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Our particular motivation for seeking bounds for the solution of the

DALE comes from the application of the Kalman filter to the problem

of assimilating atmospheric data (e.g., [1]). With some simplifying

assumptions, the error covariance of the estimate of the state of the
atmosphere satisfies the equation in (1) with the appropriate choice

of A and@. For this application, the DALE has two distinguishing

properties. First, the system comes from the discretization of a three-

dimensional continuum problem; the dimensionof the matrices
is large, typically of the order £0 Since direct treatment of (1)
is impractical, estimates for the solution of the DALE are valuable

and can be used, for example, to investigate the dependence of

P on A and @ and to develop approximate methods. Second, in
atmospheric dynamics, as in fluid dynamics, an important feature
of the dynamics is nonmodal growth due to nonnormality [2], [3].
When such nonmodal growth is presedt,is nonnormal and has

singular values greater than one. The majority of previously known
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upper bounds for the solution of the DALE are inapplicable whefor anyd > 0, whered = Z7 (D + N)Z is the Schur decomposition
the singular values afi are greater than one (e.g., [4]). This lack obf A. Recall that ifA is normalN = 0. Since|A:(A)| < 1 one may
upper bounds may indicate a lack of theoretical understanding of ttlgoose a finite# such that
behavior of solutions of the DALE. The upper bounds derived here, 1N+
applicable with no restrictions on the singular values4Agfare an = A (A)] + 11 <L (11)
expansion of the theoretical understanding of the DALE.

First, in Theorem 1 we recall that the solution of the DALE hadhus

a series representation. Then, we use that series representation to 2, , o 2
derive Theorem 2, a family of sharp, arbitrarily tight matrix bounds. [Humlls < > oi(A") < (1496) 1= 2 (12)
Naturally, the amount of work required to calculate a very tight k=m

bound approaches that of computing the solution. We show that #teowing the series in (9) converges dhd,, oo H,, = 0. Also
new lower bounds are tighter than bounds recently presented in [5]. o o

The new upper bounds do not become unbounded when the singular Hyp = Hpppr = (47)"A™ >0 (13)
values of4 approach one and are applicable when the singular values

of A are greater than one. The bounds also show that solutions of Wg“es that

DALE depend on both the eigenvalues 4fand on the sensitivity Ho>H,>Hy-->0. (14)

of these eigenvalues to perturbations. The eigenvalues of nonnormal ) _ )

matrices may be extremely sensitive to perturbations. Theorem 2: If P is a solution of (1), then for all integera > 0
With the new matrix bounds we derive Corollaries 1 and 2, upper M(Q)Hp + Po < P < A (Q)Hyn + Pon. (15)

and lower bounds for the individual eigenvalues @fand for the
trace of P. Finally in Theorem 3, we derive sharp upper and lower  proof: Since = Q7 > 0,  can be expressed as
bounds for the constant of proportionality that relates the tracB of .
with the trace ofQ. - T
= A (Q)wiw; 16

For X € R"*", we use the notation;(X) ands;(X) to denote @ ; (Q)uiw (16)
the:th eigenvalue and singular value of the matkixwhere|\; (X)|, _
i=1,---,n, ando;(X),i = 1,---,n are in nonincreasing order. Where A;(Q) > 0 and thew; are orthogonal. For any € R" it
The norm|-||» is the usual two-norm withi X ||» = o (X). We will can be seen that
use the standard results for eigenvalues of symmetric matrices [6] . . ek
. o v Pe=ua P,z + (A Atz
T (¥)X(X) < N(YTXY) < o (YV)N(X) (3) ,; e

for X = X7, Y € R**", and — TP st Z Z/\_(Q)lfT(A'T)kw_,w_T ARy
M)+ S ME HY) S NX) F M) @) ==

@' Pnx + Z Z/\n(Q)IT(AT)kw,;’wakw

for X = X', Y =Y" € R"*". Standard properties of the trace >
operator are (see, e.g., [7]) k=m i=0
T T
te(X 4+ Y) = tr(X) + tr(Y) ®) =a Ppax+ A\(Q)z" Hpx. 17)
for X,Y € R"*" and Similarly
tr(XY) = tr(YX) ©) ' Pr<a'Pna+ Z Zx\1 (@Q)z" (A" ww] A
for X =e RP*", Y =€ R"*". k=m i=0
=" P+ M (Q)a" Hppa. (18)
Il. REsuLTs L
. Definition 1: FOr A € Rnxn Wlth eigenvalt;ﬁes inside the unit App|y|ng (4) to (15) gives the fo”owing_
circle and for any integem > 0, defineP,, = P,, by » = 0 and Corollary 1: If P is a solution of (1), then
m—1
P, = Z(A.T)kalk, m 2 1. (7) /\n(Q))‘n(Hm)'i')\z(Pm) S /\1(P) S)\I(Q))\I(H771)+)\1(Pm)
k=0 (19)
Theorem 1: The solutionP of (1) is Applying (5) to (15) gives the following.
P= lim P, = Z(flT)kalk. ®) Corollary 2: If P is a solution of (1) then
k=0 A tr Hey +tr Py <tr P < M (Q)tr Hyy +tr P (20)

Proof: See, e.g., [8].
Definition 2: For A € R™*" with eigenvalues inside the unit
circle and for any integem > 0, defineH,, = H by

Theorem 3 and its proof are analogous to results in [9] for the
continuous Lyapunov equation.
Theorem 3: If P is a solution of (1) then

Hpo= 3 (A7) AN ©) An(Hor) trQ < tr P < Ay (Hor) tr Q 1)
k=m
The terms of the series in (9) can be bounded using [7] where
. 2k o=k, ATk
o2(A%) < (146)2 <|/\1(A)| + ”1N-|-|g> (10) Hor =) A"AD" (22)
k=0



216 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 1, JANUARY 1999

Proof: Since@ = Q7 > 0, Q can be expressed as [7]). For example, ifA comes from the discretization of a partial
- differential equation then the cost of applyigand A" to a vector
Q= ZM(Q)wiw} (23) may not be too great and iterative methods are practical (e.g., [10]).
i=1 Remark 3: In [5] the lower matrix bound
herew; the orth lei t fand); 0.H .
wherew; are the orthogonal eigenvectors@fand;(Q) > ence P> lio(Q()A)Al 440 (30)
tr(P) = A (Q) tr (AT w,w] A* . , :
x(P) ;LZO (@) r(< )i ) was presented and used to derive new eigenvalue bounds tighter than
n oo the majority of previously existing results. The lower matrix bound
= ZZ)”(Q) tr(w) A* (A7) w;) given by Theorem 2 fom = 1 is
o P> A(QH +Q. (31)
=" N(Q)w] Horw; 24 _ _ _ _ :
; (Q)wi Horw (24) The bound in (31) is as tight or tighter than the one in (30) when
where we use the property of the trace operator given in (6). However H, > : i;;j()fl) FErs (32)
A (Hor) < ?U,TH()T?U,; < M (Hor) (25) "
Clearly
and
n oZ(A) o oZ(A)oZ(A)
trQ = Z/\‘(Q) (26) 1= o2 (A) v; A" Av; = 1= 02 (A) (33)
=1
wherew; is theith right singular vector ofd. However
v} Hyv; = ZU?(f‘T)kélk'v,‘
lll. REMARKS AND COMPARISONS TOEXISTING BOUNDS i
Remark 1: The bounds in Theorem 2 are sharp in the sense that for ) e k
any A there is aQ such that the bounds are achieved;@be= I, the =0;(4) Z ui (A7) A ;i
solution of (1) isP = H, and the family of inequalities in Theorem 2 ’fol
collapses to a single equality. They are also sharp in the sense that > o2(A) Z o2k A)
for any @ there is and such that the bounds are achieved. Roas =y Pt "o
in (16), the lower bound of Theorem 2 is achievediif= Aw,,w,) o2 (A)a2(A)
and the upper bound ift = Aw;w] with |\| < 1. The bounds in = ﬁ (34)
Theorem 2 are arbitrarily tight since for large enoughboth|| H,. ||2 —oi(4)
and||P — P..||. are arbitrarily small. where u; is the ith left singular vector ofA and by definition
Remark 2: To use these new bounds requires calculating th€v;, = o,(A4)u;. Since the vectors; spanR", the lower bounds
matrices H... If A is normal, thenA can be written as4 = in Theorem 2 forn > 1 are tighter than the one in (30).
VT DV where V is orthogonal andD = diag(Ai,---,\,). In Remark 4: In Remark 3 it was shown rigorously that the new
this case, the form offl,,, is quite explicit, H,, = V'D'V; lower bounds are tighter than the one in (30). We now show a few
D' = diag(yi(m),- -+, (m)) with examples to illustrate this tightness. Roughly speaking, the lower
I\ (A)[2™ bounds presented here are tighter than that in (30) because the latter

yi(m) = T MAE (27) uses only the first term of the series in (9). First, we consider the
e example presented in [5, Remark 5]
and the size offf,, depends only onn and the closeness of the
; ) s A0 1 0
eigenvalues of4 to the unit circle. A= , Q= . (35)
When A is nonnormal the cost of calculating,,, is the same 00 01
as solving the DALE, which for large systems may be impracticatne exact solution is

However, truncating the series in (9) gives lower bounds such as

_\2y—1
L p= {(1 S ) ﬂ (36)
Hy> > (AT)r A (28)
k=0 and the lower bound from (30) is
for any integerL > 1. Such a truncation is useful only in the lower 14X 0
bounds; the cost of calculating the upper bounds remains high if P> { 0 1}- (37)
the series in (9) converges slowly. For= 1, (28) shows that the
eigenvalues ofH, are bounded from below by For A near zero this is a good bound becaude— A\*)~! =
N(Ho) > 14 02(A) (29) 1 4+ A°. However, as mentioned in [5], it becomes an increasingly

conservative lower bound asapproaches one. Since f@ = I the
demonstrating that in contrast to wheh is normal, when4 is bounds in Theorem 2 become a single equality= Ho, it is more
nonnormalH, can be large even when the eigenvaluesiadre not meaningful to examine what happens when the approximation in (28)
near the unit circle. The cost of calculating the leading eigenvaluigsused. For this example (28) becomes

and eigenvectors of the truncated series in (28) is roughly a factor of Z_r, A% 0

L times that of calculating the leading singular values and vectors of P=H,> { 2 1} (38)

A. Calculation of the leading singular values and vectord ofiay be

practical using iterative Lanczos methods even whés large (e.g., which is a better bound than (37) whén> 2.
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As a second example, také to be then x n matrix with ones where k2(V) = ||V|]2|]V""|2 is the condition number of the
on the superdiagonal and zero elsewhere and €ake I. For this eigenvectors of4, can be used to show
example||P||2 = n, while the bound from (30) is IAL(A)2™

Hm 2 < ‘2 "/r T N 7 a9 "
1Pl > AT A+ I)|> = 2. (39) Hll2 < 52 (V)= In (A2

(49)

The bound obtained using the truncated series in (28> > L  The connection betweety (V') and eigenvalue sensitivity is apparent,
for L < n and||P||2 > n for L > n which, for L > 2, is a tighter since fory and £ as in Theorem 4 one has (e.g., [7, Th. 7.2-2])

bound than that in (39). . .
Remark 5: The up(pez matrix bound min |Ai(4) =] < w2 (V)| ]2 (50)

(@) 1, , Remark 6: The bounds in Theorem 3 are sharp in the sense that
P< 1-— JI(A)A A+Q. ai(4) <1 (40) for any A there is a@) such that the bounds are achieved. Let
was derived in [5]. This bound (and eigenvalue bounds derived Q=zz". (51)

from it) becomes unbounded as(A) — 1 and is not useful for

#1(4) > 1 which may occur wherd is nonnormal. An example From (24)

showing that solutions of (1) need not exhibit any dramatic behavior tr(P) = 2T Hopz tr Q. (52)
nearoi(A4) = 1 is

If =z is chosen to be the eigenvector associated with the largest

A=ow',  woveR", |ulz=ol=1 o> ?41) eigenvalue ofHy; then
It is easy to see that trP = X\ (Hor) tr Q. (53)
g1(A) =0, A= M(4) = ov . (42) Similarly, if = is chosen to be the eigenvector associated with the
We take|)\| to be less than one. For thi, the solution of (1) is smallest eigenvalue offo; then
trP = A (Hor) t1 Q. (54)

o’ T T
P=e+ 1-—2a2 (" Qujvv™. (43) Finally, if A = AI, |A\] < 1, then for any@ the bounds in
Clearly, in this example for fixed the solution is a well-behaved Theorem 3 become a single equality.
function of ¢ nearoc = 1. This example also shows the relevance
of eigenvalue sensitivity. The sensitivity of an eigenvalue to pertur- IV. CONCLUSION

bat!ons Is given by it.s:ond?tion (.see, €.g., [7]). The conditio of .__Here, a family of new, sharp, arbitrarily tight upper and lower
a simple eigenvalue is defined in such a way that roughly Speak'%qatrix bounds for solutions of the DALE was derived. The lower

:i p:r:t\;gﬁ, f'g?o(;g:yef /_{ﬁ tiem;trz(mr:ﬁg: (')rf' snp;rrijz;:aﬁgzxo;;czbounds are tighter than previously known ones. For large systems,
9 5 9 calculation of the lower bounds using iterative methods may be

Condlt_lon gqu_arll to one. Helr_lce, elgen\;}alue sz_nfsmm%/ |js_a F’Q?”O’“ Asible when a direct solution of the DALE is not practical. The new
'T’iseog:)alltjetionwlg cgﬂnggrvrcritg ﬂetr:r’r;sec;ogs itiom\ds s = v ul. upper bounds, though costly to compute, are of particular interest as
) they do not require that the singular valuesfbe less than one.
P=Q+ L A : (u,TQu,)mT. (44) The bounds also suggest that solutions of the DALE depend on both
s21— A2 the eigenvalues oft and on the sensitivity of these eigenvalues to
It clear that the solution is potentially unbounded as eifigr— 1 perturbations. Using these matrix bounds, bounds for the individual
or ass/A — 0. eigenvalues and for the trace of the solution were found. Additionally,
That the matrix bounds in Theorem 2 and 3 do not becong&arp upper and lower bounds relating the tracé’adind the trace
unbounded as,(A4) — 1 or require thatr;(A) < 1 can be seen of Q were presented.
in the bound for||H .||z in (12). As in (44) the bound in (12) is
related to the nearness pf; (A4)| to one and to the sensitivity of the ACKNOWLEDGMENT
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The key elements in the new control design are the well-known
Floguet transformation [5] and a new generalized hold function
design. This paper is arranged as follows. In Section I, the definition

of Poincaé exponents for a periodical system is presented. In

Static Output Feedback Control for Section I, adiscontinuousoutput feedback control is developed to
Periodically Time-Varying Systems assign the Poincarexponents of the closed-loop system, and the
control design is further modified in Section IV in order to remove
Min-Shin Chen and Yong-Zhi Chen discontinuities in the control signals.

Abstract—Most control designs for periodically time-varying systems II. STABILITY ANALYSIS FOR PERIODICAL SYSTEMS
use either full-state feedback or observer-based state feedback. In this  Consider the stability analysis of the following system:
paper, it is shown that staticoutput feedback is sufficient for the exponen-
tial stabilization of a periodical system under both the controllability and z(t) = A(t)z(t) 1)
observability assumptions. In fact, by incorporating a new generalized
hold function in the control design, one is able to arbitrarily shift all  wherexz(¢) € R" is the state vector and the system matdi&) €
the Poincaré exponents of the periodical system. Most importantly, the R»x» g T-periodic in the sense that
control signal is guaranteed to becontinuousin time while the control
signal from previous designs may be discontinuous. A +T) = A®), vt > 0.

Index Terms—Continuous-time system, generalized hold function, peri- In the famous Floguet theory [1], the stability property of (1) is
odically time-varying system, Poincaeé exponents, static output feedback. . R . .
studied through a state transformation into a new coordinate, on which
the system matrix becomes time invariant. Such a transformation,
|. INTRODUCTION called theFloquet transformationis given by

An important class of linear time-varying systems in the physical 2(t) = P(t)x(t), P(t) = S“q)—l(t, 0) 2)
world is the class of periodical systems, in which the system
parameters vary periodically. Analysis for such systems has be#here®(t.0) is the state transition matrix [2] of (1), satisfying
done thoroughly in the past [1], [2]. One of the most important resulig® (¢, ) _ ; _ I
is summarized in the Floquet theory, which states that the stabilify 5; ~ = A@(t.7), o(t,t) =1, e(rt) =2 (t,7)
property of a linear periodical system can be determined bgnstant ?3)
numbers called the Poind&mexponents, where is the dimension . o
of the system. As in the time-invariant case, if all the Poiaca®"d/ is @ constant matrix given by
exponents are in the open left-half plane, the periodical system is
exponentially stable. If at least one of the Poimcaxponents is in
the open right-half plane, the system is unstable. From (1)-(3), the periodical system (1) hasanstantrepresenta-
For the stability synthesis of periodical systems, most contrg@hn in the new coordinate
designs are based on the assumption that all the state variables are
accessible for measurement. Among these, the earliest approach is A(t) = J=(t). (5)

the LQ optimal c_ontrol, in _vx_/h_ich one solves a periodical Riccat'bne can verify (see [2]) that the state transformation mafx) in
equation to obtain a stabilizing state feedback control [3], [4 2) is alsoT'-periodic and remains uniformly bounded and nonsin-

A”?”‘e.r app.roach is the modal cqntr’ol proposed in [5] which ¢ lar. The stability property of the periodical system (1) can then be
arbitrarily shift only one of the Poincarexponents of the SYSteM.jnferred from that of the constant system (5). In the literature, the

Lat_er, ? layer of modal controllers is suggest_ed to shift the . eigenvalues of the constant matri in (5) are referred to as the
Poincaé exponents [6]. Recently, the generalized hold funCt'OIBoincané (or characteristic) exponents

design, originally developed in [7], is applied to the state feedback

control of a periodical system [8]. However, the resultant control P.E. 2 )\(J)= llnM[@(T, 0)] (6)
signal may have large discontinuities in time. In practice, such large T

discontinuities are either unacceptable under the actuator constrahere the second equality results from (4). The condition for expo-
or undesirable due to the possible excitation of high-frequeneyential stability of (1) is thus
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