n, we use the notation�i(X) and�i(X) to denote

theith eigenvalue and singular value of the matrixX, wherej�i(X)j;
i = 1; � � � ; n; and�i(X); i = 1; � � � ; n are in nonincreasing order.
The normk � k2 is the usual two-norm withkXk2 = �1(X). We will
use the standard results for eigenvalues of symmetric matrices [6]

�
2

n(Y )�i(X) � �i(Y
T
XY ) � �

2

1(Y )�i(X) (3)

for X = XT ; Y 2 Rn�n; and

�i(X) + �n(Y ) � �i(X + Y ) � �i(X) + �1(Y ) (4)

for X = XT ; Y = Y T 2 Rn�n. Standard properties of the trace
operator are (see, e.g., [7])

tr(X + Y ) = tr(X) + tr(Y ) (5)

for X;Y 2 Rn�n and

tr(XY ) = tr(YX) (6)

for X =2 Rp�n; Y =2 Rn�p.

II. RESULTS

Definition 1: For A 2 Rn�n with eigenvalues inside the unit
circle and for any integerm � 0, definePm = P T

m by P0 = 0 and

Pm =

m�1

k=0

(AT )kQAk; m � 1: (7)

Theorem 1: The solutionP of (1) is

P = lim
m!1

Pm =

1

k=0

(AT )kQAk: (8)

Proof: See, e.g., [8].
Definition 2: For A 2 Rn�n with eigenvalues inside the unit

circle and for any integerm � 0, defineHm = HT
m by

Hm =

1

k=m

(AT )kAk: (9)

The terms of the series in (9) can be bounded using [7]

�
2

1(A
k) � (1 + �)2n�2 j�1(A)j+

kNkF
1 + �

2k

(10)

for any� � 0, whereA = ZT (D+N)Z is the Schur decomposition
of A. Recall that ifA is normalN � 0. Sincej�1(A)j < 1 one may
choose a finite� such that

� � j�1(A)j+
kNkF
1 + �

< 1: (11)

Thus

kHmk2 �

1

k=m

�
2

1(A
k) � (1 + �)2n�2

�2m

1� �2
(12)

showing the series in (9) converges andlimm!1Hm = 0. Also

Hm �Hm+1 = (AT )mAm � 0 (13)

implies that

H0 � H1 � H2 � � � � 0: (14)

Theorem 2: If P is a solution of (1), then for all integersm � 0

�n(Q)Hm + Pm � P � �1(Q)Hm + Pm: (15)

Proof: SinceQ = QT > 0; Q can be expressed as

Q =

n

i=1

�i(Q)wiw
T
i (16)

where�i(Q) > 0 and thewi are orthogonal. For anyx 2 Rn it
can be seen that

x
T
Px = x

T
Pmx +

1

k=m

x
T (AT )kQAkx

= x
T
Pmx +

1

k=m

n

i=0

�i(Q)xT (AT )kwiw
T
i A

k
x

� x
T
Pmx +

1

k=m

n

i=0

�n(Q)xT (AT )kwiw
T
i A

k
x

= x
T
Pmx + �n(Q)xTHmx: (17)

Similarly

x
T
Px � x

T
Pmx +

1

k=m

n

i=0

�1(Q)xT (AT )kwiw
T
i A

k
x

= x
T
Pmx + �1(Q)xTHmx: (18)

Applying (4) to (15) gives the following.
Corollary 1: If P is a solution of (1), then

�n(Q)�n(Hm) + �i(Pm) � �i(P ) � �1(Q)�1(Hm) + �i(Pm):

(19)

Applying (5) to (15) gives the following.
Corollary 2: If P is a solution of (1) then

�n(Q) trHm + trPm � trP � �1(Q) trHm + trPm: (20)

Theorem 3 and its proof are analogous to results in [9] for the
continuous Lyapunov equation.

Theorem 3: If P is a solution of (1) then

�n(H0T ) trQ � trP � �1(H0T ) trQ (21)

where

H0T =

1

k=0

A
k(AT )k: (22)
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Proof: SinceQ = QT > 0; Q can be expressed as

Q =

n

i=1

�i(Q)wiw
T

i (23)

wherewi are the orthogonal eigenvectors ofQ and�i(Q) > 0. Hence

tr(P ) =

n

i=1

1

k=0

�i(Q) tr (AT )kwiw
T

i A
k

=

n

i=1

1

k=0

�i(Q) tr wTi A
k(AT )kwi

=

n

i=1

�i(Q)wTi H0Twi (24)

where we use the property of the trace operator given in (6). However

�n(H0T ) � w
T

i H0Twi � �1(H0T ) (25)

and

trQ =

n

i=1

�i(Q): (26)

III. REMARKS AND COMPARISONS TOEXISTING BOUNDS

Remark 1: The bounds in Theorem 2 are sharp in the sense that for
anyA there is aQ such that the bounds are achieved; forQ = I, the
solution of (1) isP = H0 and the family of inequalities in Theorem 2
collapses to a single equality. They are also sharp in the sense that
for anyQ there is anA such that the bounds are achieved. ForQ as
in (16), the lower bound of Theorem 2 is achieved ifA = �wnw

T

n

and the upper bound ifA = �w1w
T

1 with j�j < 1. The bounds in
Theorem 2 are arbitrarily tight since for large enoughm, bothkHmk2
and kP � Pmk2 are arbitrarily small.

Remark 2: To use these new bounds requires calculating the
matricesHm. If A is normal, thenA can be written asA =
V TDV where V is orthogonal andD = diag(�1; � � � ; �n). In
this case, the form ofHm is quite explicit, Hm = V TD0V ;
D0 = diag(
1(m); � � � ; 
n(m)) with


i(m) =
j�i(A)j

2m

1� j�i(A)j2
(27)

and the size ofHm depends only onm and the closeness of the
eigenvalues ofA to the unit circle.

When A is nonnormal the cost of calculatingHm is the same
as solving the DALE, which for large systems may be impractical.
However, truncating the series in (9) gives lower bounds such as

H0 �

L

k=0

(AT )kAk (28)

for any integerL � 1. Such a truncation is useful only in the lower
bounds; the cost of calculating the upper bounds remains high if
the series in (9) converges slowly. ForL = 1, (28) shows that the
eigenvalues ofH0 are bounded from below by

�i(H0) � 1 + �
2

i (A) (29)

demonstrating that in contrast to whenA is normal, whenA is
nonnormalH0 can be large even when the eigenvalues ofA are not
near the unit circle. The cost of calculating the leading eigenvalues
and eigenvectors of the truncated series in (28) is roughly a factor of
L times that of calculating the leading singular values and vectors of
A. Calculation of the leading singular values and vectors ofA may be
practical using iterative Lanczos methods even whenn is large (e.g.,

[7]). For example, ifA comes from the discretization of a partial
differential equation then the cost of applyingA andAT to a vector
may not be too great and iterative methods are practical (e.g., [10]).

Remark 3: In [5] the lower matrix bound

P �
�n(Q)

1� �n(A)
A
T
A +Q (30)

was presented and used to derive new eigenvalue bounds tighter than
the majority of previously existing results. The lower matrix bound
given by Theorem 2 form = 1 is

P � �n(Q)H1 +Q: (31)

The bound in (31) is as tight or tighter than the one in (30) when

H2 �
�2n(A)

1� �2n(A)
A
T
A: (32)

Clearly

�2n(A)

1� �2n(A)
v
T

i A
T
Avi =

�2n(A)�
2

i (A)

1� �2n(A)
(33)

wherevi is the ith right singular vector ofA. However

v
T

i H2vi =

1

k=2

v
T

i (A
T )kAkvi

= �
2

i (A)

1

k=1

u
T

i (A
T )kAkui

� �
2

i (A)

1

k=1

�
2k

n (A)

=
�2n(A)�

2

i (A)

1� �2n(A)
(34)

where ui is the ith left singular vector ofA and by definition
Avi = �i(A)ui. Since the vectorsvi spanRn, the lower bounds
in Theorem 2 form � 1 are tighter than the one in (30).

Remark 4: In Remark 3 it was shown rigorously that the new
lower bounds are tighter than the one in (30). We now show a few
examples to illustrate this tightness. Roughly speaking, the lower
bounds presented here are tighter than that in (30) because the latter
uses only the first term of the series in (9). First, we consider the
example presented in [5, Remark 5]

A =
� 0
0 0

; Q =
1 0
0 1

: (35)

The exact solution is

P =
(1� �2)�1 0

0 1
(36)

and the lower bound from (30) is

P �
1 + �2 0

0 1
: (37)

For � near zero this is a good bound because(1 � �2)�1 �
1 + �2. However, as mentioned in [5], it becomes an increasingly
conservative lower bound as� approaches one. Since forQ = I the
bounds in Theorem 2 become a single equality,P = H0, it is more
meaningful to examine what happens when the approximation in (28)
is used. For this example (28) becomes

P = H0 �
L

i=0
�2i 0

0 1
(38)

which is a better bound than (37) whenL > 2.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 1, JANUARY 1999 217

As a second example, takeA to be then � n matrix with ones
on the superdiagonal and zero elsewhere and takeQ = I. For this
examplekPk2 = n, while the bound from (30) is

kPk2 � kATA+ Ik2 = 2: (39)

The bound obtained using the truncated series in (28) iskPk2 � L
for L � n andkPk2 � n for L > n which, for L > 2, is a tighter
bound than that in (39).

Remark 5: The upper matrix bound

P �
�n(Q)

1� �1(A)
ATA+Q; �1(A) < 1 (40)

was derived in [5]. This bound (and eigenvalue bounds derived
from it) becomes unbounded as�1(A) ! 1 and is not useful for
�1(A) > 1 which may occur whenA is nonnormal. An example
showing that solutions of (1) need not exhibit any dramatic behavior
near�1(A) = 1 is

A = �uvT ; u; v 2 Rn; kuk2 = kvk2 = 1; � > 0:
(41)

It is easy to see that

�1(A) = �; � � �1(A) = �vTu: (42)

We takej�j to be less than one. For thisA, the solution of (1) is

P = Q+
�2

1� �2
(uTQu)vvT : (43)

Clearly, in this example for fixed� the solution is a well-behaved
function of � near� = 1. This example also shows the relevance
of eigenvalue sensitivity. The sensitivity of an eigenvalue to pertur-
bations is given by itscondition (see, e.g., [7]). The conditions of
a simple eigenvalue is defined in such a way that roughly speaking,
a perturbation of order� to a matrix results in a perturbation of the
eigenvalue of order�=s. All the eigenvalues of a normal matrix have
condition equal to one. Hence, eigenvalue sensitivity is a phenomena
associated with nonnormality. Here, the condition of� is s = jvTuj.
The solutionP can be written in terms ofs as

P = Q+
1

s2
�2

1� �2
(uTQu)vvT : (44)

It clear that the solution is potentially unbounded as eitherj�j ! 1
or as s=� ! 0.

That the matrix bounds in Theorem 2 and 3 do not become
unbounded as�1(A) ! 1 or require that�1(A) < 1 can be seen
in the bound forkHmk2 in (12). As in (44) the bound in (12) is
related to the nearness ofj�1(A)j to one and to the sensitivity of the
eigenvalues ofA since

1 + � >
kNkF

1� j�1(A)j
: (45)

The connection betweenN and eigenvalue sensitivity is seen from
the standard result (e.g., [7, Th. 7.2-3]).

Theorem 4: Let A = ZT (D +N)Z be the Schur decomposition
of A 2 Rn�n. For anyE 2 Rn�n, let � be an eigenvalue ofA+E
andp be the smallest integer such thatjNpj = 0. Then

min
i
j�i(A)� �j � max(�; �p) (46)

where

� = jjEjj2

p�1

k=0

jjN jjk2 : (47)

A second method of boundingkHmk2 can be used ifA =
V �1DV with D = diag(�1(A); � � � ; �n(A)). Then the bound

�1(A
k) � �1(V

�1)�1(D)k�1(V ) = �2(V )j�1(A)j
k (48)

where �2(V ) � kV k2kV
�1k2 is the condition number of the

eigenvectors ofA, can be used to show

kHmk2 � �22(V )
j�1(A)j

2m

1� j�1(A)j2
: (49)

The connection between�2(V ) and eigenvalue sensitivity is apparent,
since for� andE as in Theorem 4 one has (e.g., [7, Th. 7.2-2])

min
i
j�i(A)� �j � �2(V )kEk2: (50)

Remark 6: The bounds in Theorem 3 are sharp in the sense that
for anyA there is aQ such that the bounds are achieved. Let

Q = zzT : (51)

From (24)

tr(P ) = zTH0T z trQ: (52)

If z is chosen to be the eigenvector associated with the largest
eigenvalue ofH0T then

trP = �1(H0T ) trQ: (53)

Similarly, if z is chosen to be the eigenvector associated with the
smallest eigenvalue ofH0T then

trP = �n(H0T ) trQ: (54)

Finally, if A = �I; j�j < 1; then for anyQ the bounds in
Theorem 3 become a single equality.

IV. CONCLUSION

Here, a family of new, sharp, arbitrarily tight upper and lower
matrix bounds for solutions of the DALE was derived. The lower
bounds are tighter than previously known ones. For large systems,
calculation of the lower bounds using iterative methods may be
possible when a direct solution of the DALE is not practical. The new
upper bounds, though costly to compute, are of particular interest as
they do not require that the singular values ofA be less than one.
The bounds also suggest that solutions of the DALE depend on both
the eigenvalues ofA and on the sensitivity of these eigenvalues to
perturbations. Using these matrix bounds, bounds for the individual
eigenvalues and for the trace of the solution were found. Additionally,
sharp upper and lower bounds relating the trace ofP and the trace
of Q were presented.
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Static Output Feedback Control for
Periodically Time-Varying Systems

Min-Shin Chen and Yong-Zhi Chen

Abstract—Most control designs for periodically time-varying systems
use either full-state feedback or observer-based state feedback. In this
paper, it is shown thatstaticoutput feedback is sufficient for the exponen-
tial stabilization of a periodical system under both the controllability and
observability assumptions. In fact, by incorporating a new generalized
hold function in the control design, one is able to arbitrarily shift all
the Poincaré exponents of the periodical system. Most importantly, the
control signal is guaranteed to becontinuous in time while the control
signal from previous designs may be discontinuous.

Index Terms—Continuous-time system, generalized hold function, peri-
odically time-varying system, Poincaŕe exponents, static output feedback.

I. INTRODUCTION

An important class of linear time-varying systems in the physical
world is the class of periodical systems, in which the system
parameters vary periodically. Analysis for such systems has been
done thoroughly in the past [1], [2]. One of the most important results
is summarized in the Floquet theory, which states that the stability
property of a linear periodical system can be determined byn constant
numbers called the Poincaré exponents, wheren is the dimension
of the system. As in the time-invariant case, if all the Poincaré
exponents are in the open left-half plane, the periodical system is
exponentially stable. If at least one of the Poincar´e exponents is in
the open right-half plane, the system is unstable.

For the stability synthesis of periodical systems, most control
designs are based on the assumption that all the state variables are
accessible for measurement. Among these, the earliest approach is
the LQ optimal control, in which one solves a periodical Riccati
equation to obtain a stabilizing state feedback control [3], [4].
Another approach is the modal control proposed in [5] which can
arbitrarily shift only one of the Poincaré exponents of the system.
Later, a layer of modal controllers is suggested to shiftall the
Poincaŕe exponents [6]. Recently, the generalized hold function
design, originally developed in [7], is applied to the state feedback
control of a periodical system [8]. However, the resultant control
signal may have large discontinuities in time. In practice, such large
discontinuities are either unacceptable under the actuator constraint
or undesirable due to the possible excitation of high-frequency
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unmodeled dynamics. Even though an attempt has been made to
make the control signal continuous, its success is obstructed by a
singularity problem [8].

In this paper, a new design is proposed to avoid discontinuities in
the control signal. Furthermore, it is shown that when the periodical
system is both controllable and observable, simplestatic output
feedback control is sufficient for the arbitrary assignment of all the
Poincaré exponents (note that fullstatefeedback is required in [8]).
The key elements in the new control design are the well-known
Floquet transformation [5] and a new generalized hold function
design. This paper is arranged as follows. In Section II, the definition
of Poincaŕe exponents for a periodical system is presented. In
Section III, adiscontinuousoutput feedback control is developed to
assign the Poincaré exponents of the closed-loop system, and the
control design is further modified in Section IV in order to remove
discontinuities in the control signals.

II. STABILITY ANALYSIS FOR PERIODICAL SYSTEMS

Consider the stability analysis of the following system:

_x(t) = A(t)x(t) (1)

wherex(t) 2 Rn is the state vector and the system matrixA(t) 2
Rn�n is T -periodic in the sense that

A(t+ T ) = A(t); 8t > 0:

In the famous Floquet theory [1], the stability property of (1) is
studied through a state transformation into a new coordinate, on which
the system matrix becomes time invariant. Such a transformation,
called theFloquet transformation, is given by

z(t) = P (t)x(t); P (t) = e
Jt��1(t; 0) (2)

where�(t; 0) is the state transition matrix [2] of (1), satisfying

@�(t; �)

@t
= A(t)�(t; �); �(t; t) = I; �(�; t) = ��1(t; �)

(3)

and J is a constant matrix given by

J =
1

T
ln�(T; 0): (4)

From (1)–(3), the periodical system (1) has aconstantrepresenta-
tion in the new coordinate

_z(t) = Jz(t): (5)

One can verify (see [2]) that the state transformation matrixP (t) in
(2) is alsoT -periodic and remains uniformly bounded and nonsin-
gular. The stability property of the periodical system (1) can then be
inferred from that of the constant system (5). In the literature, the
eigenvalues of the constant matrixJ in (5) are referred to as the
Poincaré (or characteristic) exponents

P:E: �i(J) =
1

T
ln�i[�(T; 0)] (6)

where the second equality results from (4). The condition for expo-
nential stability of (1) is thus

Re[�i(J)] < 0 (7)

or equivalently

j�i[�(T; 0)]j < 1
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